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A non-unitary quantum theory describing the evolution of quantum state tensors is presented.
Einstein’s equations and the fine structure constant are derived. The problem of precession in
classical mechanics gives an example.

Quantum mechanical state vectors evolve in time ac-
cording to the Schrödinger equation. Here we propose
a non-unitary process by which quantum state tensors
evolve in time. For clarity in this article, the canoni-
cal theory of vector states |ψ〉 is called chronos and the
theory of tensor states |ψ〉 π̂ is called chiros. By combin-
ing these ideas we will show something that is beautiful
about Nature.

To test any theory two measurements must be made.
Call these measurements A and B corresponding to
events a and b. The boundary condition set by A will be
used to predict the state at b. To make this prediction
the observer applies physical theory to trace a trajectory
from A to the future event b. Before the observer can
verify the theory, sufficient time must pass that the fu-
ture event occurs. Once this happens a retarded signal
from b reaches the observer in the present and a second
measurement B becomes possible.

From the present the observer traces a path into the
future. Once that future becomes part of the observer’s
past, a signal reaches the observer in the present and the
theory can be tested. A three-fold process.

Present→ Future→ Past→ Present (1)

If the observer’s proper time is t0 we may begin to
quantify the process with a Gel’fand triple {ℵ,H,Ω}
wherein each object holds a Minkowski picture S.

Past ∝ [tmin, t0) (2)

Present ∝ [t0]

Future ∝ (t0, tmax]

ℵ = {xµ− ∈ S | tmin ≤ t < t0} (3)

H = {xµ ∈ S | t = t0}
Ω = {xµ+ ∈ S | t0 < t ≤ tmax}

The past and future light cones define the spaces ℵ
and Ω and the hypersurface of the present is a 3D delta
function δ(t − t0) in a 12D bulk. The present is defined
according to the observer so it is an axiom of this in-
terpretation that the observer is isomorphic to the delta
function. With foresight, we point out that the Dirac

delta does not have the properties which will be required
of the observer function. We will require that this func-
tion returns an undefined value where the argument is
null. More on this below.

Unification of the theories requires that quantum me-
chanics in H be connected with smooth relativistic dy-
namics in ℵ and Ω. To this end, define a tensor evolution
operator M̂3 that is non-unitary and complimentary to
the (vector) unitary evolution operator Û .

Chronos⇒ Û : H → H (4)

Û := ∂x

Chiros⇒ M̂3 : H → Ω→ ℵ → H (5)

M̂3 := iπϕ ∂3t

The unfamiliar number ϕ appearing in equation (5) is
the inverse golden mean.

ϕ−1 =
1 +
√

5

2
(6)

With sufficient conditions on the observer function, it
may be possible to motivate state normalization mathe-
matically. If the observer function maintains the values
in the range of the Dirac delta, 0 and∞ (which are both
invariant under multiplication by a constant), then non-
unitary factors of π and ϕ associated with M̂3 may be
absorbed into the observer at the steps between measure-
ments in Ω and ℵ. This process may be interpreted as an
effective unitarity preserving boundary condition in H.

A quantum mechanical particle in an infinite square
well of length L is represented by a well-known state vec-
tor. A particle confined to a temporal square well of
duration D should be represented by a similar vector.
The state vector of a particle confined in space and time
follows from the example of the 2D box.

|ψ;x, t〉 = ψ

(
nπx

L
,
mπt

D

)
(7)

The values L and D should not affect the theory so
let us fix the golden ratio D = 2ϕL in the spirit of C =
2πR. Thus we define one quantum of spacetime. Setting
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D = ϕ [1] and using the identity Φ = ϕ−1 we simplify
the state vector.

|ψ〉 = ψ (2nπx,Φmπt) (8)

From this function it is possible to derive the fine struc-
ture constant and Einstein’s equations.

Assume an evolution operator that is the sum of a
vector part and a tensor part so that Υ̂ ≡ Û + M̂3. We
ignore the difficulties associated with adding a vector to a
tensor and for now it will suffice to say that Υ̂ is a strange
mathematical object. The operator ∂ is a unit vector
and M̂3 takes on unitary property in chronos. Using the
convention to denote tensor states |ψ〉 π̂, we outline a new
quantum theory.

