
Relativity and the Luminal Structure of Matter

A. Laidlaw∗

16 August 2012

Abstract

Special Relativity implies definite structural constraints on the massive particles. It is shown from the
basic physics of luminal waves of any kind that multi-component wave systems conform to the usual
relativistic mechanics for massive particles, suggesting further consideration of luminal wave soliton
models. The usual length contraction and time dilation phenomena are found in an important subset of
such models, leading to the conclusion that internal movements referred to the comoving frame will be
luminal in any Lorentz Invariant particle model.

La relativité spéciale implique des contraintes structurelles sur les particules massives. On montre ici,
à partir de la physique de base des ondes électromagnétiques de tout genre, que les systèmes ondulatoires
à plusieurs composants se conforment à la mécanique relativiste habituelle des particules massives, ce
qui suggère de procéder à l’examen et à l’application de modèles solitoniques. Puisque, dans un sous-
ensemble important de ces modèles, l’on retrouve tous les phénomènes habituels de la contraction des
longueurs et de la dilatation du temps, on est amené à conclure que les mouvements internes, dans un
référentiel inertiel approprié, doivent présenter un comportement de type électromagnétique dans tous
les modèles physiques des particules relativistes.
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1 Introduction

“But the division into matter and field is, after the recognition of the equivalence of mass and
energy, something artificial and not clearly defined. Could we not reject the concept of matter and
build a pure field physics? What impresses our senses as matter is really a great concentration of
energy into a comparatively small space. We could regard matter as the regions in space where
the field is extremely strong. In this way a new philosophical background could be created.” -
Einstein & Infeld [1].

Relativistic wave equations, especially the d’Alembert, Helmholtz and Dirac [2] equations, are indispens-
able to Modern Physics. For example, the nonrelativistic Schroedinger wave equation is contained in the
Dirac Equation as the low velocity, no spin limit. These relativistic equations either feature propagation at
the characteristic velocity, c, or, in the language of the operator formalism, a velocity operator of constant
modulus equal to c [3]. There are also many Lorentz invariant classical field theories in the literature, in-
cluding nonlinear theories with subluminal soliton solutions that serve as candidate models for the fermions.
[4] - [10] are just a few to illustrate the diverse range of approaches.

In this article we shall consider the ordinary Newtonian mechanics of multi-component luminal wave
systems, i.e. systems of waves that propagate at c. We shall adapt the Newtonian momentum equation,
p = mv, for use with constant speed luminal waves. The entire Newtonian paradigm, including especially
the Newtonian conceptions of inertia, momentum and energy and their conservation laws, will then be
consistently applied to luminal wave systems leading to a general structural analysis of solitons that is
inherently relativistic without asserting any principle of relativity.

This shows that the usual relativistic mechanics of matter can be interpreted as the Newtonian me-
chanics of subluminally moving systems constructed entirely from luminal waves. It is also shown that this
interpretation is uniquely simple. The first, necessary step towards achieving Einstein’s goal for a pure field
physics, is therefore to recognise that energy is a propagative phenomenon. The relativistic concepts of
inertia, momentum and energy then emerge naturally from their Newtonian counterparts.
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The proposed luminal wave ontology also provides new perspectives on many issues including the Dirac
velocity operator, angular momentum quantisation, the structure of Electromagnetics, gravity [11], the
existence of nonlocal relations between observables, and interference phenomena in matter beams.

In Section 2 we define the basic principles and identify a simple general relationship that governs the
connection between inertial frames for systems of luminal wave momenta. Section 3 shows that the usual
relativistic momentum equation for particles applies to multi-component wave systems. Section 4 derives
the (forward) relativistic transformation of wave components in a form that is useful for analysing wave
systems as a whole. As discussed in Section 5, the results extend to any kind of wave system provided
a wave vector in the direction of propagation can be defined, linear momentum is locally conserved, and
propagation is luminal. In particular, linear superposition of field amplitudes is not required so the method
is applicable to nonlinear wave systems where subluminal soliton solutions are often found. For luminal
waves the speed of propagation is, by definition, fixed and any luminal wave model of a subuminal massive
particle is immediately subject to the constraint that when the speed of the particle changes, the speed of its
constituent wave components does not. Sections 6 and 7 show that length contraction and time dilation are
the consequences of this kinematic constraint and all the usual relativistic phenomena are thus attributable
to the proposed luminal wave structure. Section 8 considers non-luminal structures, which are readily shown
from Special Relativity to be implausibly complex, and therefore our main conclusion is that the relativistic
phenomena strongly imply the luminal structure.

Section 9 addresses the question how the physical phenomena of length contraction and time dilation
constrain the coordinate transformations. This has been analysed in detail by Selleri [12, 13] who showed
that, subject only to the use of Einstein clock synchronisation, Lorentz Transformations follow directly from
length contraction and time dilation. Hence, our coordinate transformations are Lorentz Transformations
and both the relativity principle and the observer independence of c are results as opposed to postulates.
Finally, Section 10 outlines the reasons why Special Relativity does not preclude nonlocal relations between
observables in this pure field context.

2 Basic Newtonian Principles

Consider a source that simultaneously emits a set of N light flashes in various directions. The development in
this section can be applied to any kind of light flashes, including individual photons, short segments of laser
beams, or collimated beams in general, monochromatic or not. We require only that each flash propagates
at c, carrying linear momentum in a well-defined direction in space.

Let the ith light flash carry linear momentum pi. According to Newtonian principles, momentum equals
inertia times velocity and we therefore define the wave inertia of the ith light flash as mi = pi/c, where
pi = |pi| is the magnitude of the momentum of the ith light flash. We shall refer to pi as the scalar
momentum:

pi = mic (1)

This article is essentially a consistent application of Newtonian mechanics, using (1) in place of the familiar
p = mv, where the speed v is a variable. We stress that, prima facie, the inertia, mi, of a wave propagating
in a well-defined direction in space has nothing to do with the mass of a particle. However we use the symbol
mi because, unless they ALL propagate in the same direction, the total inertia of a set of N waves will be
found to correspond to the usual (relativistic) particle mass. The time differential of (1) is:

dpi
dt

= c
dmi

dt
(2)

Having fixed the propagation speed, c, changes of the scalar momentum are thus associated with changes of
the wave inertia. Such changes may be due to a change of observer or they may be physical changes due,
for example, to the application of a force. It will become clear in Section 9 that the inertia changes we will
be discussing throughout the article are in fact frequency changes.

