
Appendixed version of paper submitted to: Int J Theo Phys

Maximum Force Derived from Special Relativity, the
Equivalence Principle and the Inverse Square Law

Richard J. Benish

Received: date / Accepted: date

Abstract Based on the work of Jacobson [1] and Gibbons, [2] Schiller [3] has
shown not only that a maximum force follows from general relativity, but
that general relativity can be derived from the principle of maximum force.
In the present paper an alternative derivation of maximum force is given.
Inspired by the equivalence principle, the approach is based on a modification
of the well known special relativity equation for the velocity acquired from
uniform proper acceleration. Though in Schiller’s derivation the existence of
gravitational horizons plays a key role, in the present derivation this is not the
case. In fact, though the kinematic equation that we start with does exhibit
a horizon, it is not carried over to its gravitational counterpart. A few of the
geometrical consequences and physical implications of this result are discussed.

Keywords maximum force · general relativity · special relativity · equivalence
principle · Newtonian gravity · horizons
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gravitational theories

1 Introduction

In a recent paper in this journal, Schiller has shown how the maximum force
in nature, c4/4G, “plays the same role for general relativity as the maximum
speed plays for special relativity.” In the present paper we show that the same
force can be derived from a novel combination of special relativity’s speed
limit, Einstein’s equivalence principle, and the inverse-square law of gravity.
Use of the speed limit as a maximum serves to compliment Schiller’s thesis.
The present derivation diverges from Schiller’s thesis, however, with regard to
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the significance of horizons. Gravitational horizons play a key role in Schiller’s
argument. Whereas, though the present derivation arrives at exactly the same
maximum force, it actually implies an absence of gravitational horizons.

Insofar as our derivation is based on well established principles and agrees
with the maximum force prediction, it is appropriate to explore a few of its
other consequences. It implies, for example, that for most observationally ac-
cessible circumstances, spacetime is curved almost exactly as predicted by gen-
eral relativity. For extreme cases, however, i.e., for large m/r ratios, the present
result is significantly different from general relativity. (See Appendix.) Specif-
ically, the predicted absence of gravitational horizons naturally also means an
absence of gravitational singularities, i.e., black holes. According to the present
result, what are now thought to be physical black holes would thus instead be
more properly called, “dim compact massive objects.” The collapse of stars
or collections of large masses in the centers of stellar systems need not result
in any singularities. The line of thought leading to this result also leads to a
possible test by laboratory experiment.

2 Hyperbolic motion

Let’s begin by considering a body undergoing uniform proper acceleration with
respect to an inertial system, I. The equation for the velocity of the body is
well known to be

v =
at√

1 + a2t2/c2
, (1)

where a is the acceleration given by an accelerometer attached to the body,
t is the time given by a clock in I, and c is the light speed constant. As
t → ∞, v → c. This is often called hyperbolic motion because the track on
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Fig. 1 Hyperbolic motion: The asymptote defines a light cone that B’s time track never
reaches because B’s speed will never reach the speed of light. The asymptote also represents
a horizon, a communication barrier, because B will never receive signals from A after the
time c/a.
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a spacetime diagram is a hyperbola whose asymptote represents the speed
of light. This is shown in Figure 1, which also illustrates another important
property of constant proper acceleration, that is, a horizon. In the figure the
vertical track of A represents an observer who remains at rest in I, while the
hyperbolic track of B reflects B’s acceleration. The asymptote to B’s trajectory
also represents a light cone and therefore a horizon. B will never receive signals
from A emitted after the time, c/a. These are elementary consequences of
special relativity.

3 Equivalence principle

Appealing now to Einstein’s equivalence principle, we note that if body B has
an extent, h in the direction of motion, then observers who exchange signals
from the ends of h can detect a shift in light frequency, f . If B1 and B2
represent the leading and trailing ends of h, respectively, then an observer at
B1 would see B2’s signal red-shifted according to

fB2 ≈ fB1(1− ah/c2) . (2)

And B2 would see a signal from B1 correspondingly blue-shifted. This re-
sult is often used by analogy (“equivalence”) to derive the variation of clock
rates found at different heights near a gravitating body. The reasoning be-
hind (2) appeals to the Doppler effect, which makes sense in the kinematic
circumstance. In the time between emission and reception, B acquires the
speed ≈ ah/c, which produces the shift. In a stationary gravitational field,
however, the expression “gravitational Doppler effect” is a bit of a misnomer
because the observed frequency difference isn’t due to a spectral shift caused
by a change in motion between emitter and receiver. It is due to the differ-
ence in frequency between two clocks, neither of whose speeds change while
the signals are en route. Another obvious, though important, distinction, i.e.,
non-equivalence, between these circumstances is that, over the course of its
accelerated journey through a real universe such as ours, system B would find
light from sources in its direction of acceleration to get increasingly hotter,
while light from sources in the opposite direction would get correspondingly
colder. This doesn’t happen on a gravitating body.

