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Abstract

The relationships between two alternative theories
of gravity, the ”physicalist”, Electromagnetics based,
”Polarisable Vaccuum” theory of Puthoff and Dicke,
and Yilmaz’s ”phenomenological” variation of the
General Theory of Relativity, are explored by virtue
of a simple physical model based in the application
of Newtonian mechanics to propagative systems. A
particular virtue of the physical model is that, by
introducing distributed source terms, it anticipates
nonlocal relationships between observables within the
framework of local realism.

Keywords: Gravity, General Relativity, Nonlocal-
ity, Solitons, Electromagnetics; nonlinear Classical
Fields

1 Introduction

Early in the study of Electrodynamics it was shown
(see for example [1]) that the increase in the effective
mass of an electron when accelerated to relativistic
velocities can be explained in terms of the increased
energy of its Electromagnetic fields. This suggests
that it might be better to think of the mass/energy
of an apparent ”point particle” as being distributed
throughout its fields rather than being concentrated
at the specific place where we tend to ”find” a par-
ticle. On this view, the charged particle ”sources”
of ”attached” [1] EM fields as usually written into
Maxwell’s Laws, are not sources, and nor are the
fields attached to any actually existent atomist par-
ticles.
This possibility is highly relevant to many of the

foundational issues in Physics because, if it were so,
the usual assumption that interactions between sub-
atomic particles are necessarily retarded relative to
their observed locations would be falsified, as dis-
cussed here in section 4. The variety of modern ex-
periments [2, 3, 4, 5] and observations on gravity [6]
which together imply the nonlocal character of rela-
tionships between observables, would not then lead to
the conclusion of intrinsically nonlocal, or even super-
luminal, interactions between ontological elements.
In this context, Redhead [7] has shown that episte-
mological nonlocality (i.e. at the level of relationships
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between observables) does not strictly imply ontolog-
ical nonlocality (i.e. interactions at a distance be-
tween physical elements that are not co-located). As
particular instances of this, Wang et al [5] and Olko-
hvsky, Recami and Salesi [4] have each shown the ex-
istence of nonlocal relationships between observables
within the usual, locally realistic wave theory. Given
that waves, of any kind, are inherently distributed
systems involving correlations at a distance as op-
posed to action at a distance, this is not as surprising
as it might seem at first sight.
It has also been shown [8] that local realist wave

soliton models of subatomic particles automatically
conform to the usual relativistic mechanics. This re-
sult follows from two assumptions, namely conserva-
tion of linear momentum and a dynamical constraint
such that the momenta carried by fields propagate
at the characteristic velocity in all contexts. There-
fore, the result applies to a wider class of models than
the usual Electromagnetics formalism, which is rele-
vant because Electromagnetics only contemplates in-
teractions between fields and particles, whereas wave
solitons require direct interactions between propagat-
ing fields. Nonlinear extensions to the usual formal-
ism (which would provide direct field-field interac-
tions and soliton solutions), have been studied (eg
[9, 10, 11, 12]), and even more generally, it has been
found [13] that there are systems of nonlinear equa-
tions whose solutions superpose linearly, whilst Cui
[14] has shown that, if we are given only conservation
of the norm of the 4-momentum for particles, then
particle-particle interactions conform to the usual
formalism as encoded in Maxwell’s Laws and the
Lorentz force Law. In other words, the basic proposi-
tion that energy-momentum is propagative generates
both Special Relativity and Electromagnetics, but
does so without precluding the existence of non-linear
post-Maxwellian field equations that have soliton, or
more precisely solitron1, solutions. The purpose of
the present article is to incorporate general relativity
by taking the same basic proposition over from the
idealisation of a perfect medium, which led to Spe-
cial Relativity, to a more realistic scenario in which
we admit that any real physical medium would have
to be finite. Since the only property of the medium

1Meaning any persistent solution to a non-linear field
model. The term was coined by Chernitskii [15] to avoid confu-
sion with the usually quite specific mathematical connotations
of the word soliton.
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that was relevant for the Lorentz Group was the char-
acteristic velocity, we aim to account for gravity by
identifying a (hopefully simple) relationship connect-
ing variations in the characteristic velocity with the
(energy2) density of disturbances impressed upon the
medium. This notion, that gravitational phenomena
can be mimicked by suitably varying the characteris-
tic velocity in the vicinity of massive objects, has been
extensively studied [16, 17, 18, 19] etc, and we shall
refer to such approaches as Refractive Medium Inter-
pretations of gravity (RMIs). Amongst a large body
of literature in the area, three facts emerge which
should be brought to the attention of readers.

First, it has been shown (by virtue of the ”optical
action” concept [17]) that Newtonian methods (i.e.
force and energy methods) are available in curved
spaces without approximation. The proof relies on
the ability to define a scalar refractive index, which
is equivalent to the availability of a coordinate trans-
formation to an isotropic form. Since we shall rely
on this proof to justify using Newtonian methods to
develop the line element transformations connecting
observers in different gravitational fields, the formal
basis for the present model is secure only up to the
N-body time independent case, for which a scalar ϵ is
sufficient. Of course, this does not imply that New-
tonian methods are not available in the N-body time
dependent case.

Second, RMIs for the dominant phenomenological
theory, the General Theory of Relativity (GT), (espe-
cially the Schwarzchild solution of the Static Spher-
ically Symmetric (SSS) case), are invariably unsatis-
factory to the extent that authors, for example [19],
find themselves forced to write-in an ungainly and ar-
bitrary looking functional relationship for the charac-
teristic velocity profile in the vicinity of a gravitating
mass. Given the ”physicalist” motivations behind the
development of RMIs, the approach cannot be said
to have succeeded until the relation between the size
and location of ”source” objects and consequent spa-
tial variations in c can be shown to emerge from the
same model that deals with the kinematic responses
of inertial objects to said variations.

Third, Dicke [20] and Puthoff [21] have used the
Electromagnetics formalism, in the context of a
medium of variable dielectric constant, to generate an
alternative, but observationally satisfactory3theory
of gravity, which Puthoff (appropriately or otherwise)
describes as the ”Polarisable Vacuum (PV) repre-
sentation of General Relativity”. These ”physical-
ist” Electromagnetic approaches to gravity are also
somewhat related to the ”phenomenological” Yilmaz
theory of gravity [22, 23, 24, 25]. PV theory gen-
erates the characteristic velocity profile from within
the formalism, and so it addresses the main problem

2For a time independent theory of gravity. The general,
time dependent case requires consideration of a tensor energy-
momentum density rather than the scalar energy density used
throughout this article.

with other RMIs. However, like the Yilmaz theory, it
leads to an exponential metric in the SSS case rather
than the familiar (but arguably strange) Schwarzchild
metric. We shall show in section 3.2 that this sim-
ilarity extends to the N-body case, where the two
approaches continue to share the same line element
and the same N-body solutions. Although these the-
ories are empirically distinct from the GT, they agree
with it to first order, and the present state of the ob-
servational and experimental evidence is incompetent
to distinguish between them.