Using (2) the work integral from pi = 0 to pi is:∫ pi

0

dpi

dt
.ds =

∫ mi

0

c
dmi

dt
cdt = mic

2 (3)

According to Newtonian principles, the work done equals the energy change, and so the energy of the ith

flash is:
Ei = mic

2 = cpi (4)
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According to Newtonian principles, momentum is conserved and the total momentum of a set of N waves is
given by the vector sum over their momenta:

P =
N∑
i=1

pi (5)

Suppressing the summation range henceforth, we write the total inertia as me =
∑

imi. The total energy
of the set is then:

E =
∑
i

cpi = mec
2 (6)

According to Newtonian principles, the velocity of the centre of inertia of a system of objects is the inertia
weighted average velocity, V =

∑
imivi/

∑
imi whence:

V =

∑
i pi

me
⇒ P = meV (7)

For a relativistic analysis, these Newtonian Equations (1) - (7) must of course be good for any observer,
however, since we intend inter alia to show it, we shall not assert any principle of relativity.

Let us consider incremental changes that affect our system of light flashes as a whole. For example, an
incremental change in the condition of motion of the observer would at once alter all his observations of the
pi. Similarly, a single observer considering light flashes emitted by otherwise identical sources that are in
different conditions of motion will find different values for the pi. Since we may not assume these two cases
are equivalent, let us restrict our attention to the latter and consider, specifically, two otherwise identical
sources moving at velocities v and v + dv in the inertial frame of a single inertial observer. We may write
the momenta of the light flashes as pi and pi + dpi respectively and their totals as P and P+ dP. Clearly,
dP =

∑
i dpi.

We are interested in how the dpi are related to dP in this scenario. There is a naive analogy to the case
in Newtonian Mechanics of a force, F, acting on a body of total mass M composed of constituents of mass
mi. We would write the force, fi, acting on the ith constituent as:

fi =
mi

M
F ⇒ dpi

dt
=
mi

M

dP

dt

This suggests using the Newtonian ansatz dpi = midP/
∑

imi, which we shall write in the form:

dpi =
pi
mec

dP (8)

It is shown in the Appendix that (8) is valid in Special Relativity for luminal wave systems1. This equa-
tion governs the connection between inertial frames for systems of waves of any kind that propagate at c.
Incremental changes to the total momentum of a multi-component wave system are distributed amongst
components in proportion to their magnitudes, independent of orientation.

In order to avoid asserting the relativity principle, we shall not associate (8) with a change of observer.
It will turn out to work relativistically, but for the present purposes it has only the restricted meaning of
an incremental change dv in the velocity of a light source, the result of which is to add dP to the total
wave momentum by adding wave momentum dpi to each of the N constituent waves2. We may now analyse
multi-component luminal wave systems using the basic Newtonian principles above.

3 The Relativistic Momentum

In this section it is shown that the relationship between the total momentum of a luminal wave system,
P, and the velocity of its centre of inertia, V, is the same as the usual relativistic momentum equation for
particles. The incremental change in the scalar momentum pi is given by the component of dpi parallel to
pi, namely:

dpi = dpi ·
pi

pi

1It is also easily deduced from two reasonable assumptions: 1) dpi must be linear in pi, and 2) The members of a group
must transform independently of each other.

2Note that we do not need to assume that dV = dv
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Figure 1: 2-component wave systems whose centres of inertia are (a) at rest (b) moving at speed V = βc

Substituting (8) in this gives mecdpi = pi · dP. Summing over the i and noting that
∑

dpi = cdme:

c2medme = P · dP

Integrating this we obtain the common expression for the invariance of the 4-momentum:

m2
ec

2 = P 2 +m2
0c

2 (9)

Where m0 is the value of me for P = 0. Let β = |V|/c as usual so β is a +ve real in the interval [0, 1]. The
basic equations of relativistic mechanics, P = γm0V and me = γm0, where γ = 1√

1−β2
, follow immediately

upon substituting (7).

4 Wave System Transformations in Momentum Space

In this section we show how individual wave components in a multi-component luminal wave system transform
under the action of (8).

By analogy to the usual comoving frame for massive particles, let us define the rest frame of a compound
wave system as the (unique) inertial frame for which the right hand side of (5) vanishes. This definition is
convenient, but not essential. Given the definition, we now adopt the perspective of a single inertial observer
who compares systems of light flashes emitted by two otherwise identical sources in different conditions of
motion such that he considers one system’s centre of inertia to be at rest, i.e. P = 0 in (5) and V = 0 in (7),
and the other’s to be moving at speed V in the x-direction, so that, from Section 3, P = γm0V . We shall
refer to these two systems of light flashes as the “rest system” and the “moving system” respectively. We
shall use a 0 subscript to refer to rest system momenta, so P0 =

∑
i pi0 = 0. The analysis is expressed in

momentum coordinates and it should be noted that we shall not need to say anything about spatial relations
between wave components until Section 6.

The simplest case of a compound wave system where P0 = 0 consists of 2 wave components of equal
scalar momentum, p10 = p20 = p0, propagating in opposite directions, as shown in Figure 1a. The moving
system is shown in Figure 1b, where the wave momenta, p10 and p20, have been modified in accordance with
(8) so that the centre of inertia moves at speed V in the x-direction.