What is important here is that effects that are found in the flat space of
a uniformly accelerating system permit deducing similar effects near a grav-
itating body. In the latter case one cannot consistently ascribe the effects to
kinematics because the system is stationary. Since the effects nevertheless ex-
ist, one is led to the conclusion that time is curved by massive bodies. The
spirit of the equivalence principle is thus to deduce this curvature and to not
worry too much about the differences between the kinematic and gravitational
circumstances.
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4 Modified kinematic equation

In this spirit, then, we note that what makes B’s circumstance unlike life on
a gravitating body is, in terms of (1), the time variable. The speed of light is
approached with increasing time. We can replace the time variable and also the
explicit acceleration a, with a stationary gravitational quantity. If not clearly
analogous, this is at least mathematically permissible. Specifically, we replace
(at) by

√
2GM/r. This gives

VS =

√
2GM
r√

1 + 2GM
rc2

=

√
2GM

r + 2GM
c2

. (3)

The only obvious physical meaning we could attach to this velocity is that it
is (at least approximately) the relative speed of the surface at r, with respect
to a geodesic trajectory “from infinity.” Two things adding to its possible
signifcance are: 1) For any physical values of M and r, it remains that VS < c .
And 2) It leads to a maximum force, FMAX = c4/4G, equal to the maximum
force expounded upon by Schiller. Squaring both sides, we get

V 2
S =

2GM

r(1 + 2GM
rc2 )

=
2GM

(r + 2GM
c2 )

. (4)

The length in the denominator on the right side is the sum of the coor-
dinate radius, r and the gravitational radius, 2GM/c2. Let’s call this sum,
rγ = r + 2GM/c2. This suggests that, whatever the coordinate radius may
be, by virtue of its mass, a body possesses an additional spatial extent. This
idea is consistent with general relativity. Spacetime curvature—or at least the
spatial part of the curvature—can be described in similar terms. Motivated
by the suggestiveness of (3), we diverge from standard general relativity, how-
ever, by treating 2GM/rc2 as a quantity to be added to rather than subtracted
from unity. Thus we assume that the quantity (1+2GM/rc2) appearing in (4)
may play a role similar to (1 − 2GM/rc2)−1 appearing in the Schwarzschild
solution—applying to both space and (its inverse) to time. Since this is clearly
a mathematical possibility, perhaps it is also a physical possibility. (See Ap-
pendix.) The likelihood that we are within the limits set by empirical obser-
vations follows from the smallness of the difference, for most cases, between
the quantities:[

1− 2GM

rc2

]−1
−
[
1 +

2GM

rc2

]
=

4G2M2

r2c4(1− 2GM/rc2)
. (5)

5 Maximum force

Since (r+2GM/c2) is the radial length whose inverse square root gives VS, we
assume that its inverse square gives the surface acceleration, gS. Recalling the
kinematic origins of this derivation, we expect gS to be the acceleration given
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Fig. 2 The maximum acceleration, c4/4GM , is given as the limit when r → 0. The max-
imum force, c4/4G, is gotten by multiplying this acceleration by the corresponding mass.
Since massive bodies always have finite radii, these maxima are never attained in nature.

by an accelerometer at the body’s surface. When we expand the square of the
sum rγ , we get

gS =
GM

r2γ
=

GM

(r + 2GM
c2 )2

=
GM

r2 + 4rGM
c2 + 4G2M2

c4

. (6)

In the limit, r → 0, this leads to

gMAX = gS(r→0) =
c4

4GM
. (7)

In Figure 2 this acceleration is plotted against the full range of known masses
in the universe. Multiplying (6) by any mass, M ′, will result in a force less
than the maximum, FMAX = c4/4G, because multiplication in the numerator
also entails adding (at least) the distance 2GM ′/c2 within the parentheses in
the denominator. Thus, the maximum force is the product of the mass of any
body, such as those in Figure 2, times the corresponding acceleration (7):