Ultimately, the main distinction between the di-
electric medium models of Dicke and Puthoff and
other RMIs is that varying the electrical permittivity
affects the structure of manifest interactions as well
as the speed of light. To the extent that we should
expect the speed of propagation of disturbances to
reflect the strength of underlying interactions, this
seems the more reasonable assumption, and so we
shall adopt, without proof, the usual result from Elec-
tromagnetics that the propagation velocity, c, and the
strength of interactions both vary in proportion to
this scalar. We also implicitly assume that the wave
impedance of the medium is invariant (i.e. that µ and
ϵ vary together) so that variations in the medium’s
relevant properties are described by a single scalar.
In addition to these assumptions, we shall apply a
second major constraint (i.e. in addition to the dy-
namical constraint already shown to generate Special
Relativity), namely that angular momenta are quan-
tised in the usual way, and conserved in gravitational
fields.

The development in sections 2 and 3 parallels
Puthoff, but uses a direct ”Newtonian” method which
avoids the dissonance inherent in writing particles
into the field equations. Instead of using various
heuristics (like the constancy of the fine structure
constant) to determine the line element, it is shown
to be implicit in the two constraints already stated
above. In place of the Lagrangian method for deter-
mining the characteristic velocity profile in the vicin-
ity of a single gravitating object, we shall show that
the exponential metric is effectively an instance of
Gauss’s Law. Where both Dicke and Puthoff param-
eterised the source term using the conventional pa-
rameter, mass, we shall find that their Lagrangian
analyses point to the system self-energy, rather than
the mass, as the appropriate basis for the source term
- an important distinction because mass and energy
are connected by a variable rather than a constant
in the dielectric medium RMI context. These steps
enable a simple formulation of the N-body case which
helps identify the N-body solutions in PV theory.

3Up to the time independent case. They are inconsistent
with the only known observation (on the decay rate of the
binary pulsar PSR 1913 + 16) that is directly pertinent to
the time dependent case. However, both treat the dielectric
constant, ϵ, as a scalar, which renders them inapplicable to
the time dependent case, as discussed in section 5.
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Examination of the Yilmaz theory (section 3.3)
shows that, although it is labelled Mg, the source
term variable is actually the same as the system self-
energy in PV theory. It seems inconceivable that
both the Yilmaz theory and a tensor formulation of
the unmodified PV theory could satisfy the necessary
curved space conservation laws in N-body interactive
situations. Since the Yilmaz theory does claim to sat-
isfy the relevant (Freud and Bianchi) identities, it is
more likely than not that the PV theory requires a
modification to its source terms. Having said that,
the PV theory draws a necessary distinction (in the
context of an Electromagnetic basis for gravity) be-
tween the inertial mass and the system self-energy,
which is absent from the Yilmaz theory. Although
the Yilmaz theory fails to draw this distinction (and
it clearly should), it is immune to the error for the
simple reason that the inertial mass variable does not
enter the equations of motion in curved space theo-
ries.

After noting in section 4 the useful implications
that this approach has with respect to causality, the
passage to a time dependent model is briefly discussed
in section 5. The restriction to scalar ϵ, or refrac-
tive index, is safe only as far as time independent
or low velocity models are concerned. In physical
wave models, quantum systems at relativistic veloc-
ity have anisotropic distributions of the momentum
flux at every point ([8] section 4.3), and it is not gen-
erally possible, for N-body problems, to remove this
with a coordinate transformation. Also, as stated
above, the availability of Newtonian methods in non-
uniform spaces has only been demonstrated subject
to the ability to define a scalar refractive index, i.e.
subject to the availability of an isotropic coordinate
system. Whilst it is in any case unlikely that a scalar
ϵ would suffice for the general case of N-bodies in ar-
bitrary conditions of motion, none of this rules out
an extension to the present model, with tensor ϵµν ,
to address the general case.

2 The Metric Transformations

2.1 The Preferred Coordinate System

As with Dicke and Puthoff, the present model has
been developed in the context of an underlying flat
or ”Newtonian” [20] metric, which brings with it the
implication of a preferred frame, a question which
Dicke addressed (partially) by reference to the ”cos-
mological principle” that the remote universe should
appear isotropic to his ”Newtonian” (i.e. preferred)
observers. We found previously [8], that the only
candidate preferred frame that is consistent with rel-
ativistic mechanics is the frame identified by a null re-
sult for the dipole component of the Microwave Back-
ground Radiation (MBR). Consequently, the unit
system of the underlying metric used here is defined

by the clocks and rulers of observers at rest in the
MBR preferred frame. Peebles [26] was the first to
recognise this preferred frame.
Subsequent to the publication of [8], new obser-

vational data have become available [27], which are
decisive in favour of this particular choice for the
preferred frame, and which constitute an empirical
success of the wave interpretation of relativistic me-
chanics as against the usual Special Theory. Blake
and Wall observed the gross number density of astro-
nomical objects as a function of the direction in space
relative to our known MBR velocity, and found that
there is an increase in the direction parallel to our
MBR velocity and a corresponding reduction in the
opposite direction. Quantitatively, the imbalance is
just as predicted by the doppler effect for our known
MBR velocity. The only plausible explanation for the
consonance of these two otherwise independent obser-
vations is that both are due to the real movement of
the earth, and this is also clearly the only frame that
satisfies Dicke’s isotropicity condition.