In Figure 1a, m0 = (p10 + p20)/c = 2p0/c. Recalling from Section 3 that me = γm0, the sum of scalar
momenta in the moving system of Figure 1b is:

p1 + p2 = mec = 2γp0 (10)

Whilst the total momentum, P = meV is the vector sum of momenta:

p1 + p2 = P =
2γp0
c

V = 2γβp0 î

Consider the vector p′ in Figure 1b, where p1 = P/2 + p′ and p2 = P/2− p′. Using the law of cosines, its
magnitude, p′, is such that:

p21 = p′2 + (γβp0)
2 + 2γβp0p

′ cos θ (11)

p22 = p′2 + (γβp0)
2 − 2γβp0p

′ cos θ (12)

Where θ is the angle p′ makes with the X-axis. Upon eliminating p1 and p2 from (10)-(12) we find that
p′ = p′(θ) is the ellipsoid:

p′ =
p0√

1− β2 cos2 θ
(13)
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Figure 2: Individual momenta in an isotropic wave system modified such that V = βc

Let us write the momenta in component form as (pix, piy, piz)i=1,2. In Cartesian coordinates (13) is then the
ellipsoid (p′ix/γ)

2 + p2iy0 + p2iz0 = p2i0, where p
′
ix = pix − γβpi0, so that the moving system momenta satisfy

the following equation:

(
pix − γβpi0

γ
)2 + p2iy0 + p2iz0 = p2i0 (14)

Which we have derived only for the case N=2, however this equation also covers the general case, as we shall
now show. Let us consider as initial condition an arbitrary wave system, comprising a number N ≥ 2 of
wave components of scalar momentum, pi0, whose directions of propagation are distributed in space, such
that P0 =

∑
i pi0 = 0 and

∑
i pi0 = m0 c. The rest system components are such that:

p2ix0 + p2iy0 + p2iz0 = p2i0 (15)

The example for N = 2 above suggests that after (8) acts on the set, bringing the total momentum to

P = γm0V î, then (14) applies to the moving system momenta. Figure 2 shows the moving system momenta
when all the rest system scalar momenta are the same, i.e. pi0 = p0 for all i. Differentiating (14) with
respect to β using dγ/dβ = γ3β and dγ−1/dβ = −γβ leads to:

dpix
dβ

= γ(pi0 + γβpix) (16)

Expanding the first term in (14) and using γ2β2 = γ2 − 1 (twice) gives:

pi =
pi0 + γβpix

γ
(17)

As Px = γm0V we also have dPx = γ3m0 dV , whence:

dpix =
dpix
dV

dV =
dpix
dβ

dPx

γ3m0c
(18)

Finally, substituting (16) and (17) in (18):

dpix =
pi

γm0c
dPx

Which is the x-component of (8). Due to the choice of coordinates, the y and z components of momentum
were unaffected, so the ellipsoidally modified distribution (14) is generated by the action of (8) on our
arbitrary initial condition as expected. Comparing (14) and (15), the components of the moving system
wave momenta are:

pix = γ(pix0 + βpi0) , piy = piy0 , piz = piz0 (19)

It will be noted that these physical transformations due to changes in the condition of motion of a light
source, are identical to Lorentz Transformations of wave momenta between different reference frames in
standard configuration. However, as we are not asserting the Principle of Relativity there is no guarantee
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(so far) that our analysis works relativistically, and (19) corresponds only to the forward transformations of
wave momenta in relativity theory.

We can now calculate the relative velocity of the ith light flash, which is to say its velocity relative to the
centre of inertia of the system, which our observer considers to be moving at V in the x-direction. The total
velocity of the ith flash has components vix = cpix/pi, viy = cpiy0/pi, and viz = cpiz0/pi. Using γ2β2 = γ2−1

with (17) and (19), it is readily shown that the relative velocity, vri has components3:

vrix = vix − V =
cpix0
γpi

; vriy = viy =
cpiy0
pi

; vriz = viz =
cpiz0
pi

Finally, if vri makes the angle ϑi with the X-axis, then tanϑi =
√
v2riy + v2riz/vrix = γ tanϑi0, where ϑi0

is the corresponding angle in the rest system.
We shall show, in Section 6, that this basic kinematic relationship leads to length contraction in “pure

field” models of the massive particles where all the field energy propagates luminally. The next section
discusses such models and points out that the preceding analyses are applicable regardless of any nonlinearity
that may be involved.

5 Luminal Wave Solitons

Up to this point we have analysed the linear momentum of systems of light flashes emitted by identical
sources in different conditions of motion. No functional description of the light flashes was required, neither
as photons nor as solutions to any particular wave equation. Subject to a few modest conditions, the same
method can be applied to any kind of waves that propagate at c, including wave models of the massive
particles.

Electromagnetic waves in a vacuum, for example, obey the well known d’Alembert wave equation:

{∇2 − 1

c2
∂2

∂t2
}ψ = 0 (20)

Where ψ(x, y, z, t) may be any component of either the Electric field E or the Magnetic field H. The
individual field components are not linear momenta, but nor do they exist in isolation. Electromagnetic
waves involve both Electric and Magnetic fields and there is a linear momentum density, −→ρ p = S/c2, where
the Poynting vector S = E×H is aligned with the wave vector, k (which by definition points in the direction
of propagation). The field lines of the wave vector trace out well defined trajectories at the ray velocity
vray = c (in vacuo) [14, 15], and the linear momentum carried by the Electromagnetic wave propagates
along these trajectories at the characteristic velocity. For any given Electromagnetic wave, we may divide
the entire space into incremental regions. The product of the local momentum density, S/c2, times the
incremental volume is a linear momentum propagating at c in a well defined direction in space, so that the
analysis above is immediately applicable to systems of Electromagnetic waves in general.

In a linear theory such as Electromagnetics, strict superposition of field amplitudes applies, components
evolve independently of each other, there are no interactions amongst the waves and any superposition must
dissipate unless all the wave vectors are parallel, in which case the motion of the centre of inertia of the wave
group is V = c. Electromagnetic field models of the massive particles are thus excluded.

However, the fact that compound wave systems obey the usual relativistic momentum equation for
particles strongly suggests that the massive particles should be thought of as luminally propagating field
systems. A collision between an electron and a positron, for example, produces almost entirely radiation,
and the process is reversible. When massive particles absorb and emit light quanta, if the energy involved
does not continue to propagate throughout, what is the alternative? Some magical transformation between
propagative radiation and non-propagative “matter”, into which no rational insight has ever been advanced?

There are many other good reasons to consider that the division between matter and field is, as Einstein
suggested, “artificial”, including the constant modulus, equal to c, of the velocity operator for the Dirac
Equation [2, 3] and the existence of interference phenomena in matter beams4.

