Abstract:

The idea of the existence of ether has been abandoned after the theory of relativity was accepted. It appears that the existence of an ether, compatible with the classical standard Cosmological model, permits to solve some enigmas of the present Cosmological model that are very important, for instance the enigma connected to dark matter or to fossil radiation. In this article we show how the existence of ether, being compatible with the classical standard Cosmological model, permits to solve those enigmas. In particular how it can give the nature of dark matter, the origin of its invisibility, the curve of velocities of stars in galaxies (constant) and the baryonic Tully-Fisher’s law. We will also justify a very simple topological form of the Universe and the position of our galaxy inside this Universe. We will obtain simply the expression of the Hubble’s constant and of the redshift due to expansion of the Universe.

Key words: Tully-Fisher’s law, dark matter, fossil radiation, ether.

1. INTRODUCTION

Before the theory of Relativity be accepted, the idea of the existence of an Ether was admitted. It was admitted that a medium at rest filled all the space, in which propagated electromagnetic waves, and defining an absolute Referential.

After the Michelson and Morley experiment, Einstein proposed the following Principle of Special Relativity: “All the physical laws have the same expression in all the inertial frames (Galilean Referentials).”

If this Principle was true, then the existence of an ether seems to be useless, because we cannot detect it.

In fact we are going to see how the existence of ether is fundamental in Cosmology, and moreover how some observations in Cosmology connected to fossil radiation contradict the Principle of Special Relativity.

So we admit all the cosmological standard model, in particular the following fundamental points:
1. The Universe is isotropic (observed from our galaxy) and in expansion.
2. The factor of expansion is obtained using the equations of General Relativity.
3. The Big-Bang existed, and fossil radiation comes from the Big-Bang.

We will also make 2 fundamental hypothesis expressing the existence of ether:

A. At any point of the space, it exists a very particular local Referential, called “local Ether”. Those local referentials define absolute time (indicated by clocks at rest in those referentials) that is the age of the Universe, and local distances (indicated by rules at rest in the local Referentials). If D is the local distance covered by a photon within an absolute time T, D=cT.

(This means that locally the velocity of light relative to this local Ether is equal to c and we obviously admit that physical laws have their classical expressions expressed in the local Ether).

B. The vacuum is filled by a substance, called “ether-substance”.

We see that the points 1, 2, 3 of classical Cosmology (and experiments connected to Relativity) are a priori compatible with the hypothesis A, B of the existence of Ether. We see also that there are 2 kinds of ether: The 1st kind is an absolute Referential, the 2nd kind is a substance
filling all the vacuum. In fact we will see that our interpretation of dark matter brings us to obtain a spherical Universe. This Universe is isotropic observed from our galaxy.

We are going to show how those hypothesis A and B permit to solve enigmas connected to dark matter and to fossil radiation.

2. DARK MATTER

2.1 Nature of Dark matter—Its invisibility.

If we admit that the ether-substance has a mass, then it is clear that dark matter could be constituted of ether-substance. So this gives the nature of dark matter and the origin of its invisibility, because it constitutes what we call the vacuum.

2.2 Curves of velocity of stars in galaxies.

If we model the ether-substance as an ideal gas, and if we consider that galaxies are concentrations of ether-substance, we obtain that the velocity of stars is independent of their distance to the center, this constituting an enigma of classical Cosmological standard model.

So we make the following hypothesis that the ether-substance can be modeled as an ideal gas:

An element of Ether-substance with a mass \(m \), a volume \(V \), a pressure \(P \) and a temperature \(T \) verifies the law, \(k_0 \) being a constant:

\[
PV = k_0 mT
\]
(1)

Which means, setting \(k_1 = k_0 T \):

\[
PV = k_1 m
\]
(2)

Or equivalently, \(\rho \) being the density of the element:

\[
P = k_1 \rho
\]
(3a)

We then emitted the hypothesis that a galaxy could be modeled as a concentration of Ether-substance presenting a spherical symmetry, at a constant and homogeneous temperature \(T \).