2.2 Angular Momentum Quantisation

In this sub-section, we shall show that the phe-
nomenon of angular momentum quantisation is a con-
sequence of Newtonian methods, when subjected to
the two constraints above. Although the result ap-
plies more generally, we shall consider only the sim-
plest conceivable physical model subject to the dy-
namic constraint which also possesses ”intrinsic angu-
lar momentum”. Self-evidently, propagative systems
are inherently not well localised in the usual atomist
sense of a point particle, but the ”point particles” in-
troduced here are merely the first step in modelling
widely distributed wave systems - as long as they are
finitely distributed we are free to talk about their
centres of momentum as the location properties of
the respective fields. Therefore, we shall begin by
ascribing the various aggregate field properties (the
total system momentum, self-energy and so on) to a
set of central location properties. An inevitable con-
sequence of this is that we re-introduce action at a
distance (into this first level model). In order bet-
ter to reflect the distribution of momentum/energy
throughout a continuous, propagative field, the mo-
menta (and so on) allocated to central location prop-
erties here will be referred, in subsection 2.4, to a
second level model - a distributed set of location prop-
erties which can be interpreted as the location prop-
erties of inherently extensive elementary field excita-
tions - i.e. the eigensolutions of the (unknown) post-
Maxwellian field equations.
In systems subject to the dynamical constraint, the

basic equation of the Newtonian paradigm is:

p = mc (1)

Where m is interpreted as the contribution of the
propagative subsystem to the observed inertial mass
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of the corresponding subatomic particle, and c is
the velocity, a vector in the direction of propagation
whose magnitude always equals the characteristic ve-
locity, c. Differentiating gives:

dp

dt
= c

dm

dt
+m

dc

dt
= c

dm

dt
(2)

Following the Newtonian paradigm, the energy, E,
is then found by integrating the work done to change
the momentum from 0 to p:

E =
∫ x

0
dp
dt .ds =

∫ t

0
cdm

dt .cdt = c2
∫m

0
dm

E = mc2 = cp (3)

As was shown previously by considering the conser-
vation of linear momentum [8], relativistic mechan-
ics is the logical consequence of constructing variable
speed entities (i.e. massive particles) from constant
speed subsystems. Here we focus on the second con-
straint above, namely the quantisation and conserva-
tion of angular momentum.
Photons across a wide continuum range of energies

all carry the same quantity of angular momentum,
h. Similarly, electrons, protons and neutrons have
very different self-energies, but the same angular mo-
mentum, h/2. These (photons and fermionic massive
particles) are the two basic kinds of system found in
the world and each kind is characterised by the value
of its angular momentum quantum - a curious result
within the usual (atomist) approach to mechanics.
However, just as it explains relativistic mechanics,
the dynamical constraint also provides a straightfor-
ward explanation for this result. To determine the
conditions under which propagative systems quantise
the angular momentum, let us consider a rather sim-
ple model of a ”particle” with intrinsic angular mo-
mentum - a two part system comprised of equal and
opposite linear momenta, p/2, propagating in oppo-
site directions with a central ”force” acting on each
of the two such that they move in a circle of radius
r and frequency ω, with c = rω. For the moment,
let us assume constant ϵ = ϵ0 = 1. The Newtonian
definition of angular momentum is:

L ≡ pXr (4)

Since p is transverse to r̂ in our example, E =
cp ⇒ L = Er/c = E/ω. Quantising L (i.e. holding
L constant for all E) implies E ∝ ω for each kind of
system, so that we may write E = Hω where ω is
the system orbital frequency, and H is a constant for
each kind of system. Observationally, it is found that,
for photons Hp = Lp/2π = ~, whilst for fermions
Hf = 2Lf/2π = ~, so we shall write E = ~ω in both
contexts, and return to the difference in the energy
to angular momentum ratio for the different kinds of
system below. Now, were the system to change to a
different value of r, the required energy would be:

∆E = Ef − Ei = ~(ωf − ωi) = ~c(1/rf − 1/ri) (5)

Whilst, according to the Newtonian paradigm:

∆E =

∫ rf

ri

dp

dt
.ds ⇒ dp

dt
= ~c/r2 (6)

So, the first basic result of applying the Newtonian
paradigm to propagative systems is that the quanti-
sation of angular momentum implies system binding
interactions of the familiar 1/r2 kind that are oth-
erwise independent of the system energy - coulomb-
like interactions produce quantised angular momenta.
Note that the system energy is equal to the work done
to bring the location properties from infinity to the
given separation.
Although we considered here a restriction to move-

ments on a circle (for which pXr = pr), this cor-
responds neither to photons nor to fermionic mas-
sive particles. However, the same result - an associ-
ation between quantised angular momenta and 1/r2

coulomb interactions - applies to any context where
the ratio of orbital and total propagation velocities
is fixed. If we were to take it that movements at
constant speed on a circle correspond to spin-2, then
it is easy to show first that movements at the same
speed on a helix of unit pitch have spin-1 (photons),
and second that there exist (somewhat more compli-
cated) closed trajectories on the surface of a sphere
which further reduce the effective orbital velocity by
another factor of

√
2, providing spin-1/2 systems, and

implying E = ~ω in spite of the factor of 2 difference
in the angular momentum quanta for photons and
massive particles. The details of this are irrelevant
to gravity, where the issue of principle importance, to
which we now turn, is how propagative systems scale
as we vary the characteristic velocity of the medium.

2.3 Metric Transformations in Dielec-
tric Media

The assumption of a dielectric medium, means that
we may write the central ”force” and characteristic
velocity as dp/dt = ~c0ϵ0/ϵr2, and c/c0 = ϵ0/ϵ re-
spectively. Under a step change in ϵ, the interaction is
reduced by the factor ϵ whilst (with no corresponding
change in the radius) the acceleration, c2/r required
to maintain the orbit would be reduced by a factor
of ϵ2, so the separation and frequency will be lower
in the new system. By how much? Let us assume
r0 → r = r0(

ϵ
ϵ0
)−m and ω0 → ω = ω0(

ϵ
ϵ0
)−n. Clearly

we require m + n = 1, and it remains to solve for m
and n. Write for the mechanical energy change:

∆E =

∫ r

r0

~c0ϵ0
ϵr2

dr (7)

Considering adiabatic changes, we may substitute
ϵ = ϵ0(

r0
r )

1
m , which gives:

∆E =
∫ r

r0
~c0ϵ0

ϵ0(
r0
r )

1
m r2

dr = ~c0r
− 1

m
0 [ r

1
m

−1

1
m−1

]rr0

∆E = m
1−m (~ω − ~ω0) (8)
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Since ∆E = ~ω − ~ω0,
m

1−m = 1 and so m = n =
1/2. The transformations above are therefore given
by:

r0 → r = r0

√
ϵ0
ϵ

ω0 → ω = ω0

√
ϵ0
ϵ

(9)

These metric transformations then fall through to
the dimensions and frequencies of all physical sys-
tems, including especially clocks and rulers. Since
we write E = ~ω, the transformation of ω enforces a
similar transformation of the self-energy, so:

E0 → E = E0

√
ϵ0
ϵ

(10)

This in turn requires a transformation of the in-
ertial mass contributions, m, which we can de-
duce either from E = mc2, or by writing L =
mr2ω =constant so that:

m0 → m = m0(
ϵ

ϵ0
)3/2 (11)

This full set of transformations, which inter alia
defines the line element, is identical to the set heuris-
tically identified by both Puthoff and Dicke. However
we derive or deduce them, they are closely related
and form a set which must be accepted or rejected
as a single package4. Whilst the inertial mass change
is irrelevant to the body’s motion in a given gravi-
tational field (i.e. in the context of phenomenologi-
cal curved space theories such as the General Theory
and the Einstein-Yilmaz variation), this has to raise
a question concerning how each quantum system con-
tributes to generating gravitational effects. Once it
is accepted that timebase changes induce self-energy
changes induce inertial mass changes, the usually as-
sumed (strong) equivalence between active, passive
and inertial masses becomes suspect. Ultimately the
rather basic question that must be addressed is why
we should use mass rather than energy (since they
are not the same thing in the present context), as the
source term for gravity? We shall find good reasons
to consider that the Lagrangian method of Dicke and
Puthoff actually identifies the system energy as the
more appropriate basis for a source term.

2.4 The Field Energy Density of Ce-
lestial Objects

The physical properties (system momentum, self-
energy, mass etc) assigned to the central ”particles”
in section 2.3 can now be referred to volume integrals
of the corresponding field densities. We shall discuss
here only the field energy density, which will later
act as the source term for impacts on the character-
istic velocity, but other properties may be dealt with

4A basic issue with the Yilmaz theory is that it effectively
equates energy and inertial mass and so accepts only parts of
the package, missing the distinction between active and passive
masses which becomes relevant in mixed EM gravity situations.

analogously by applying the metric transformations.
Any changes in the force field strength of underlying
fields must ultimately be implemented by separating
fundamental entities across the field, a process which,
according to the Newtonian paradigm, requires that
work be done in proportion to the pre-existing field
strength, Ei, and the magnitude, dEi, and physical
extent, ∆x, of the change:

dW ∝ Ei∆xdEi (12)

Where the field strength, Ei should not be con-
fused with the system energy, E. Integrating this
Newtonian conception of the field increment leads to
correspondence (up to a constant) with the result fa-
miliar from electrostatics for the relationship between
field strength and energy density:

ρE =
1

2
ϵE2 =

D2

2ϵ
(13)

Where D = Qr/4πr3. To the extent that the ob-
served electric field of a charged particle varies as
1/r2, the corresponding underlying field energy den-
sity of a charge necessarily varies as 1/r4. Note that
we do not maintain that the electric fields of isolated
charged particles really are exactly 1/r2 fields, or that
the quanta of angular momentum, are perfectly con-
served, but only that a model reality with 1/r2 inter-
action fields invokes a 1/r4 energy density. It should
be immediately apparent that this prescription is con-
sistent with an Si = EiXHi interpretation of the
fields of a charged particle in which the H fields can-
cel due to the necessarily balanced movements per-
taining to rest particles. We must now show from
within the model, i.e. without using Equation 13,
that the energy density varies as 1/ϵ.
This can be seen from at least two distinct consid-

erations. First, let us write the relationship between
energy density and the quantum system self-energy
as:

E =

∫ ∞

rc

4πr2K

r4
f(ϵ)dr =

4πK

rc
f(ϵ) ⇒ f(ϵ) =

Erc
4πK
(14)

Where K is a constant, ϵ ̸= f(r), and rc is the
radius of the central location properties above. We
may ignore the region 0 < r < rc on the basis that
the system as a whole scales according to the trans-
formations in sub-section 2.3, so that, whether it is
significant or not, the integral in the region below rc
remains in proportion to the integral above rc, and
can be absorbed into the constant, K. This form
of relationship applies to individual, isolated, non-
interacting quantum systems at rest in a flat space
of non-unity ϵ. We know from the above that both
the system self-energy and rc, the lower limit of the
integration region, vary as 1/

√
ϵ, so the energy den-

sity varies as f(ϵ) = 1/ϵ. Whilst this argument is
strictly available only in a space with constant ϵ,
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the free space value, rc0, is already so small rela-
tive to the dimensions of massive objects in all situ-
ations of interest (strong and weak fields alike)5that,
for any practical purpose, the energy density integral
can be truncated within a region where ϵ is constant.
Note that, in a space of constant ϵ, the energy den-
sity of an individual quantum system is such that
ρE/ρE0 = (E/E0)

2.
Second, the Little group informs us that quantum

systems at rest evolve under the action of members of
the group of spatial rotations [28]. If we are to take a
distributed approach to the field/particle system, this
can only mean that the energy constituting an (iso-
lated, non-interacting) quantum system always prop-
agates transverse to the radial direction. Therefore,
irrespective of the form of the relevant field equa-
tions, eigensolutions are constrained to exist on the
surfaces of spheres of various radii, which induces a
phase matching requirement for stable particles, with
the implication that the energy of individual eigen-
solutions varies as 1/r in the flat background space.
Self similarity of the eigensolutions for different radii
also requires that their number density varies as 1/r3,
which independently reproduces the free space energy
density as a function of 1/r4.
Now, if we compare a quantum system in free space

with the same system after being moved to the cen-
tre of a spherically symmetric inhomogeneity in the
medium (i.e. such that ϵ = ϵ(r)) the eigensolutions
associated with the radius r in the second case were
previously associated, in the free space system, with
the radius r

√
ϵ(r). In the course of moving from free

space to a position centred on the gravitational inho-
mogeneity, the self-energy of each such eigensolution
was further reduced by a factor

√
ϵ(r), so the overall

field energy density (bearing in mind that self simi-
larity ensures that the number density is invariant)
is reduced by the factor ϵ(r), and we may now write
the SSS energy density as ρE = ρE0/ϵ = K/ϵr4. This
result is independent of the functional relationship
between ϵ and r, but still restricted to spherical sym-
metry, although we shall argue later that even this
restriction can be removed for dielectric models.
To calculate the energy density distribution for a

large ”point-like” gravitational body of self-energy E,
we now substitute the solution for ϵ identified be-
low for the spherical case, which is in the general
form ϵ(r) = e2A/r. Since the massive object is actu-
ally distributed, and the value of ϵ experienced by a
given quantum system is overwhelmingly due to other
nearby systems, it is meaningless to set the lower limit
of integration equal to rc, and, following Yilmaz, we
shall consider the limiting behaviour as r → 0. The
system energy is:

E =
∫∞
r→0

4πr2Ke−2A/r

r4 dr = 4πK
2A [e−2A/r]∞r→0

E = 4πK
2A (15)

5There being no black holes in the exponential metric the-
ories.