The simple fact is that the preceding results only required linear momenta to superpose. They did not
require that field amplitudes superpose. As we bring together a set of initially isolated component fields,
ψj(x, y, z, t) with total momentum P =

∑
j pj , in the absence of linear superposition of field amplitudes

they become distorted. They interact, exchanging momentum, with the possibility to form a persistent

3Since V, vi and vri are all referred to the same observer
4In view of the de Broglie relation P = h̄k, it is only natural to interpret the particle momentum, P , as the wave momentum

added to the system in order to boost it to V
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bounded group with a new and different component level description whose interpenetrating components,
Ψi(x, y, z, t), share the same space, but linear momentum is conserved throughout.

This possibility has been extensively studied in the literature and persistent, subluminal soliton solutions
are often identified. For example, Donev et al [16, 17] have found photon-like soliton solutions in their
Extended Electrodynamics where Maxwell’s Laws are modified by adding extra terms, introducing a non-
linearity without affecting the Lorentz Invariance. As mentioned in Section 1, there is also a vast range of
nonlinear Lorentz Invariant classical field theories with soliton solutions that provide candidate models for
the massive particles, as in [4] - [10].

In order to apply previous results in the presence of nonlinearity, we require only that (1) momentum
and energy are locally conserved within every region of space according to Equation 21 below (where E
is the energy contained within the region bounded by time independent closed surface S) and (2) energy-
momentum continues to propagate at c, so that each of the new components is characterised by a linear
momentum density, −→ρ pi(x, y, z, t), aligned with a wave vector, ki(x, y, z, t) in the direction of propagation.∑

i

∮
S

−→ρ pi · ds = − 1

c2
dE

dt
(21)

The group momentum, P is then still a vector sum over the new “internal momenta”, and it has been con-
served soP =

∑
j pj(ψj) =

∑
i pi(Ψi) where the momentum of the ith component is pi =

∫ ∫ ∫ +∞
−∞

−→ρ pidxdydz.
A minor extension to the notation is required. Previously, in Sections 2 to 4, we considered systems

of light flashes where each individual flash propagated in a single, well-defined direction in space. This
assumption cannot be applied to the components, Ψi(x, y, z, t), of a wave soliton because the wave vector
of the ith component will generally point in different directions at different places: k̂i = k̂i(x, y, z, t). Let
the entire space be divided into small regions of dimension δx = δy = δz = δl, where δl is sufficiently small
that any component’s momentum density, −→ρ pi(x, y, z, t), can be considered constant within each region so
that −→ρ pi(x, y, z, t) δl

3 is a linear momentum propagating at c in a definite direction in space. Introducing
a new subscript, k, to label the regions, we write the linear momentum of the ith field in the kth region
as pik(t) = −→ρ pi(rk, t) δl

3, where rk is the position vector to the centre of the kth region. The Newtonian
principles of Section 2 now give:

dpik =
pik
mec

dP (22)

Where P =
∑

k

∑
i pik, me =

∑
k

∑
imik and the rest goes through as before. The rest system is a particle

that is comoving with the observer. The moving system’s internal momenta, pik, are related to the pik0,
by (19), with an additional k subscript inserted. The particle momentum is P = γm0V, where the velocity
of the centre of inertia of the wavegroup, V, is simply the observed velocity of the particle. The relative
velocity we developed at the end of the last section, vrik = vik −V, describes the internal movements of the
particle as seen by an observer who considers the particle as a whole to be moving at V.

Before moving onto the analysis of length contraction and time dilation in luminal wave solitons let us
contrast (22) with the Newtonian concept of a force field as applied to a point-like massive particle.

There is no difficulty in principle using the force concept in the context of momentum exchanges between
interacting fields. Donev and Tashkova [18] have developed this for the general case of luminally propagating
bivector fields that carry linear momentum. The force acting on an interacting field is, by definition, equal
to its rate of change of momentum, from which it might appear that:

dpik

dt
=

pik
mec

dP

dt
(23)

and the left hand side of (23) should be interpreted as the force acting on the ith wave component in the
kth region when the total externally applied force acting on the particle is F = dP/dt. Such a dynamic in-
terpretation requires making unreasonable extraneous assumptions, including for example a uniform applied
field. This is unnecessary for our analysis, for which (22) simply governs the relationship between particles
in steady state conditions, before and after a force causes an incremental change to the particle momentum.
A one to one correspondence between the wave components of rest and moving particles is assumed, but
without such an assumption no inherently relativistic structure would be possible because we could never
equate a boost with a change of observer.

6 The Lorentz-Fitzgerald Contraction

If we were given a specific set of wave trajectories for any particular kind of soliton solution at rest in an
observer’s inertial frame, we could use the method developed in Sections 2 to 4 to calculate wave trajectories
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Figure 3: Momenta and Positions in Rest and Moving Luminal Wave Particle Models

for the corresponding moving solitons. Obviously, we would anticipate that they would display the usual
relativistic phenomena of length contraction and time dilation.

However such a calculation would cover only one kind of soliton in one formalism whereas, as mentioned
above, there is an abundance of nonlinear Lorentz Invariant classical field theories that have soliton solutions.
In this section, we shall analyse the general case and by doing so we shall establish the precise mechanism
of length contraction that all Lorentz Invariant soliton formalisms have in common.

We shall show here that length contraction occurs in wave solitons for any set of trajectories subject to
the condition that, in the rest system, the wave vector of any component field at any point is transverse to
the radial direction to the soliton’s centre of inertia. Equivalently, any trajectory of the wave vector exists on
the surface of a sphere in the rest system. Equivalently, the rest system evolves under the action of members
of the group of spatial rotations. Such trajectory systems will be shown to be compressed by the factor γ
in the direction of motion and if all the constituent wavegroups in a macroscopic system get compressed
in the direction of motion, then so does the whole system. As is well known from Special Relativity, the
group of transformations that preserves the linear momentum of a particle is the Little Group and the usual
interpretation is that rest particles evolve under the action of members of the group of rotations [19], with
the consequence for any Lorentz Invariant wave soliton formalism being that propagation in the rest soliton
is transverse to the radius. Therefore, imposing this condition does not eliminate any Lorentz Invariant
formalism and the result below applies quite generally to all relativistic wave solitons5