We then considered the sphere \(S(r) \) (resp. the sphere \(S(r+dr) \)) that is the sphere inside the concentration of Ether-substance with a radius \(r \) (resp. \(r+dr \)) and whose the center is the center \(O \) of the galaxy. \(S(O,r) \) is the full sphere of radius \(r \) and of center \(O \).
Figure 1: The galaxy concentration of ether-substance

The mass $M(r)$ of the full sphere is given by:

$$M(r) = \int_0^r \rho(x)4\pi x^2 \, dx$$

(3b)

We then consider the following equation (4) of equilibrium of forces on an element of Ether-substance with a surface dS, a width dr, situated between the 2 spheres $S(O,r)$ and $S(r+dr)$:

$$dSP(r + dr) + \frac{G}{r^2} (\rho(r)dSdr)(\int_0^r \rho(x)4\pi x^2 \, dx) - dSP(r) = 0$$

(4)

Eliminating dS, we obtain the equation:

$$\frac{dP}{dr} = -\frac{G}{r^2} (\rho(r))(\int_0^r \rho(x)4\pi x^2 \, dx)$$

(5)

And using the equation (3), we obtain the equation:

$$k_1 \frac{d\rho}{dr} = -\frac{G}{r^2} (\rho(r))(\int_0^r \rho(x)4\pi x^2 \, dx)$$

(6)

We then verify that the density of the ether-substance $\rho(r)$ satisfying the preceding equation of equilibrium is:

$$\rho(r) = \frac{k_2}{4\pi r^2}$$

(7)

The constant k_2 being given by, G being the Universal attraction gravitational constant:

$$k_2 = \frac{2k_1}{G} = \frac{2k_0 T}{G}$$

(8)
Using the preceding equation (7), we obtain that the mass $M(r)$ of the sphere $S(O,r)$ constituted of Ether-substance is given by the equation:

$$M(r) = \int_{0}^{r} 4\pi x^2 \rho(x) dx = k_3 r \quad (9)$$

We then obtain, neglecting the mass of stars in the galaxy, that the velocity $v(r)$ of a star of a galaxy situated at a distance r from the center O of the galaxy is given by $v(r)^2/r = GM(r)/r^2$ and consequently:

$$v(r)^2 = Gk_2 = 2k_1 = 2k_0 T \quad (10)$$

So we obtain in the previous equation (10) that the velocity of a star in a galaxy is independent of its distance to the center O of the galaxy, solving the 3rd enigma concerning dark matter. (We previously solved the enigma of the nature of dark matter and of its invisibility).

We note that the theoretical elements of the new Cosmology permitting to obtain the equations (7)(8)(9)(10) are compatible with Special and General Relativity Principles.

2.3 Tully-Fisher’s law.

2.3.1 Recall.

We remind that the Tully-Fisher’s law is the following:

Tully and Fisher realized some observations on spiral galaxies. They obtain that the luminosity L of a spiral galaxy is proportional to the 4th power of the velocity v of stars in this galaxy. So we have the Tully-Fisher’s law for spiral galaxies, K_1 being a constant:

$$L = K_1 v^4 \quad (11)$$

But the baryonic mass M of a spiral galaxy is proportional to its luminosity. So we have also the law for a spiral galaxy, K_2 being a constant:

$$M = K_2 v^4 \quad (12)$$

This 2nd form of Tully-Fisher’s law is known as the baryonic Tully-Fisher’s law.

We remind that the Tully-Fisher’s law (11) is not verified in general for galaxies that are not spiral galaxies. But the observations of Mc Gaugh (1) show that the baryonic Tully-Fisher’s law (12) seems to be true for all galaxies. This constitutes a new major enigma for the classical Cosmology, but we are going to see how we can deriviate this law from the existence of ether-substance.

2.3.2 Theory of quantified loss of calorific energy (by baryons).

We saw in the previous equation (10) that according to the new Cosmology, the square of the velocity of stars in a galaxy is proportional to the temperature of the concentration of Ether-substance constituting this galaxy. So if we determine this temperature T, we then obtain the squared velocity of the stars in this galaxy. So we need to try to determine T:
A first possible idea is that the temperature T is the so called “Temperature of the fossil
radiation”. But this is impossible because it would imply that all stars of all galaxies are
driven with the same velocity and we know that it is not the case.

A second possible idea is that the temperature T is due to the absorption by the concentration
of Ether-substance constituting the galaxy of a fraction of the photons emitted by the stars of
this galaxy. But if it was the case, the temperature and consequently the velocity of the stars
of the galaxy would only depend on the luminosity of the galaxy, and we should have a law
alogous to the Law of Tully-Fisher (11) and we know that it is not the case.

A third possible idea is that in any galaxy, each baryon interacts with the Ether-substance
constituting the galaxy, and consequently it occurs for each baryon a loss of calorific energy
communicated to the Ether-substance.