Which fortunately does not diverge as r → 0.
Having associated a finite energy with a singularity,
the N-body solutions identified below can be used to
model more realistic mass distributions. Since each
quantum system is embedded in a region of effectively
constant, but non-unity ϵ, the self-energy of the mas-
sive object is E ≃ m0c

2/
√
ϵmax, where m0 = Σim0i

and the m0i are the free space values of the indi-
vidual particles constituting the gravitational mass.
However, we are not usually interested in what the
mass of a celestial object would have been if it were
divided into elementary quantum systems, so we shall
take K = AE/2π and the energy density as:

ρE =
AE

2π

1

ϵr4
(16)

The treatment here is analogous to [22], Equations
14, 21, 38 and 39. The result is only as good as the
use of a singularity to represent a celestial object, and
does not apply to individual sub-atomic particles in a
curved space. However, since this assumption is com-
mon to all present theories of gravity, and since the in-
tention is to model the theories as opposed to merely
the observables, we shall adopt it without further
comment except to mention that the form of Equa-
tion 16 (i.e. with ρE ∝ E2 for a singularity) is com-
mon to both PV (Dicke and Puthoff) and the Yilmaz
theory. It is a consequence for the static limit of the
usual demand for scalar gravitational waves, which is
the usual assumption made when writing down a La-
grangian density for the scalar field in any form akin
to Puthoff’s Lϵ

d = λf(ϵ)((∇ϵ)2 − ϵ2(∂ϵ/∂t)2).
Interpreting the energy density used in this article

as a measure of the underlying movements required
to sustain quantum systems suggests that an analogy
to Gauss’s Law, only with distributed source terms,
might provide a suitable method for generating the
required variations in the characteristic velocity. The
most obvious candidate relationship is:

∇2c(r) = κρE (17)

Because, when the energy density takes the form
of Equation 16, this equation has exponential solu-
tions that can be paramaterised to fit the weak field
observational data. Let us test the extent to which it
is consistent with the PV theory.

3 The Characteristic Velocity
Profile

3.1 The Static Spherically Symmetric
(SSS) Case

Puthoff proceeds from the metric transformations
to write down each of the different contributions to
the Lagrangian density, and then uses the standard
method to produce general equations governing the
mixed EM-gravity case. Since we have no reason to
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question either the Lagrangian method per se or his
prescription for moving from the transformations to
the corresponding (static case) Lagrangian densities6,
the outputs of this process should also be valid from
the current perspective, as good as the combination of
the input transformations with Maxwell’s Laws. The
purpose here is to identify the role of the energy den-
sity in the theory. Limiting the general equations to
the SSS case provides an equation for the character-
istic velocity profile in the vicinity of a single massive
object at rest, the solution of which is an exponential
profile, in the general form:

c(r) = c0e
−A/nr (18)

However, the Lagrangian method provides at best
limited insight into the physical basis for this out-
come, relies on a formalism with point charges writ-
ten in, and masks what we shall argue is a flaw in
the choice of the constant A above. Upon limit-
ing Puthoff’s general equation for the dielectric con-
stant, Eq 34 of [21], to the static case, choosing units
such that ϵ0 = 1, and changing notation from his
c(r) = c0/K(r) to the present c(r) = c0/ϵ(r) we have:

∇2
√
ϵ =

√
ϵ

4
(
∇ϵ

ϵ
)2 (19)

Substituting F (r) = ϵ(r)n (where n = 1/2 here),
and using (∇ϵ)2 = 4ϵ(∇

√
ϵ)2 this becomes:

2

r

dF

dr
+

d2F

dr2
= 1/F (

dF

dr
)2 (20)

for the SSS case. The solution of Equation 20
is F = eA/r, so ϵ = eA/nr(= e2A/r). The LHS is
∇2F (r), and this general form of equation should be
open to an interpretation by analogy to Gauss’s Law,
which states that the volume rate of production (con-
sumption) of the flux of the gradient of the function,
i.e. ∇2, equals a source (sink) density. So, we might
anticipate finding a recognisable source term on the
RHS, but this is not yet obvious. Put F = ef . Then
the RHS is equal to F ( dfdr )

2, rendering the solution,

f = A/r ⇒ F = eA/r more obvious, whilst the RHS
becomes A2F/r4.
We found above that the energy density at radius

r in a spherically symmetric curved space is ρE ∝
1/ϵr4, so the equation with n = −1 should have the
energy density on the RHS. Using Equation 19 with
the identity ∇2(ϵn) ≡ n(n−1)ϵn−2(∇ϵ)2+nϵn−1∇2ϵ
gives a family of equivalent equations for different
values of n:

∇2ϵn = n2ϵn(
∇ϵ

ϵ
)2 (21)

The equation for n = −1 is then:

∇2 1

ϵ
=

1

ϵ
(
∇ϵ

ϵ
)2 (22)

6The only freedom of relevance being Puthoff’s choice ([21]
equation 31) of the arbitrary function multiplying the scalar
wave Lagrangian density, f(K) = 1/K2 = 1/ϵ2, which eventu-
ally determines the exponential metric.

Which, for the SSS case, is equivalent to:

∇2 1

ϵ
=

4A2

ϵr4
(23)

Which also has the solution ϵ = e2A/r, and has the
same overall effect as Equation 20. This is identical
to Equation 17 with κ = 8πA/E. If we are to ad-
mit an interpretation by analogy to Gauss’s Law, κ
must be a system energy independent constant, so we
must choose A = GE/c40, rather than A = Gm/c20, to
conform with the weak field observational evidence,
which gives κ = 8πG/c4, with c a constant. Note
that the symbol, c, for the characteristic velocity is a
variable only in Equations 18 and 17, where this has
been emphasised by writing c(r).
In section 2 we established associations, first be-

tween quantised angular momenta and 1/ϵr2 force
fields, and then between 1/ϵr2 force fields and 1/ϵr4

energy densities. The association identified above,
between 1/ϵr4 distributed source terms and the ex-
ponential profile for ϵ, closes the loop such that the
model generates observationally satisfactory varia-
tions in the characteristic velocity from within. Let
us now apply this association to the N-body case.