Consider a system of concentric spherical surfaces constructed about the rest soliton’s centre of inertia,
which we shall assume is at the origin. Given the abovementioned condition, all rest system wave trajectories
through a given point, rk0, lie instantaneously in the tangent plane at that point to the sphere of radius rk0.
Without loss of generality, let us consider the trajectories passing through a point in the XY plane where the
tangent plane makes the angle θ0 with the X-axis, as shown in the top left of Figure 3. The wave momentum
along a trajectory lying in this plane has components in the following form:

px0 = p0 cos θ0 cosϕ0 ; py0 = p0 sin θ0 cosϕ0 ; pz0 = p0 sinϕ0

Where ϕ0 is the angle the trajectory makes with the XY plane. Note that this is just the component form
of any of the pik0. The i and k subscripts can be omitted without ambiguity: px0 means pikx0 and so on.
Using (19), the components of the corresponding wave momentum in the moving system are:

px = p0γ(cos θ0 cosϕ0 + β) ; py = py0 ; pz = pz0

The moving system momenta for different values of ϕ0 are not coplanar, but lie on a conical surface whose
vertex is at the origin of momentum coordinates, and whose base is the intersection of the plane at angle θ,

5With respect to compound systems comprising many such wave solitons, although the system as a whole may be in a
uniform condition of motion, the linear momenta of individual solitons will not generally be invariant and compound systems
will not generally evolve in accordance with the Little Group. However the arguments developed here for trajectories lying
on spherical surfaces in the rest system apply equally well to any wave trajectory system with trajectories that lie on closed
surfaces. Any such system undergoes the same length contraction.
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where tan θ = tan θ0/γ, with the moving system momentum distribution. This is shown in the top right of
Figure 3. The bottom right of Figure 3 shows the elliptical cross section formed by the tips of all the moving
system momentum vectors corresponding to rest system momenta, pik0 = p0, lying in the plane at θ0.

The (total) velocity for each of these momenta has components vx = cpx/p ; vy = cpy/p ; vz = cpz/p

where, from (17) above:

p =
p0 + γβpx

γ
=
p0
γ
(1 + γ2β(cos θ0 cosϕ0 + β)) (24)

The group velocity is V î, so using (24) the relative velocity components are:

vrx =
cpx − pV

p
=
cp0 cos θ0 cosϕ0

γp
; vry =

cp0 sin θ0 cosϕ0
p

; vrz =
cp0 sinϕ0

p

The ratio vry/vrx = γ tan θ0 is independent of ϕ0 (and ϕ), so the velocities that lay in a given tangent
plane in the rest system transform into relative velocities lying in a corresponding moving plane, tangent to
the moving trajectory system6.

The moving system tangent plane makes the angle α+ θ with the X-axis, where α is the angle between
the plane at θ and the tangent plane (bottom left of Figure 3). From above tan(θ+ α) = vry/vrx = γ tan θ0
whilst tan θ0 = γ tan θ, so using the angle sum trigonometric relations we obtain:

tanα =
β2 sin θ cos θ

1− β2 cos2 θ
(25)

The set of all tangent planes defines the surface up to a scale factor. Due to rotational symmetry we
anticipate being able to write the equation describing this surface in the form r = r(ψ), where ψ is the angle
from the position vector to the X-axis. For any function r(ψ) the angle between the tangent plane and the
plane transverse to the radius vector is:

tanα′ =
1

r

dr

dψ
(26)

Consider as trial function the ellipsoid:

r(ψ) =
λ√

1− β2 sin2 ψ
(27)

For which

tanα′ =
β2 cosψ sinψ

1− β2 sin2 ψ
(28)

independent of the scale parameter λ. With ψ = π/2− θ, this is identical to (25), which therefore describes
an ellipsoid of revolution (27), such that the plane at θ is transverse to the radius. This is shown in the
bottom left of Figure 3.

The scale factor, λ, is readily found by inspection. The moving system equatorial plane is the plane
x = V t and ψ = π/2. The tangent plane at any point in the equatorial plane is parallel to the X-axis so the
dpik at these points lie in the tangent plane. Therefore the equatorial tangent planes are not altered by the
action of (22). Therefore the radius of a circumferential trajectory in the equatorial plane is invariant under
the dimensional transformation (27), whence λ = r0/γ, where r0 is the radius of the spherical surface in the
rest system.

The result is that, for our rest observer, any wave trajectory in the moving system lies on the surface of
an ellipsoid moving along the X-axis at speed V and of the form:

r(ψ) =
r0

γ
√
1− β2 sin2 ψ

(29)

The moving system wave trajectories are thus physically compressed by the factor γ in the direction of
motion and so, when it is moving at speed V for our observer, any physical system composed of wave solitons
undergoes the usual Lorentz-Fitzgerald contraction.

6Recall that we showed in Section 4 that the relative velocity of any trajectory is rotated by the kinematic relation tanϑ =
γ tanϑ0, where ϑ is the angle the relative velocity makes with the X-axis. We now see the consequence of this for luminal wave
particle models. Locally flat surfaces formed by sets of trajectories at a given point in the rest system transform into locally
flat moving surfaces, rotated so that the tangent of the angle the moving surface makes with the X-axis is γ tan θ0, where θ0 is
angle the rest system surface makes with the X-axis.
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7 Time Dilation

In this section it is shown that all internal processes in wave solitons slow down according to dt/dt0 = 1/γ.
A fixed overall rate of spatiotemporal evolution can then be defined in the usual way by a 4-dimensional line
element c2dt20 − dx2

0 = c2dt2 where t0 and t are the rates of rest and moving clocks respectively and dx0 is
traversed by the moving clock. The analysis is similar to the standard analysis of a light clock, but let us
first state the main idea and explain it qualitatively.

Time dilation is the direct consequence of constructing variable speed entities from fixed speed primitives.
According to (7) and as illustrated in Figure 2, the group velocity of a wave soliton is the result of spatial

correlations amongst the directions of propagation k̂i(x, y, z, t) of internal momenta. As the group velocity

approaches the characteristic velocity, the trajectories rotate towards the group velocity: k̂ → V̂, but if all
the trajectories of a wave system were exactly parallel as it moved through an observer’s reference frame
the spatial configuration of the system would not change and the observer would conclude that nothing
happens in the inertial frame of the group. Just as spatial correlations amongst trajectories are essential
for the movement of a soliton through space, internal evolution requires decorrelations. To the extent that
propagation contributes to the movement of the system as a whole it is unavailable to contribute to its
internal evolution. There is a direct tradeoff between the external evolution in space versus the internal
evolution in time, which we shall show leads to the invariance of the line element.