FMAX =
c4

4G
= 3.0256× 1043 N . (8)

6 Singularity-free geometry

Let’s now consider a few of the geometrical consequences. To reiterate what
was said above in connection with (3), any M/r ratio is permissible. Since there
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can be no mass within zero volume, if r = 0, M is also zero, so we simply get
zero velocity. But any other M/r leaves VS, the “stationary surface velocity,”
finite and less than c. This implies that a gravitational horizon can never form.
We can see this graphically by using the quantity (1 + 2GM/rc2) [from (4)] to
make an embedding diagram and a plot which compares it to the Schwarzschild
metric coefficient, (1 − 2GM/rc2)−1. These are shown in Figure 3. It is a
curious fact that, though our initial equation involving kinematic acceleration
gives rise to a horizon, our gravitational adaptation of this equation does not.

Since the form of the equations is the same, we naturally expect the new one
to also exhibit a hyperbola for some physical circumstance. This comes about
when we increase the M/r ratio by adding ever more shells of matter of the
same density. In this case the slope of the asymptote is 2, as shown in Figure
4. In the figure the increasing size of the embedding parabolas represents
mass increases in increments of

√
8. Astronomical sized spheres of constant

density are unlikely or impossible in nature. But this idealization is useful for
illustrating some interesting geometrical relationships.

Progression up the figure can be understood as follows. By adding ever
more matter, both M and R increase. As the surface grows, so does the size
of the embedding parabola. But the relation between M and R is such that,
with each increase, R grows proportionally closer to the vertex of the parabola.
Points on the hyperbola are the distances, RPT, gotten by multiplying the
circumference, C, (measured with unshortened rods) by

√
1 + 2GM/Rc2/2π.

Since C/2π = R, we have

RPT = R
√

1 + 2GM/Rc2 . (9)
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Fig. 3 In the strong field regime the curvature implied by the present approach deviates
markedly from general relativity. Left — Profile of the usual Flamm paraboloid compared
with the profile of the present model. Right — The Schwarzschild coefficient can become
infinite at the horizon distance, r = 2GM/c2. Whereas in the present approach, since it
is impossible for a body’s mass to be contained within zero volume (r = 0), spacetime is
well-behaved from the body’s surface to∞. The interior is similarly well-behaved, as we will
see later. When 2GM/c2 is small compared to r the curves in both graphs nearly coincide.
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Fig. 4 Series of embedding parabolas corresponding to spheres of constant density, in steps
of increasing mass, M (×

√
8). The surfaces of these masses correspond to coordinate radii

R ( in steps ×
√

2). The latter points lie on the upwardly opening parabola as shown. The
tangents from these points to the z-axis have lengths, RPT, that are equal to the horizontal
lengths whose end points lie on the upwardly opening hyperbola. The relationship between
RPT, the coordinate radius R, Rγ , and the circumference, C, are given by the equation.
Note that the case (R = 2, M = 1, z = 4) corresponds to that of a Schwarzschild black
hole. In the present model, it is just one unexceptional case in a continuous series.

Thus as M/R → ∞, z/RPT → 2. This may therefore be called hyperbolic
stationary motion, which does not increase with time, but with increasing
M/R.

7 Physical implications, Tangherlini’s shell, and experimental test

7.1 Interior questions

If the only difference between general relativity and the present approach were
that represented by (5), it would be extremely difficult to decide between them
from observations. Of the other possible differences one can deduce, we’ll ad-
dress the most important one: What happens for the interior? For example,
though we can build up a mass, as in connection with Figure 4, so that the
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surface remains well-behaved (VS < c), what happens inside the body? This
question brings out the curious feature of general relativity that the spatial
and temporal parts of the metric are affected in equal magnitude only outside
massive bodies. In the exterior Schwarzschild solution the inverse of the tem-
poral coefficient is everywhere equal to the spatial coefficient. As exemplified
by the Schwarzschild interior solution, however, [4] within massive bodies the
spatial coefficient goes back to unity at r = 0; at the center space is flat. By
contrast, from the surface inward, the inverse of the temporal coefficient con-
tinues increasing to r = 0. A clock located there would be the slowest one in
the field. This is shown graphically in Figure 5 for a rather strong field case,
R = 3GM/c2. The figure displays these temporal and spatial coefficients in
terms of r, R and M from both Schwarzschild solutions.