A priori we could expect that this loss of calorific energy for each baryon (transmitted to
the Ether-substance) depend on the temperature of this baryon, but if it was the case, the total
calorific loss for all baryons would be extremely difficult to calculate and moreover we would
not obtain that the total calorific loss depend on the baryonic mass of the galaxy.

The final idea is that indeed it occurs a calorific loss for each baryon (transmitted to
the Ether-substance), but that this loss is quantified, depending only on the number of the
nucleons of the baryon. This loss should be very low, but the calorific capacity of the Ether-
substance being also very low, it can involve an appreciable temperature of the concentration
of Ether-substance constituting the galaxy.

So we make the following hypothesis:

HYPOTHESIS OF QUANTIFIED CALORIFIC LOSS (OF BARYONS):

-Each baryon of a galaxy is submitted to a loss of calorific energy, transmitted to the
 concentration of Ether-substance constituting the galaxy.
-This loss of calorific energy depends only on the number of nucleons constituting the baryon
 (It is independent of its temperature). So if p is the power corresponding to the loss of
calorific energy for a baryon with n nucleons, it exists a constant p_0 (loss of calorific energy
per nucleon) such that:

$$p=np_0$$ \hspace{1cm} (13)

According to the equation (13), the total power corresponding to the loss of calorific energy
by all the baryons of a galaxy is proportional to the number of nucleons of the whole of those
baryons, and consequently to the baryonic mass of this galaxy. So if m_0 is the mass of one
nucleon, M being the baryonic mass of the galaxy, we obtain according to the equation (13)
that the total power P_r corresponding to the calorific energy received by the concentration of
Ether-substance constituting the galaxy from all the baryons is given by the following
equation, K_3 being the constant p_0/m_0:

$$P_r=(M/m_0)p_0=K_3M$$ \hspace{1cm} (14)

Concerning the preceding Hypothesis of quantified loss of calorific energy, it is important to
remark:
- The loss of calorific energy of a baryon transmitted to the Ether-substance is a quantum
 phenomenon, consequently it is not surprising that the power corresponding to the loss of
calorific energy of a baryon be quantified.
In physics of thermal transfer, the calorific loss of one or several other particles usually depend on their temperature. But it is always only thermal transfers from baryons to other baryons that are considered, and consequently it is not compulsory that it be also the case for transfers between baryons and Ether-substance.

It is possible that this hypothesis be true only for baryons whose temperature be superior to a given temperature T_S. Moreover, their temperature must be superior to the local temperature of the Ether-substance.

The great simplicity of this hypothesis permits to obtain very easily the total power corresponding to calorific energy received by the concentration of Ether-substance (Equation (14)). If the loss of energy of a baryon depended on its temperature, then it would be incomparably more complicated, and maybe impossible, to obtain a simple expression giving this total power.

This hypothesis is a priori compatible with the Special and General Relativity Principles, and also with classical Quantum Physics.

2.3.3 Obtainment of the baryonic Tully-Fisher’s law.

In agreement with the previous model of galaxy, we model a galaxy as a concentration of Ether-substance presenting a spherical symmetry (and consequently being itself a sphere), at a temperature T and immersed inside a medium constituted of Ether-substance at a temperature T_0 and with a density ρ_0.

In order to obtain the radius R of the concentration of Ether-substance constituting the galaxy, it is logical to make the hypothesis of the continuity of $\rho(r)$: R is the radius for which the density $\rho(r)$ of the concentration of Ether-substance is equal to ρ_0. So we have the equation:

$$\rho(R) = \rho_0$$

(15)

Consequently we have according to the equations (7) and (8):

$$\frac{k_4}{4\pi R^2} = \rho_0$$

(16)

$$\frac{2k_0T}{G} \times \frac{1}{4\pi R^2} = \rho_0$$

(17)

So we obtain that the radius R of the concentration of Ether-substance constituting the galaxy is given approximately by the equation:

$$R = \left(\frac{2k_0T}{4\pi G \rho_0}\right)^{1/2} = K_4 T^{1/2}$$

(18)

The constant K_4 being given by:

$$K_4 = \left(\frac{2k_0}{4\pi G \rho_0}\right)^{1/2}$$

(19)

We can then consider that the sphere with a radius R of Ether-substance constituting the galaxy is in thermal interaction with the medium at a temperature T_0 in which it is
immerged. We model this thermal interaction as a convection phenomenon. If \(\phi \) is the thermal flow of energy on the borders of the sphere, the power \(P_l \) lost by the sphere of Ether-substance constituting the galaxy is given by the equation:

\[
P_l = 4\pi R^2 \phi \tag{20}
\]