The same kind of tradeoff is also found in the Dirac Equation. Consider the equation for the time
dependence of the velocity operator in the Heisenberg representation of the Dirac theory [20]:

−→α (t) = (−→α (0)− p

H
) exp (−2iHt) +

p

H
(30)

Where p and H are both constants, c = 1 and the group velocity is p/H = vg = constant. The first term on
the right is routinely interpreted to represent the internal movements of the electron, the ”zitterbewegung”.
Its quantum mechanical expectation is: < Ψ | (−→α (0) − vg) | Ψ > / < Ψ | Ψ > which (noting that −→α has real
eigenvalues) varies with vg as

√
1− v2g . The zitterbewegung slows down by a Lorentz factor as the group

velocity increases.
We shall now show that internal processes in wave solitons slow down according to dt/dt0 = 1/γ.
With respect to the rest soliton’s trajectory system, consider any closed trajectory formed by n segments,

where the ith segment has length li0 and makes the angle θi0 with the X-axis. The speed on all segments is
v0 = c so the period around the closed trajectory is T0 = 1

c

∑n
i=1 li0, where T0 is the time elapsed on a clock

in the rest frame to traverse the trajectory in the rest system. Lengths in the rest system may be written in
component form such that:

l2i0 = l2ix0 + l2iy0 + l2iz0

Let the trajectory system now move in the x-direction at speed V . Given the length contraction, x-
components contract by the factor γ and the corresponding relationship is:

l2i =
l2ix0
γ2

+ l2iy0 + l2iz0

It is readily shown that:
l2i = l2i0(1− β2 cos2 θi0) (31)

The moving and rest system angles are related by tan θi = γ tan θi0, from which we get:

cos θi
cos θi0

=

√
1− β2 sin2 θi (32)

The relative velocity on the ith segment in the moving system, vri, is constrained by:

(vri cos θi + V )2 + v2ri sin
2 θi = c2 (33)

Which leads to: vri + V cos θi = c
√
1− β2 sin2 θi. From which, using (32):

vri =
cos θi(c− V cos θi0)

cos θi0
=
lix0c(1− β cos θi0)

γli cos θi0

The time taken to traverse the ith segment in the moving system is li/vri = l2i /vrili, so, using (31), we may
write the period elapsed on clocks in the rest system for traversals around the Lorentz contracted closed
trajectory of the moving system as follows:

TV
0 =

n∑
i=1

l2i /vrili =
n∑

i=1

γl2i0 cos θi0(1− β2 cos2 θi0)

lix0c(1− β cos θi0)
=
γ

c

n∑
i=1

li0(1 + β cos θi0)
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Since
∑

i li0 cos θi0 = 0 it follows that TV
0 = γT0. It might be argued that trajectories need not form closed

loops, but a path that crosses a given plane transverse to V must eventually either recross the same plane or
become confined to a smaller region, in which it must either routinely recross a transverse plane or become
confined to an even smaller region and so on. In steady state, the trajectories can only be transverse or
regularly recross a transverse plane. The analysis above also covers open paths between points in the same
transverse plane, for which the condition

∑
i li0 cos θi0 = 0 is also fullfilled. The time between such crossing

points dilates by γ. We conclude that the internal processes of a wave soliton slow down by the factor γ. The
argument from internal atomic processes to real world clocks is well established [21], and tested [22, 23, 24],
so moving clocks will run slow according to the usual relation dt/dt0 = 1/γ.

8 Non-luminal Structures

Without the concept of internal movements it would not seem possible to provide any account of internal
processes (such as muon decay for example). Likewise, the fact that the massive particles possess angular
momentum implies the existence of internal movements7. Let us consider internal movements at speeds
other than c. To illustrate the problem, let us assume Lorentz contracted moving system trajectories.

We must still use (33), with v2i replacing c2 on the RHS, to connect the total and relative velocities on
the ith segment (as both are referred to the same observer). If vi were the same in the moving and rest
systems, then clearly, the periods would not dilate by γ, and yet we know that periods must dilate under
Lorentz Transformations for any physical system, not just luminal systems.

The resolution is easily seen from Special Relativity. If the total velocity, vi0, on the ith segment as seen
by a comoving observer is such that vi0 ̸= c, then for observers in other frames, vi ̸= vi0 and must in general
be calculated according to the relativistic composition of velocities:

vi =
V + vi0∥ +

√
1− β2vi0⊥

1 + V·vi0

c2

Now as we Lorentz boost a particle in the frame of a single observer, there are two possibilities. If
vi0 = c, then vi = c for all i independent of the condition of motion of the particle, and structural models
incorporating length contraction and the relativistic momentum are readily available. Section 9 shows that
these phenomena imply Lorentz Transformations. Their elegance and simplicity therefore has a coherent
explanation based on the very definition of momentum as inertia times velocity, p = mc.

Alternatively, if vi0 ̸= c the total velocities of internal movements, vi, must depend on both the particle
velocity and the orientation of individual segments in the above complicated manner, in which case the
elegance and simplicity of Lorentz Transformations has at its very foundations an implausibly inelegant,
complex physical structure. Ockham’s razor insists that we reject nonluminal structures. Otherwise, we are
left reasoning in a circle from the Lorentz Transformations to the composition of velocities to the unlikely
proposition that such complex physical structures give rise to simple Lorentz Transformations.

9 Coordinate Transformations

We have shown length contraction and time dilation as physical effects in luminal wave particle models
subject to the basic Newtonian equations (1) - (7) and (22). Our analyses were constructed from the
perspective of a single observer so the principle of relativity, covariance, coordinate independence, and
coordinate transformations were all irrelevant.

Let us now turn our attention to the question how these physical phenomena of length contraction and
time dilation constrain the coordinate transformations. This question has been studied in some detail by
Selleri [12, 13], who has shown that, subject only to the use of the Einstein clock synchronisation protocol,
length contraction and time dilation directly imply Lorentz Transformations.