It is important to emphasize that if we had empirical evidence proving the
correctness of Figure 5 or its weak field counterparts, there would be little point
in exploring alternatives. But we do not. We certainly have no direct evidence.
The difference between the rate of a clock at the center and at the surface
of any convenient-sized massive body would be much too small to measure.
Indirect evidence would be convincing, but this too has not been gathered—
although in this case it could be. Specifically, a consequence of the central clock
having the slowest rate is that motion through the center—as in the common,
idealized “hole through the center of Earth” problem—would yield harmonic
oscillation from one end of the hole to the other. Though a laboratory test
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of this prediction is possible (using a modified Cavendish balance) it has not
yet been carried out. Our trail thus far—which was initiated by modifying
the proper acceleration equation—has led to the maximum force in nature,
and now to some empirically unexplored territory. Hence, we continue. We’ll
return to the possibility of a laboratory test in §7.4.

7.2 Tangherlini’s solution

This is not the first time that the interior question and alternative answers
to it have been discussed. In a paper by Tangherlini titled, ‘Postulational
approach to Schwarzschild’s exterior solution with application to a class of
interior solutions,’ [5] one of the latter (interior) solutions led to predictions
similar to those suggested by the present inquiry. Perhaps not surprisingly,
Tangherlini’s postulates were similar to our starting point: assumed validity
of the equivalence principle and the inverse square law of gravity. Tangherlini
also began with a few auxiliary assumptions that differ from ours, so the
results differ correspondingly. The case exhibiting the closest similarity is that
of a spherical shell of matter. According to the usual application of general
relativity, the spacetime properties found inside the shell would be essentially
an enlarged version of what is found at r = 0 for the case of a uniformly dense
sphere. That is, space would be flat throughout the interior and the rates of
clocks throughout would be a uniform minimum.

What Tangherlini derived on the basis of his postulates, by contrast, is that
clocks inside the shell have maximum rates, such that “the region inside the
shell [may be regarded as] an inversion of the region ‘outside matter at infin-
ity’.” Therefore, as Tangherlini also explains, an object dropped into the shell
from its outer surface would not fall through to the inner cavity. Tangherlini
acknowledges the “rather peculiar” nature of these features. Surely it is shock-
ing to one’s physical instinct to think Newton’s predictions for this problem
could be so grossly violated.

The reason for the peculiar behavior in Tangherlini’s solution traces back
to one of the auxiliary assumptions alluded to above. Within the boundary of
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the sphere, the space curvature coefficient does not abruptly start going back
to unity; rather it changes continuously so as to always remain the inverse of
the temporal coefficient. Figure 6 is a graphic approximation of the coefficients
(for space and the inverse for time) pertaining to Tangherlini’s shell.

Although extremely unlikely to be physically true, this is of interest for
the present exploration because it illustrates the possibility that the spatial
and temporal coefficients need not diverge as they do in the usual treatment.
Furthermore, it is of interest because Tangherlini’s “postulational approach”
resulted in an exact derivation of the exterior Schwarzschild solution. [6] Thus
he demonstrated that it is possible to have a solution which matches the
Newtonian approximation and general relativity for exterior fields, but which
predicts novel, unexpected properties for interior fields.

In light of this, a third possibility presents itself. It is best illustrated not for
a material shell, but for a uniformly dense sphere. Instead of having the spatial
coefficient continue to increase along with the inverse temporal coefficient (as
Tangherlini did) suppose it is the other way around; perhaps inside matter the
inverse temporal coefficient decreases along with the spatial coefficient. If that
were true, it would permit our shifted parabolic profile and metric coefficient,
as in Figure 3; and it would permit the horizonless build-up of massive bodies,
as in Figure 4. A comparison of these cases is illustrated in Figure 7. Figure 7a
is a simplification of Figure 5; in 7b we have added the results of Tangherlini;
and 7c represents the implications of the present approach. Justification for
Figure 7c is found in an analogy intimated by Tangherlini’s remark about the
interior being an inversion of the exterior.
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7.3 Rotation analogy

Reflecting on Tangherlini’s remark, we note that at least one gravitational
effect goes to zero at the center of a body, not because it is infinitely far
away, but because of symmetry. The acceleration due to gravity goes to zero
at the center because mass, which produces the effect, is distributed equally
in every direction, so the effect is exactly neutralized. This is analogous to the
phenomenon of rotation. A rotating body may possess lots of energy due to
its motion; but there is none at the axis, which remains motionless.