3.2 The N-body Time Independent
Case

Although Equation 17 above arose in the context of
an SSS problem, it is a local equation (expressed in
point form) and thus one might expect it to be inde-
pendent of the source configuration. Hence we shall
try the same equation, ∇2c(r) = kρE , in the general
case of N bodies, where the main issue is the non-
linear superposition of energy densities. The concept
of energy we are using in this model - it is a measure
of the amount of movement involved in sustaining the
quantum system - is contextual because it depends on
a property of the medium as well as intrinsic prop-
erties of the system. However, even in a medium of
varying dielectric constant, the displacement fields,
Di, always superpose, and the square of the displace-
ment density is a true 1/r4 field, irrespective of the
dielectric constant. Therefore let us separate the SSS
energy density, K/ϵr4, into its medium dependent,
1/ϵ, and system dependent, K/r4, parts, and rewrite
the energy density by analogy to the usual displace-
ment field concept in the form ρE = κ′d2/ϵ, where d
is a true 1/r2 vector field.
Now, in order for the notion of an Electromagnetic

basis for mass to make sense, especially in the con-
text of the projection postulate in quantum mechan-
ics, the neutron, for example, must be considered to
have a non-vanishing field energy density. That is, we
must consider neutral entities to consist of positive
and negative underlying charge constituents, and we
must consider both kinds of field to exist, even when
their superposition vanishes, as in the case of the neu-
tron. So the energy density for neutrally charged en-
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tities, including celestial objects, will be in the form
ρE = κ′(d2

++d2
−)/ϵ, where the d+ relate to ”sources”

of positive charge, and similarly for the d−. There
are then two main possibilities for the energy density
in an N-body problem in gravity, namely:

ρE =
κ′

ϵ
ΣN

i=1[(d
2
i+) + (d2

i−)] (24)

And:

ρE =
κ′

ϵ
[(ΣN

i=1di+)
2 + (ΣN

i=1di−)
2] (25)

If the analogy to Gauss’s Law is be carried forward,
then, following the same process as in the preceding
sub-section, the N-body solution to Equations 21 and
22 should reduce both sides to one of these two forms.
This line of reasoning has been helpful in identifying
the following N-body solution of the PV equations:

ϵ = e
2G
c4

(ΣN
i=1

Ei
ri

)
= Πiϵi (26)

Where ϵi = e2GEi/ric
4

, the Ei are the observed
self energies of the various gravitating bodies, and
ri = |ri|, where ri is the position vector to the
ith body. Substituting this solution into Equation
22 brings both sides to ( 2G

c40
)2 1

ϵ (Σi
Ei

r3i
ri · Σj

Ej

r3j
rj) =

( 2G
c40

)2 1
ϵ (Σi

Ei

r3i
ri)

2, which corresponds to the second

option above, Equation 25. Note that the N-body
field equation in PV theory is the same as for the
SSS case, and that the solution is independent of the
present model.
It is interesting to notice that this form for the

energy density can vanish (for example at the mid-
point between two objects of equal mass). On the
one hand, to make sense of an Electromagnetic basis
for mass, the underlying fields of different kinds must
be taken to exist separately, on the other, when com-
bining fields of the same kind we perform the vector
addition before the inner product, as would normally
be expected with vector fields. Therefore, the impli-
cation of Equation 25 is a real physical superposition
of fields of the same kind so that the actual activ-
ity in the medium reflects the whole field rather than
each of its individual parts taken separately. The
effect of this is to give the field concept in our physi-
cal model an intrinsic ontological status, independent
of any lower level implementation that might address
how the fields are instantiated in the medium, so that
the model has become non-separable.
This is very relevant because it appears to be log-

ically impossible to remove interaction at a distance
from a physical model without such a feature (see
section 4 below). Another implication of the non-
separability of the expressions above is that we can-
not strictly define the self-energy of any one body in
terms of an integral over all space of its field energy
density, but only the self-energy of the entire system
of N bodies. However, as we saw in the discussion

following Equation 14, the approximation involved in
connecting the observed self-energy of a body with
the integral over its field energy density is adequate
for any practical purpose. To redefine the source
terms on the basis of invariants identifiable within
the model would take the physical model beyond its
proper context of a discussion of the existing theory7,
so let us continue with this issue of the source terms
as it applies to the PV theory.

3.3 Equivalence Principles

Having deduced the exponential form for the SSS
characteristic velocity profile, Dicke and Puthoff each
proceeded to use the usual parameter, mass, to spec-
ify the constant, 2A, multiplying 1/r so as to repro-
duce the available (weak field) data, and hence wrote
the line element [21], Equation 22, as:

ds2 = gijdx
idxj = e−2Gm/rc2c2dt2 −

e2Gm/rc2(dr2 + r2dθ2 + r2sin2θdϕ2) (27)

Where c is the background value (which always equals
the locally observed value). The distance, r, in this
formula is the ”real” or underlying value, i.e. ex-
pressed in the unit system of remote observers in
background space, which is not generally equal to
the locally observed value. Similarly, the mass here
must be expressed from the same perspective of re-
mote observers. Recalling that inertial mass increases
as ϵ3/2, it seems strange that, as the medium satu-
rates, the efficacy of the source term associated with
a given gravitating body should increase rather than
decrease. This qualitative consideration is sufficient
only to raise a question whether an alternative pa-
rameterisation might not be preferable, however the
Lagrangian derived mathematics is decisive with re-
spect to the current model: the RHS of Equation 22
is not in the form of either a mass or a mass density,
but in the form of an energy density. No other value
of n has a feasible8field density on the RHS. To be
consistent with this equation, the only suitable pa-
rameter to represent the total quantity of the source
is the self-energy of the system, so let us now rewrite
the SSS line element as:

ds2 = gijdx
idxj = e−2GE/rc4c2dt2 −

e2GE/rc4(dr2 + r2dθ2 + r2sin2θdϕ2) (28)

Where E is the self-energy, and c is a constant. The
two expressions above are equivalent in the weak field
limit, but diverge in strong fields. Having shown in

7It is one thing to build a physical model of a target theory
to test whether the theory is physically reasonable, but quite
another to use an inevitably metaphysical system directly as
the basis for theory.