He considered three assumptions, namely length contraction, time dilation and constancy of the 2-way
velocity of light. It was shown that any two of these assumptions both implies the third and constrains the
coordinate transformations between a preferred rest frame, S0 = (x0, y0, z0, t0) and a frame S = (x, y, z, t)
in standard configuration moving with velocity v to the following form:

x =
(x0 − βct0)√

1− β2
; y = y0 ; z = z0 ; t =

√
1− β2 t0 + e1(x0 − βct0)

7The quantisation of angular momenta is also readily explicable as a wave phenomenon [11, 18].
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Where β = v/c and e1 is a synchronisation parameter. Setting e1 = −β/(c
√

1− β2) corresponds to the usual
Einstein clock synchronisation convention and reduces this to the Lorentz Transform.

Our coordinate transformations are therefore Lorentz Transformations and the relativity principle and
the constant speed of light for all observers are therefore results, not postulates. It is also now clear that the
wave inertia changes we have analysed are frequency changes corresponding to the relativistic doppler shift,
as opposed to, say, amplitude changes.

We conclude that, in the comoving frame, Lorentz Invariant structural models of the massive particles
will have internal movements at, and only at, c.

9.1 Other Synchronisation Protocols

Selleri also discusses alternative clock synchronisation protocols, especially the case e1 = 0 which corresponds
to using Einstein synchronisation in a preferred rest frame, and setting clocks in the moving frame to coincide
with nearby clocks in the rest frame at t = 0. Both sets of observers agree that clocks in the moving system
run slow, and they also agree on the simultaneity of spatially separated events. The transformations in this
case, known as the inertial transformations, were first found by Tangherlini [25]. The empirical consequences
of inertial transformations have been shown to comply with experimental evidence in a wide variety of
situations [26]. As far as the present article is concerned, the Appendix derives (8) from the relativistic
doppler shift and aberration results, which apply equally well to inertial transformations [27], and therefore
so do the structural constraints developed above.

Selleri and others have advanced various arguments in favour of absolute simultaneity [28] - [33]8, but
nothing that questions the Lorentz form within the domain of inertial frames. Inertial transformations do
not preserve the line element, ds2 = c2dt2−dx2−dy2−dz2, the physical laws are frame dependent, the inverse
transformation is different, the relative velocity of the origin of S as seen by S0 does not equal the relative
velocity of S0 as seen by S and the inertial transformations do not form a group [13].

The conventional nature of the Einstein protocol has, of course, always been stipulated in relativity theory
and what Selleri has in fact shown is that, like the choice between Cartesian and Spherical coordinates,
the choice of a clock synchronisation protocol really is only a matter of convenience. Provided they use
it consistently, physicists solving problems on a rotating platform and engineers developing GPS satellite
networks9 can use whatever protocol is most effective.

The self-evident fact remains that the events that happen in the world cannot depend on the coordinate
systems we use to describe them. Coordinate independence is one of the most powerful practical tools for
the development of new physics. Other coordinate transformations may be empirically adequate, but special
status is rightly afforded to Lorentz Transformations on the basis of symmetry and utility, not uniqueness,
and what we have shown is that their “natural habitat” is field theory.

10 Does Local Action Imply Retarded Interaction?

Local action is the single most basic, self-evident principle in Physics - interaction requires colocation. Both
Newton and Einstein agreed. In this Section we consider the logic of interaction at a distance, subject to
local action, but from a pure field perspective where “mass energy” propagates luminally.

In Classical Physics it was taken for granted that matter emits field, leading to the idea that the far fields
of a particle must propagate away from it at c. It then follows that long range interactions between particles
are retarded and the unavoidable consequence is that there can be no causal relations between space-like
separated events. On the other hand, Quantum Mechanics predicts instant causal correlations at a distance
and experiments replicate these predictions [34] - [36]. However, if matter and field are one and the same, as
Einstein suggested and Special Relativity implies, then the idea that matter emits field is meaningless and
we need to consider whether or not the far fields propagate away from the centre of inertia in a pure field
particle model.

In Section 6 we imposed the constraint that propagation in the rest particle is transverse to the radius.
This constraint corresponds to the Little group, so it is fully in accordance with Special Relativity. We
derived length contraction by considering how the wave trajectories lying on any given sphere in the rest
system undergo an elliptical distortion in a system moving at speed V . Note that the radius of the sphere
was not a relevant consideration - the analysis relates to any radius and therefore there is no good reason,
neither in our analysis nor in Special Relativity, to distinguish between the near and far fields of a particle.

8Notably a simplied analysis on the rotating platform.
9Which use an inertial clock synchronisation protocol.
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The distinction in Electromagnetics between the “attached” field [37] and the “body” of the particle is
incompatible with Special Relativity.

Consistent with Einstein’s view that Special Relativity renders the division into matter and field “artifi-
cial”, our luminal wave structure implies that particles are unbounded, and that their far fields propagate
transverse to the radius10 rather than radially away from the body.

On the other hand, massive particles have finite energy and it is therefore necessary that the volume
integral of the field energy density should not diverge as r → ∞. As found in [11], the existence of 1/r2 long
range force fields for the charged particles implies a 1/r4 energy density asymptote for luminal wave models,
including both charged and neutral particles. The energy density integral does not then diverge as r → ∞
so that finite but unbounded luminal wave structures are compatible with the usual basic physics. The
field energy is highly concentrated near to the centre of inertia with the result that they appear as pointlike
particles. For example, with respect to a particle with the mass of an electron, the maximum energy density
(at the radius r ∼ 4× 10−13m) is ∼ 400, 000 times greater than that at a radius of 0.1 Angstrom unit11.

As also discussed in [11], there is no good reason to presume that local action implies retarded interaction
in luminal wave particle models. Local action means that the long range interactions between two particles,
A and B, depend on the colocation of their respective fields, but any far fields of A that become colocated
with the B particle’s centre of inertia did not travel there from A’s centre of inertia. They are part of
an extended wave system that is comoving, as a whole, with the A centre of inertia so it would be more
reasonable to anticipate that the direct impact of A’s far fields on the observed location of the B particle
would be instantaneous, whilst only the reaction impact on the A particle would be retarded.