Υ̂ |ψ〉 = ∂x |ψ〉+ ∂3t |ψ〉 (9)

Υ̂ |ψ〉 π̂ = ∂x |ψ〉 π̂ + (iπϕ)∂3t |ψ〉 π̂ (10)

〈ψ|Υ̂|ψ〉 = 〈ψ|Û |ψ〉+ 〈ψ|M̂3|ψ〉 (11)

〈ψ|M̂3|ψ〉 :=

∫
ψ∗(xµ) δ(x0)ψ(xµ) dxµ (12)

Methods for computing 〈ψ|Û |ψ〉 are well established.
The spatial part xi of equation (12) can be integrated
directly but the temporal part x0 = t contains new com-
plexity. The observer is fixed in the present (at the ori-
gin) with the inclusion of δ(t) and since this function
returns an undefined value at t = 0 it is impossible to
integrate directly from early times to late times. To use
an integrand of the form f(t)δ(t) we must employ the
method from complex analysis f(t)δ(t) 7→ g(r, θ). The
integral over all times will trace a path through ℵ, H
and Ω.

∫ ∞
−∞

f(t)δ(t) =

∫ ∞
0

g(r, 0) dr +

+

∫ 1
α

0

g(∞, θ) dθ +

∫ 0

−∞
g(r, α−1) dr

(13)

The choice of α is not arbitrary but stems from the
fact that it is the first eigenvalue of the operator Υ̂ in
chronos.

Υ̂|ψ〉 = ∂x|ψ〉+ ∂3t |ψ〉 (14)

Υnm = 2nπ + (Φmπ)3

Υ11 = 137.6 ≈ α−1

The small deviation in the predicted value and the cur-
rently accepted value of the fine structure constant can be
attributed to many causes. Ralston has notably treated
this subject in [2].

The inner product 〈ψ|ψ〉 takes place in the complex
plane so the rotation in equation (13) must be through
an unidentified hyper-complex plane. For this reason we
replace the canonical rotation through π radians with a
new path through α−1 hyper-radians. In doing so we
create a new geometry in which the π-based geometry is
embedded. Let this structure be represented by a non-
unitary set of basis vectors in C3 which will identify Dirac
vectors with the state spaces {ℵ,H,Ω}.

|̂i| = i |π̂| = π |ϕ̂| = ϕ (15)

|ψ〉̂i = ψ(xµ−) (16)

|ψ〉π̂ = ψ(xµ)

|ψ〉ϕ̂ = ψ(xµ+)

The vector π̂ is associated with the domain of chronos:
H. To explore chiros let us suppress one power of π so
that M̂ |ψ〉 = Φm|ψ〉. Setting m = 1 we develop the
tensor character of M̂3.

M̂1|ψ〉π̂ = Φ|ψ〉π ϕ̂ (17)

M̂2|ψ〉π̂ = Φ2|ψ〉πϕ î
M̂3|ψ〉π̂ = Φ3|ψ〉πϕi π̂

Chiros brings a fractal structure to the algebra as dis-
cussed in [1]. The identities π̂ = πΦϕ̂, π̂ = −iπî and
Φ2 = Φ + 1 are demonstrative.

M̂3|ψ〉π̂ = iπΦ2 |ψ〉π̂ (18)

= iπΦ |ψ〉π̂ + iπ |ψ〉π̂
= iπ2Φ2 |ψ〉ϕ̂+ π2 |ψ〉̂i

Laithwaite’s fantastic work The Multiplication of Um-
brellas by Bananas [3] examines the problem of preces-
sion in classical mechanics. He asks if the rate of change
of the acceleration might be responsible for the anoma-
lous motion. For the case of a spinning wheel, Laithwaite
gives the following simple relationships for the velocity
and centripetal force on a spinning element.

dv

dt
= v

dθ

dt
= vω = rω2 (19)

dF

dt
= F

dθ

dt
= Fω = mrω3 (20)
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If the state of a spinning element is |r, θ〉 we arrive at
a representation M̂3 = ω3. Using ω = 2πf and equation
(18) we recover Einstein’s equations.