But we know that for a convection phenomenon between a medium at a temperature \(T \) and a medium at a temperature \(T_0 \) the flow \(\phi \) between the 2 media is classically given by the expression, \(h \) being a constant depending only on \(\rho_0 \):

\[
\phi = h(T - T_0) \tag{21}
\]

Consequently the total power lost by the concentration of Eher-substance is:

\[
P_l = 4\pi R^2 h(T - T_0) \tag{22}
\]

We can consider that at the equilibrium, the thermal power \(P_r \) received by the concentration of Ether-substance constituting the galaxy is equal to the thermal power \(P_l \) lost by this concentration. Consequently according to the equations (14) and (22), \(M \) being the baryonic mass of the galaxy, we have:

\[
K_3 M = 4\pi R^2 h(T - T_0) \tag{23}
\]

Using then the equation (18):

\[
K_3 M = 4\pi K_4^2 h T(T - T_0) \tag{24}
\]

Making the approximation \(T_0 \ll T \):

\[
M = \frac{4\pi K_4^2}{K_3} h T^2 \tag{25}
\]

Consequently we obtain the expression of \(T \), defining the constant \(K_3 \):

\[
T = (\frac{K_3}{4\pi K_4^2 h})^{1/2} M^{1/2} = K_5 M^{1/2} \tag{26}
\]

And then according to the equation (10):

\[
v^2 = 2k_0 T = 2k_0 K_5 M^{1/2} \tag{27}
\]

So:

\[
M = (\frac{1}{2k_0 K_5})^2 v^4 \tag{28}
\]

So we finally obtain:

\[
M = K_0 v^4 \tag{29}
\]
The constant \(K_6 \) being defined by:

\[
K_6 = \left(\frac{1}{2k_0 K_5} \right)^2 = 4\pi K_5^2 h \frac{4 k_0}{4 k_0^2 K_3}
\]

\[
K_6 = \frac{4\pi h}{4k_0^2 K_3} \times \frac{2k_0}{4\pi G \rho_0}
\]

\[
K_6 = \frac{m_0 h}{2k_0 G \rho_0 p_0} \quad (30)
\]

So we obtain the baryonic Tully-Fisher’s law (12), with \(K_2 = K_6 \). It is natural to assume that \(h \) depends on \(\rho_0 \). The simplest expression of \(h \) is \(h = C \rho_0 \), \(C \) being a constant. With this relation, \(K_6 \) is independent of \(\rho_0 \), and we can use the baryonic Tully-Fisher’s law in order to define candles used to evaluate distances in the Universe.

2.4 Temperature of the ether-substance.

So we saw that in our interpretation of dark matter, according to the equation (10), the temperature of the ether-substance constituting a galaxy is proportional to the squared velocity of the stars in this galaxy.

We have seen that this temperature could not be the temperature of fossil radiation, because it would then imply that the velocity be always the same.

We could also suppose that this temperature is superior to the temperature of fossil radiation, considering that this temperature of fossil radiation is the temperature \(T_0 \) used in equation (21), but then we find a new problem: According to observation, the velocities of stars for different galaxies can vary with a factor 10. This implies that the temperature of galaxies vary with a factor 100. Consequently if in the equation (21) \(T_0 \) was the temperature of fossil radiation (2.73 °K), the temperature of some galaxies should be more than 300°K, which seems to be impossible.

So we have the possible explanation C:

C. The temperature \(T_0 \) in equation (21) is far less than the temperature of fossil radiation.

The hypothesis C. is possible considering that the ether-substance does not interact with fossil radiation.

2.5 Form of the Universe

If the Universe was completely isotropic, we could expect by symmetry that the thermal flow inside the ether-substance through a great surface be nil. Consequently the temperature of the ether-substance inside a great sphere of the Universe (For instance with a radius of 5 billion years) should increase and tend to a uniform temperature of the ether-substance inside the sphere. We know that it is not the case because galaxies have not the same temperature and moreover we admitted that the temperature of the intergalactic ether-substance is by far inferior to the temperature of the ether-substance inside galaxies.