8Putting n = +1 in Equation 21 gives an equation with the
mass, or inertia, density on the RHS, but the integral corre-
sponding to Equation 15 diverges.
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the preceding section that the PV formalism has sim-
ilar time independent N-body solutions to the Yilmaz
theory ([22], Equations 18 and 19), it is of particular
relevance here that the variable Yilmaz uses as source
term, Mg, varies as 1/

√
ϵ (see Yilmaz’s Equation 37′).

Therefore Yilmaz’s source term corresponds to the
self-energy used here, and his line element to Equa-
tion 28 above, rather than to Equation 27.

Although Yilmaz briefly discusses the (strong)
equivalence between inertial and gravitating masses,
ostensibly to justify using the usual d’Alembertian
equation as the equation of motion, his result is that
the observable geodesic trajectories are independent
of the inertial mass. The ”equivalence” Yilmaz men-
tions is then between two variables neither of which
really enters the theory (when expressed in the curved
metric formalism), and the only relevant ”equiva-
lence” is the weak equivalence between a gravitational
field and an acceleration field, so this is not an issue
that invalidates the Yilmaz theory. Now, a central
claim of Yilmaz’s theory is that it obeys both of the
key curved space identities, namely the Freud and
Bianchi identities. It is hard to imagine that PV (i.e.
even in the static case where scalar ϵ is good) could
satisfy the same identities with the same line elements
and solutions but different source terms, so the con-
clusion here is that the Lagrangian analysis of Puthoff
and Dicke does not allow a free choice of the source
term (as had been assumed by both authors) if we
are to respect the usual and reasonable demands for
general covariance and conservation laws.

The distinction between active and passive masses
is however important in the mixed EM-gravity situa-
tions contemplated in the PV theory, and it is only in
this context that the difference between the two ap-
proaches - not to mention the validity of the strong
equivalence principle - can be tested. Although mass
may suggest itself as a primary concept from a per-
spective inherently focused on, and conditioned by,
observability, when we construct physical models to
reproduce the observables, it is only natural that this
should be reversed, that inertial mass should play
the role of an effect rather than a cause. Hence it
is not necessarily an appropriate basis for the source
term, and there is no a priori reason to anticipate an
equivalence principle of the strong kind in a physi-
cal model. None of this mitigates against the curved
space formalisms per se, however the second major
conclusion here is that unification with Electromag-
netics (and hence ultimately with quantum field the-
ory) may well require the removal of the usual as-
sumption of a strong equivalence principle.

4 Causality

Gauss’s Law is usually interpreted from the atomist
perspective of an ontologically real ”charged” parti-
cle located at some definite place, which is thought

of as emitting the ”attached” Electric field, so the
object is taken to be primary, the field secondary.
Perhaps this is the single most blatant metaphysical
presumption in all of Physics, because, by presuming
this particular sense of causation, it ultimately com-
mits us to a retarded view of interaction, in conflict
with observation.

The alternative that we have developed here - that
Gauss’s Law is just a model, that the ”1/r2” field
might equally well be the primary reality and the ob-
servable ”particle” a part of the epistemology rather
than of the ontology, and so no more significant than
the location property of a field - is of course equally
metaphysical, however it has distinct advantages be-
cause it is consistent with the growing number of ob-
servations on gravity [6, 30] and laboratory experi-
ments [2, 4, 5] that show the epistemology to have a
nonlocal character. However, no part of the ontology
in the present model moves faster (or slower for that
matter) than the characteristic velocity, so the propo-
sition cannot be said to violate local realism. Mat-
ter in this kind of local realistic model is inherently
not well-localised, and the interactions don’t move at
all but simply occur wherever distributed ontological
systems overlap. The impacts of such interactions
upon the respective particle locations are, of course,
retarded. Since the far field EM interactions are sig-
nificant only in the vicinity of each particle, in a two
body electrodynamics situation the direct impact of
particle A’s far fields on particle B’s location is for all
intents and purposes instantaneous, whilst the reac-
tion on particle A’s location, having been mediated
by its own fields, involves retardation relative to the
site of the interaction (and vice versa for the action
of particle B’s far fields on particle A).

Equation 25 and the N-body PV solution are also
consistent with the proposition that emerged in sub-
section 2.4 from considering the Little Group to ap-
ply to the entire field / particle system, namely that
the field propagates transverse to the radial direction.
The conventional view, where we think of the field
as propagating away from the particle, ends up in-
troducing magical virtual particles that forever carry
momentum away from the source (but only when
there is a remote interaction). How the momentum of
unabsorbed virtual particles is returned to the source
remains a complete mystery, every bit as devastating
to the Newtonian and Einsteinian conception of local
action as the problem of interaction that the virtual
particles were supposed to address. The real problem
here is, and always was, atomism.

Now, having undermined the causal relationship
between particles and fields it should be observed that
we effectively reintroduced the same metaphysical er-
ror due to the talk in section 2.4 about the number
density of eigensolutions ”at” some radius r. This
ultimately implies that we return to another point
model (albeit one in which each location property
refers to an inherently distributed elementary field ex-
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citation), which seems to provoke an ongoing model
recursion. As Bergson observed in some detail at least
a century ago [31], there is an inherent problem in the
nature of representation, which is torn between the
prima facie irreconcilable concepts of inherent exten-
sion and inherent non-extension. The first, the idea
of continuity, is necessary if we are to discuss interac-
tion between objects without merely referring it to a
lower level (as is inevitable in a particle theory), but
the second, the idea of separability, seems equally
necessary if we are to define spatially distinct objects
in the first place. Rather than a wave-particle duality,
we should better describe this issue as a wave-particle
dichotomy.
Bergson did not leave the philosophical problem

there, but came down on the side of pure continuity.
We can see that he was correct in this because, whilst
one can never create pure continuity from a system
of isolated points, one can define a system of isolated
points from the movements of a continuum (as we
have seen in the present model) in such a way as to
provide a basis for effective separability without in-
troducing separability in any absolute sense. In short,
although this is a purely philosophical problem, it is
not strictly necessary for the model recursion that
might seem to be implied here to go on ad infinitum.