8π3f3|ψ〉π̂ = iπ2Φ2 |ψ〉ϕ̂+ π2 |ψ〉̂i (21)

8πf3|ψ〉π̂ = iΦ2 |ψ〉ϕ̂+ |ψ〉̂i
8πf3 ψ(xµ) = iΦ2 ψ(xµ+) + ψ(xµ−)

f3 ψ(xµ) 7→ Tµν (22)

iΦ2 ψ(xµ+) 7→ Gµν

ψ(xµ−) 7→ gµνΛ

8πTµν = Gµν + gµνΛ (23)

In other work we show that the metric in the past is
different than the metric in the future [1]. This indicates
that the size of the wheel changes as chiros flows. While
this idea is foreign to the realm of everyday physics,
the discovery of time reversal symmetry violation by the
BaBar collaboration shows that this is possible [4]. The
apparent anti-gravity effects witnessed in Laithwaite’s
gyro demonstration at the Royal Society can be explained
if there is a net force on Hi due contributions from the
past and future. Using equation (20) we may write the
following.

Fnetπ̂i :=

∞∑
n=1

αn
(
Ḟ π̂i+n − Ḟ π̂i−n

)
(24)

:= mω3
∞∑
n=1

αn∆rn

If this sum is taken to the continuum limit as an in-
tegral over time, the inclusion of the differential element
dt will give the correct units.

A 20 kilogram wheel was spun at 2500 revolutions per
minute. Precession lifted the wheel 1.5 meters in 3 sec-
onds. This created a constant linear ẑ-momentum. Di-
viding the impulse by the time we see the force of preces-
sion was about 3 newtons stronger than the gravitational
force. Keeping terms to first order in α we derive a char-
acteristic length scale for chiros.

~Fp = mω3α∆rẑ (25)

200 = (20)(1.8× 107)α∆r

∆r ≈ 10−4 meters

And that looks about right! Far from the nano-scale of
quantum mechanics and far from the macro-scale of or-
dinary perception. We find an intermediate regime near
the scale of the thought-provoking Casimir effect.

Beyond this example from classical mechanics, many
modern results support the ideas presented here. The
physics of cellular spacetimes have been developed ex-
tensively by ’t Hooft [5]. We show an isomorphism to
string theory noting that our cosmic structure {ℵ,H,Ω}
contains a 9+1D subspace {xi, xi±, t}. Rubino et al. have
discovered a third mode in quantum optical experiments
which is consistent with our three-fold interpretation of
time [6]. Palev and Van der Jeugt have developed quan-
tum statistics associated with a three mode quantum
structure and they present a resolution to the mystery
of quark color confinement [7].

To illustrate the method we employ the Riemann
sphere. Such a sphere is formed from H by mapping
infinity to a single null point. In this way the domain
of canonical quantum mechanics is mapped to a sphere
missing one pole. The null point defines a dual point: the
origin, where we have placed the observer with δ(t). The
position of the origin and the null point may be permuted
without affecting physics on the sphere.

To clarify our use of Gel’fand’s formalism consider the
following three objects. A sphere Ω, the Riemann sphere
H and a sphere ℵ with null points at two opposite poles.
In this way it is clear that ℵ is a subspace of H and Ω is a
type of dual space to ℵ which contains H as a subspace.

Map the Riemann sphere to a plane where the null
point is at the origin. This can be thought of as turning
H inside out. Arrange the objects {ℵ,H,Ω} so that a
point in Ω fills the null point at the center of H and then
position ℵ symmetrically to Ω around H so that two null
points and a point in Ω all lie at the origin.
ℵ has two null points so while one null point is collo-

cated with the present and the future at the origin, ℵi’s
other null point is collocated with infinity at the far pole
of the previous space Ωi−1. This defines a periodic lat-
tice: a plane representing the present Hi, a sphere rep-
resenting the future Ωi, a sphere representing the past
ℵi+1 and then another plane representing the present at
a later time Hi+1. This is the topology of equation (5).
The three spaces are tangent but do not intersect; only
the observer connects them.

At first the observer connects Hi and Ωi. We use the
properties of the Dirac delta to illustrate the method but
these properties need to be refined for global consistency.
The observer is a delta with two values in its range: 0
and ∞. Per (3), the value t = 0 lies in H when we set
t0 = 0. Likewise, the value t = ∞ lies in Ω. This is the
mechanism by which the observer joins these otherwise
disconnected spaces.

The flow of time proceeds as a quantum clockwork.
With the application of the evolution operator M̂ , the
observer’s connection to Hi is released and reconnected
to ℵi+1. M̂ is applied again breaking the connection to
Ωi. That end of the observer function is reconnected to
Hi+1 then a third application of M̂ restores the original
arrangement with a connection between Hi+1 and Ωi+1.
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So time flows.
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