In the case in which the Universe is a sphere, we avoid this paradox. Indeed we can consider that in the borders of the Universe (supposed to be spherical), there is a phenomenon of thermal convection: \(T \) being the temperature of the intergalactic ether-substance, supposed
to be uniform, we can consider that there is a convective thermal transfer between a medium at a temperature T and a medium at a temperature $T_0=0$. Then the expression of the thermal flow lost by the Universe at its borders is, k being a constant:

$$\varphi = k(T-T_0) = kT$$ \hspace{1cm} (31)

M being the baryonic mass of the Universe, we obtain from equation (14) that the equation of thermal equilibrium at the borders of the universe is:

$$K_3M = 4\pi R^2 \varphi = 4\pi R^2 kT$$ \hspace{1cm} (32)

So we see that if the Universe increases from a factor f, according to the Equation (32) the temperature T of the intergalactic ether-substance diminishes from a factor f^2. Here we supposed that k is independent of the density of the intergalactic ether-substance. If we had supposed that $k=C_2 \rho_0$, ρ_0 being the mass density of the intergalactic ether-substance and C_2 being a constant, it is very easy to obtain that if the Universe increases from a factor f, then T also increases by a factor f which is impossible.

So we see how our model of dark matter brings us to obtain an Universe that is not completely isotropic. Nonetheless, it is logical to assume that it is isotropic observed from the center of the spherical Universe, admitting that the Universe presents a spherical symmetry.

2.6 Law of Hubble-redshift

If we consider a photon emitted from a point A at an absolute time t_A (We remind that t is the age of the Universe) and arriving at a point B at a time t_B, then the total distance covered by the photon is $D=ct_B-t_A$.

Indeed according to the hypothesis A, we know that if the photon covers a local distance dD within an interval of absolute time dt, we have $dD=cdt$. If we sum all those elementary distances and absolute intervals of time we obtain $D=ct_B-t_A$. We will call “time – back distance” $D(between \ A \ and \ B)$.

We consider the simple model of a Universe swelling as a balloon. Such a model with borders moving at a constant velocity c and the velocity of light being equal to c relative to an absolute Referential is completely described in \(^{(3)}\) \(^{(4)}\). But in the model exposed in this present article, borders of the Universe do not move precisely at the constant velocity c and the velocity of light is equal to c relative to a local Referential.

Let us suppose that the Universe is like a swelling balloon whose borders move at the absolute velocity C. We remind that defining an absolute Referential whose the origin is fixed in the point O center of the spherical Universe, this Referential defines “absolute distances” and “absolute velocities”. The time of this Referential being the time of the local ethers, we will call “absolute ether” this absolute Referential. So the velocity C is measured in the absolute ether. In the model of the swelling balloon, at a point A of a radius OP of the spherical Universe with $OA=aOP$ (OA and OP absolute distances), the local ether in A is driven with a velocity $v_A=aC$ in the direction OP. So this velocity v_A is constant.
Let us suppose that from a point P at the present age of the Universe t, we observe a point Q situated at a time-back distance D of P. We know that a photon coming from Q and arriving at P at the time t was emitted at an absolute time $t_Q = t - D/c$. We know that at the time t_Q the radius of the Universe was equal to Ct_Q and at the time t it was equal to Ct. Consequently the factor of expansion of the Universe between t_Q and t is:

$$1 + z = t/t_Q = t/(t - D/c). \quad (29b)$$

When $D/c \ll 1$ we obtain $z = D/c$ and consequently the Hubble’s constant is equal to $1/t$. The above equation is very simple and can easily be verified. For instance taking $t = 15$ billion years, we know that for $z = 0.5$, $D = 5$ billion light years and we have $1 + z = t/(t - D/c)$. For $z = 9$ we obtain $D = 13.5$ billion years.

It is important to remark that D is not the luminosity distance, but the time-back distance that we defined as the distance that is the sum of elementary local distance covered by a photon.

2.7 Topology of the Universe

It is important to remark that C is not a priori equal to c. But we may expect that C is strictly superior to c but is of the order of c (Maybe 2c or 3c). It is generally admitted that the furthest galaxies observed presently from our galaxy are at a distance of approximately 43 billion years. If this reveals to be true C is approximately equal to 3c.

The fact that we observe from our galaxy an isotropic Universe indicates that our galaxy should be close to the center O of the spherical Universe. We remark that in our model we cannot observe galaxies at the very beginning of the Universe (age of the Universe close to 0). This would explain why we presently cannot observe time-back distances superior to 14 billion years despite that according to the value of Hubble’s constant the age of the Universe is equal to 15 billion years.