It is widely known that, because of its properties that are analogous to
gravitation, uniform rotation played almost as important a role as the equiv-
alence principle in guiding Einstein to general relativity. On a rotating body
there are actually four effects that are neutralized to zero at the center and
increase with radial distance. First, there is inward acceleration, which is al-
ways accompanied by a tangential velocity—both of which vary directly as the
distance. The other two effects are more subtle, but their inevitable existence,
as deduced by Einstein, led him to conceive of non-Euclidean spacetime. These
effects are the shortening of measuring rods and the slowing of clocks—both of
which are caused by the velocity and both of which occur in equal magnitude.

At that time, Einstein was motivated by the idea that all motion should
be relative, so he reasoned as follows: Since a non-moving gravitating body
(and its field) can be described in terms of non-Euclidean geometry, a rotat-
ing body, which also exhibits properties of non-Euclidean geometry, invites
the conception that it too can be regarded as being “at rest.” The effects of
motion were to be subsumed under the more fundamental idea (to Einstein)
of spacetime curvature, i.e., gravitational field. [7]

I have summarized the story here to provide the context for taking the
opposite approach. It is equally (if not more) logical, I propose, to reason as
follows. First, acknowledge the absoluteness of rotational motion. Acknowledge
all the resulting effects suggesting non-Euclidean geometry, especially, non-zero
accelerometer readings, shortened rods and slow clocks. Then, upon finding or
deducing these same physical effects on or near a gravitating body, hypothesize
that they are due to the same cause: motion.

Based on this reasoning and intimated throughout this paper is the follow-
ing set of propositions that we now make explicit: 1) Gravitational spacetime
curvature is caused by stationary motion. 2) Accelerometer readings and the
variation of clock rates establish the existence of this motion. And 3) If (1)
and (2) are correct, then gravitating bodies do not induce geodesic motion
through their centers. Though these propositions are clearly motivated by the
rotation analogy, it is important to point out some key distinctions. Rotation
is stationary motion through space; whereas gravitational stationary motion
is motion of space. (A spherical array of accelerometers surrounding a body
give a volumetric measurement of this motion; i.e., the product, 4πGM .) A
corollary of this distinction is a comparison of the respective symmetry proper-
ties. Rotation may be characterized as having essentially planar, or cylindrical
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symmetry. Whereas gravitational stationary motion is clearly of a volumetric,
omnidirectional character, which implies a higher dimension of space.

The latter implication can be understood by comparing it to a more pop-
ular conception of higher dimensional space. Space dimensions beyond the
third are often imagined as being “compactified” to an imperceptibly small
size. By contrast, according to the present idea, we and other familiar bod-
ies of matter are in the relatively “compactifed,” seemingly three-dimensional
state, and the higher dimension is an “expandification” thereof. The fourth
dimension of space subsumes the first three; and the whole manifold is in a
state of perpetual outward motion. Since the accelerations and velocities pro-
duced by gravitation are locally quite inhomogeneous, it is obvious that this
kind of stationary motion cannot be conceived as motion through pre-existing
three-dimensional space. Material bodies would rapidly disintegrate. To be
consistent, the idea therefore requires a fourth space dimension to accommo-
date the inhomogeneous motion and to insure the integrity of material bodies.
Though this conception stretches the imagination, it stems from a straightfor-
ward interpretation of accelerometer readings. And a simple experiment can
reveal whether or not it is correct.

7.4 Laboratory test

The scope of this paper does not allow going into more detail about its higher
dimensional implications. Rather, it should suffice to elucidate the basis for
future work, to show the logical consistency by way of analogy and mathe-
matical connection to well established foundations. But future work in this
direction would clearly be pointless if we could prove with empirical evidence
that the idea is contrary to fact. Therefore, a brief description of an apparatus
for acquiring the needed fact is in order.