However, it is more apposite simply to observe that field theory problems are usually formulated and
solved on whole regions that evolve subject to local action at all points in parallel. The idea of a local
realist wave ontology is inherently Lorentz Invariant, but waves are inherently distributed. They run on
correlations at a distance sustained by strictly local actions. Distributed interactions between distributed
waves can have distributed impacts, occurring simultaneously in different places. Waves exemplify Redhead’s
conclusion that ontological locality does not rule out instant relations between observables [38]. Trajectories
in local realist wave systems display entanglement as shown in [15], where it was found that the Helmholtz
equation contains Bohmian mechanics’ nonlocal quantum potential within it. The essential consequence is
that quantum nonlocality and entanglement might be interpreted as locally realistic wave phenomena. With
specific reference to the EPR paradox [39], the Bell Inequalities [40] depend on a causality analysis that
uses light cones emanating from point events [41], presuming a one to one correspondence with point-like
“beables” [42], but for inherently distributed systems like waves neither beables nor events can be presumed
to be point-like.

11 Discussion

Unlike Electromagnetics, nothing prevents the simple method used here from applying to the fermions. A
wide range of candidate models for the massive particles, in the form of subluminal soliton solutions found in
typically nonlinear field theories, have been reported in the literature. The analysis in Sections 2 - 7 shows
that Lorentz invariance is the consequence of constructing subluminally moving systems from fields that
propagate luminally. The appearance of Lorentz invariance in so many disparate field models is therefore no
coincidence - they are all subject to the same basic kinematic constraints.

Whilst the constraints are simple, the structures of soliton solutions are generally not simple. For example,
evolution under rotations does not imply spherical symmetry and nor does it imply that the particle rotates
as a whole in a simple manner, like a solid ball. Due to the kinematic constraint, trajectories at different
radii necessarily evolve at different angular rates and, similarly, wave trajectories at various points on the
same spherical surface in the rest system generally rotate about different axes.

12 Conclusions

We have considered the analogy between Special Relativity and the basic Newtonian mechanics of luminal
wave systems. The fact that these systems obey the usual relativistic momentum equation prompts the
suggestion that the massive particles should be thought of as generalised systems of luminal waves. We
showed how length contraction and time dilation in luminal wave models result from the simple kinematic
constraints imposed by constant speed propagation at c. This provides a direct physical basis for the idea

10As is also consistent with Electromagnetics’ radial force field because E and H are each transverse to the momentum density
S/c2. H fields cancel in the rest particle due to balanced movements.

11According to the energy density aymptote, which ignores nonlinearities, vacuum polarisation effects and so on.
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of a combined spatiotemporal evolution, leading to the invariance of the line element, the usual spacetime
symmetry, the relativity principle and the invariance of c for all observers.

The main conclusion was that Lorentz invariant structural models of the massive particles should feature
internal movements at, and only at, the characteristic velocity.

The usual presumption that local action implies retarded interaction was examined from the “pure field”
perspective and rejected. It cannot be presumed that Special Relativity precludes instantaneous causal
relations between space-like separated events because an additional premise is involved, that matter emits
field, which does not apply to pure field models.

Hopefully, this article has firmly established the equivalence of Newtonian and relativistic concepts of
inertia, momentum and energy, once Einstein’s ideal of a “pure field physics” is adopted. This highlights
the absence of any good reason to presume any non-propagative form of mass-energy exists. It is not the
introduction of a new hypothesis, but the removal of an old one - the idea of matter as a distinct ontological
class in its own right.
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Appendix

With respect to the system of light flashes in Section 2, let us impose the condition in some inertial frame:

P0 =
∑
i

pi0 = 0

The momentum of the ith light flash, referred to this frame, is then:

pi0 = pi0(cos θi0 î+ sin θi0 cosϕi0ĵ+ sin θi0 sinϕi0k̂)

Where θi0 is the angle with the X-axis and
∑

i pi0 cos θi0 =
∑

i pi0 sin θi0 cosϕi0 =
∑

i pi0 sin θi0 sinϕi0 = 0.

Let an observer move relative to this frame with velocity V = −βĉi. Since pi/pi0 = fi/fi0, the standard
relativistic doppler shift and aberration formulae (with the observer moving towards the source at speed v)
give, respectively:

pi = pi0γ(1 +
v

c
cos θi0) and cos θi =

cos θi0 +
v
c

1 + v
c cos θi0

Note that the same result also holds for non-monochromatic light flashes. The scalar momentum of the ith

flash in the observer frame is:
pi = pi0γ(1 + β cos θi0)

Summing over the i, the total energy is:

mec
2 = c

∑
i

pi = γc
∑
i

pi0 = γm0c
2
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Where me and m0 are as defined in Section 2. The (vector) momentum of the ith flash is:

pi = pi0(γ(β + cos θi0)̂i+ sin θi0 cosϕi0ĵ+ sin θi0 sinϕi0k̂)

Summing over the i, the total momentum is:

P =
∑
i

pi = γβ
∑
i

pi0 î

Note that this is the relativistic momentum equation. Differentiating each of the two previous equations
with respect to β:

dpi

dβ
= γ2pi î ;

dP

dβ
= γ3

∑
i

pi0 î = γ3m0ĉi = γ2meĉi

Whence:
dpi

dβ
=

dP

dβ

pi∑
j pj

=
dP

dβ

pi
mec

Finally, since the above expressions for pi and P are functions of β alone, we can write the incremental
changes as:

dpi =
dpi

dβ
dβ , dP =

dP

dβ
dβ

Upon which:

dpi =
pi
mec

dP

Therefore (8) holds for a collinear incremental boost. For transverse boosts, consider as initial condition
a system whose centre of inertia is moving in the y-direction at speed V, so me = γ(V )m0. We may repeat
the above analysis for an observer moving at speed vx in the x-direction with

∑
i pi0 sin θi0 cosϕi0 ̸= 0 and

get the result for an incremental transverse boost:

dpi =
pi

limvx→0(γ(vx)mec)
dP =

pi
mec

dP

So, (8) holds for an incremental transverse boost. In Special Relativity, the general boost decomposes into
a collinear boost, a transverse boost and a rotation (a Thomas precession). As the latter has no impact on
linear momenta, (8) is generally valid for incremental boosts of systems of luminal wave momenta in Special
Relativity.
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