5 Comments on the Time De-
pendent Case

We can see that the model presented above is ex-
plicitly limited to the time independent case from
section 4.3 of [8]. In wave models, the momentum
flux density of a relativistic particle exhibits a veloc-
ity dependent elliptical anisotropicity. Since move-
ment is the basis of the source terms in the model, we
can anticipate that such anisotropic movements may
have anisotropic impacts on the characteristic veloc-
ity. The assumption here of a scalar energy density
leads directly to the use of a scalar parameter, ϵ, to
describe the medium, but the adoption of a scalar
energy density is only safe when the momentum flux
density is isotropic, which is to say in the static case.
In the time dependent case source terms should be
based in a tensor energy-momentum density which
implies using a tensor, ϵµν .
As Dicke pointed out [20], the state of the evidence

regarding gravity is rather weak because we have lit-
tle or no access to the strong field situations nec-
essary to distinguish empirically between a number
of alternate theories. This is especially so when we
move from the time independent to the time depen-
dent case. Only a single observation is categorically
related to the time dependent case, namely the decay
rate of the binary pulsar, PSR 1913 + 16 (although
a second binary pulsar has recently been identified).
The General Theory provides reasonable, but not es-
pecially convincing (at the 1 percent level of accu-

racy), agreement with observation. PV theory, as
Ibison [29] has found, does not. In fact, PV predicts
a result that is almost exactly 2/3 of the observed
decay rate, prompting Ibison to the reasonable con-
jecture that the error might stem from the loss of a
degree of freedom upon adopting a scalar rather than
a tensor form for the refractive index. Although PV
is not, in its present form, a candidate dynamic the-
ory of gravity, we saw above that once the PV source
term is modified, it closely corresponds to the static
limit of the Yilmaz theory. Yilmaz uses what he calls
a scalar ”potential”, ϕ, (because it has the same form
as the potential function of Newtonian gravity) for
the static case, but found it necessary to employ a
tensor for the time dependent theory. Yilmaz’s e2ϕ

corresponds to ϵ here, or equivalently to K in PV
theory. In the RMI context, Yilmaz’s 2nd rank ten-
sor potential for the dynamic case can be interpreted,
by means of a suitable Taylor expansion, as a tensor
refractive index of the same rank.

Having said that, as far as wave models in gen-
eral are concerned, we already know that the Lorentz
Transformation, dxa′

= La′

a dxa, connects the co-
ordinate systems of different inertial observers in
wave models with a characteristic velocity. For the
static model here, since the Ab′′

b′ are determined by the
given metric tensors, we have fixed the transforma-
tion dxb′′ = Ab′′

b′ dx
b′ , that connects the coordinate

systems of co-moving observers inside and outside a
gravitational field. A complete theory should there-
fore be available consistent with the general transfor-
mation dxb′′ = Ab′′

n′Ln′

a dxa.

With specific reference to physical models as op-
posed to theory, there are then several problems. In
many body problems, no transformation would ex-
ist to render the metric isotropic, and the proof [17]
of the availability of Newtonian methods in curved
spaces (upon which we have relied from the out-
set) would cease to apply. This does not necessar-
ily invalidate the use of such methods, but it does
weaken the otherwise firm formal basis for assum-
ing a Netwonian-like paradigm. Another consequence
of changing from a scalar to a tensor form for the
dielectric constant, is that the usual scalar concept
of charge should be replaced by a vector concept,
such that spinning, propagating fields carry one of
two kinds of ”charge” in correspondence with the
two senses of the angular momentum vector relative
to the direction of propagation, but there is nothing
corresponding to this in the present theory. Due to
the self-evident fact that it is objectively meaningless
to construct physical models of the reality itself, it
is vital that physical models (in the sense contem-
plated here) should be restricted to interpreting pre-
existing physical theories. Overall, whilst a model
for the time dependent case is entirely feasible, the
theoretical framework within which to conduct such
a development must first be clarified.
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6 Conclusions

Observationally, although significant advances have
been made in the last forty years, Dicke’s statement
concerning the poor state of the evidence on grav-
ity still holds. The available binary pulsar data may
be sufficient to rule out his particular (scalar dielec-
tric constant) approach to an Electromagnetic theory
of gravity, but the (∼ 1 percent) level of accuracy
available without knowing the orbital eccentricity is
hardly sufficient to distinguish between the GT and a
range of other candidate theories. This may improve
as more binary pulsars are discovered, but the on-
going absence of direct, strong field data means that
gravity will remain (in practice as well as in principle)
an open problem for quite some time to come.

Within this context, it is relevant to notice that
the GT is not without its own internal ”issues”. For
example, it is self evident that N-body interactive dy-
namics problems cannot be formulated in the context
of a test particle theory such as Einstein’s General
Theory of Relativity, so the GT is not a complete
theory of gravity, even in the Classical limit. Yilmaz
[25, 23] (although this remains the subject of contro-
versy), has also shown that the usual field equations
cannot simultaneously satisfy both the Bianchi and
Freud identities (the Freud identity guarantees con-
servation of the 4-momentum in curved space theo-
ries) except in 1-body metrics, with the effect that
the General Theory fails to provide an acceptable
correspondence limit with the Special Theory. More-
over, despite great effort having been expended on the
problem, quantum gravity remains a significant chal-
lenge and the General Theory remains unquantisable
and isolated from the rest of Physics. These facts,
and others, constitute a strong motivation to consider
alternative theories, but the present model is not to
be construed in any such sense. Rather, it should
be considered (in the first place) as a discussion con-
cerning certain existing theories and the opportuni-
ties they hold. Apart from providing an especially
simple formulation which enables solution of the N-
body problem in PV theory, the physical model shows
just how close the relationship between the PV and
Yilmaz theories (from which it was derived) really is,
and has hopefully provided some much needed insight
into the empirical differences regarding source terms,
exposing along the way the lack of self-evidency of the
strong form of equivalence principle. Just as none of
the criticisms above invalidates the GT, the failure of
PV in the case of the binary pulsars does not rule out
a generalised dielectric model.

In the second place, we have seen how Newtonian
mechanics, when consistently applied to propagative
systems, integrates Electromagnetics, relativistic me-
chanics, quantisation of the angular momentum, co-
variant gravity and the MBR preferred frame in a
simple 3D+t conceptual structure. The distributed
source terms identified here, combined with the hy-

pothesis that energy propagates transverse to the ra-
dial direction, comprehensively undermine the usual
presumption we make concerning causality, namely
that interactions are retarded relative to (what we re-
gard as) the physical objects that cause them, remov-
ing the often perceived conflict between local realism
and EPR [32]. Since we can never know whether a
physical model is ”true” or ”false”, the truth value
of a physical model is not a relevant consideration,
and nor is the uniqueness of a given model. All that
is relevant is the availability in principle of physi-
cal models, and there seems to be nothing in prin-
ciple to prevent the construction of relatively simple
physical models, including especially physical mod-
els within the framework of local realism, that repro-
duce, and therefore offer physical interpretations of,
physical theories consistent with all the observables.
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