We remark that the Universe could be homogeneous but not compulsory. It could explain why we do not observe traces of quasars and blue dwarfs in the neighborhood of our galaxy. Nonetheless the Universe must be isotropic observed from its center.

2.8 Fossil radiation

If photons were absorbed by the borders of the spherical Universe, we would easily obtain that presently we could not observe fossil radiation. Consequently we admit that photons simply recoil when they reach the borders of the universe as it was a mirror. Considering a beam of photon of black body radiation at a temperature T reaching the borders of the Universe, we can obtain that the recoil keeps unchanged the angles of anisotropies. Consequently at the present age of the Universe we can observe anisotropies of temperature due to fluctuations of density of the Universe when the age of the Universe was only 40 million years with an identical angle.

Because photons recoil against the borders of the Universe as it was a mirror, we should expect to be able to observe the images of galaxies reflected by the borders of the Universe. But in order to explain why we do not observe the images of reflected galaxies we have 2 possible explanations:

Let t be the present age of the Universe, t_0 the earliest age of the Universe that we can observe at time t in the center O of the spherical Universe, t_D the time in which appeared the first galaxies, and t_D the dark age in which the Universe was not transparent to the light of
galaxies. We know that t_D is of the order of 1 billion years and if we admit that oldest galaxies
are 13.5 billions years old t_O is of the order of 1.5 billion years (taking $t = 15$ billion years).
It is easy to obtain that if $t_O > t_D$ or $t_O < t_D$ then we cannot observe the image of galaxies
reflected by the borders of the Universe. Because in both case we obtain that the images of
reflected galaxies arrive in O center of the spherical Universe after t. For instance we can have
$t_O = 1$ billion year and $t_O = 1.5$ billion years, or $t_O = 1.5$ billion years and $t_D = 2$ billion years.

3. LOCAL ETHER AND ISOTROPY OF FOSSIL RADIATION

We know that fossil radiation is quasi isotropic in a Referential that is not interpreted
in classical Cosmology. If an particular Referential (local ether) exists (Hypothesis A), then it
is natural to assume that it is the Referential in which fossil radiation is quasi isotropic.

More precisely we know that in classical Cosmology we have the following
fluctuations of temperature:

$$\frac{\Delta T}{T} = \frac{1}{4\pi} \sum_l l(2l + 1)C_l$$ \hspace{1cm} (30)

In the previous expression $l=1$ is the dipole contribution, corresponding to the motion
of our Referential linked to the earth relative to a particular Referential. Considering that this
particular Referential is the local ether defines completely this Referential, that has none
particular meaning in the classical Cosmology.

We also remark that if we consider the law:

“The fossil radiation is isotropic in the Referential R”,

we know that this physical law is true for only one Referential, which contradicts the
Principle of Special Relativity and is in agreement with the hypothesis A of the existence of
Ether.

4. DISCUSSION

So we see that the existence of Ether as defined in the hypothesis A and B appears to
be fundamental in order to interpret fossil radiation, the dark matter and the form of the
Universe. It is very remarkable that this existence of ether is compatible with the classical
standard model of Cosmology. We remark that our interpretation of dark matter as being
ether-substance is compatible with Special and General Relativity, but that Special Relativity
appears to be contradicted by the observation of a Referential in which fossil radiation is quasi
isotropic. The enigmatic dark energy could be the thermodynamic energy of the ether-
substance.

We remark that we obtained Hubble’s constant and the expression of the redshift due
to expansion of the Universe in a new way without using the equations of general relativity.
Our model does not need the concept of fossil radiation in order to interpret the quasi-isotropy
of fossil radiation that is observed presently, because in our model, the radius if the Universe
was only 40 million years at the beginning time when the fossil radiation could travel toward
us because the Universe became transparent to fossil radiation. We remind that we established
a complete theory of physics with the existence of a local ether \(^{(2)}(3)^3\), but it is not useful in
order to understand this article.

5. CONCLUSION
So we saw how the existence of an ether, as being both a substance and an absolute Referential compatible with the classical Cosmological standard model, permitted to interpret fundamental phenomena connected to dark matter and to fossil radiation. In particular we successfully interpreted the nature of dark matter, the origin of its invisibility, the curve of velocities of stars in galaxies, the baryonic Tully-Fisher's law and the Referential is which fossil radiation is isotropic. We also justified that it is very likely that the universe has a spherical form and that our galaxy is very close to the center of the Universe.

Références :