First, however, let’s clarify our prediction. The above reasoning implies
that, not just acceleration, but all four of the effects of spacetime curvature
(including now velocity, rod shortening and clock slowing) are due only to the
mass within a given radial distance. The gravitational effect of concentrically
distributed matter beyond this distance is canceled by symmetry. By this
reasoning, or by analogy with rotation, we predict a maximum clock rate at

Fig. 8 Schematic of modified Cavendish balance for testing interior field motion predictions.
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the center, which corresponds to the prediction that a test object dropped
into an antipodal hole through a massive body will not pass the center. This
can be tested by modifying a Cavendish balance so as to allow motion of the
balance arm through the center of the large source masses. The basic idea is
shown in Figure 8.

Though simple in principle, the experiment is not easy because of the
stringent requirements of the arm’s suspension system. Almost every previous
Cavendish-like balance has involved a suspension system with a restoring force.
The arm is allowed to move through only a short range of motion. Clearly, this
will not work for our purpose. We need to allow a wide range of free motion.
This becomes possible with either a fluid or magnetic suspension. In 1976 a
measurement of Newton’s constant was conducted by Faller and Koldewyn
with a balance using a magnetic suspension. [8,9] Especially since electronic
and magnetic technology have vastly improved since then, it is reasonable to
expect that a similar apparatus could be adapted to the present purpose.

8 Interior acceleration, velocity and embedding diagram

8.1 Stationary acceleration

Our route to the maximum force has illuminated a new interpretation of the
meaning of spacetime curvature, and a way to test whether or not this new
interpretation is correct. Since this test involves the interiors of massive bod-
ies, we now give the interior a fuller (though certainly far from complete)
mathematical and graphical expression. Recalling that the acceleration due to
gravity outside a spherical mass is given by GM/(r + 2GM

c2 )2, adapting this
equation for the simplest case of uniform density yields:

gSINT =
4π

3

Gρ r[
1 + 8π

3
Gρ r2

c2

]2 . (10)

For weak fields, gSINT varies directly as the distance. But for densities and/or
distances so large that 8πGρ r2/3c2 approaches or exceeds unity, a maximum
acceleration is reached inside the body, as shown in Figure 9. The rise and
fall of acceleration within a uniformly dense body only happens for systems
with large m/r ratios, and is a manifestation of remaining below the maximum
force, which is equivalent to the stationary velocity remaining less than c. No
matter how large the density, the product of density, volume, and acceleration
never reaches c4/4G.

8.2 Stationary velocity

The interior stationary velocity equation follows from a similar adaptation of
the exterior equation:
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VSINT =
r
√

8π
3 Gρ√

1 + 8π
3
Gρ r2

c2

. (11)

This has the same form as (1), of course. For weak fields the velocity varies
directly as the distance, and as 8πGρ r2/3c2 approaches or exceeds unity, VSINT

flattens out as it approaches c. When the density changes abruptly, so does the
stationary velocity. This is evident in Figure 10 at the surface radius, r = 2.
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Fig. 10 Stationary velocity inside and outside of a uniformly dense sphere. For the highly
idealized case of uniform density, the velocity varies directly as the radius for weak fields;
but for very strong fields (as shown here) the variation is non-linear.
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8.3 Embedding diagram

It is well known that the spatial part of the Schwarzschild exterior solution,
as represented by Flamm’s paraboloid, joins up with the interior solution as
a “spherical cap.” [10] By contrast, our interior field “cap” is a paraboloid
of revolution. The cross-section is an upwardly opening parabola that joins
smoothly to the exterior, given by

z =
1

4
r2
√

32π

3

Gρ

c2
+

3

4
R2

√
32π

3

Gρ

c2
. (12)

The right hand term is a constant which defines the surface radius, R, and
the vertex height on the z-axis. Figure 11 shows a series of different interior
profiles all joined to one exterior profile. The colored curves correspond to the
densities from Figures 9 and 10. In the latter figures each spherical body has a
different coordinate mass and has the same coordinate surface radius, equal to
that given by R = 2GM/c2 for the cyan colored curve. Surface radii in Figure
11, on the other hand, vary so that the coordinate mass (active gravitational
mass) of each sphere is the same. Note that this means the proper masses
would have to be greater as they get smaller and denser. This is due to the
greater spatial curvature in such compact fields. It bears repeating that, for the
present model, this embedding diagram indicates both spatial and temporal
curvature.
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Fig. 11 Nested interior parabolas. Projected length segments of the parabolas onto cor-
responding length segments on the r-axis represent both rod length and clock rate ratios.
(Coordinate lengths are shorter and coordinate clocks tick faster.) The colored curves cor-
respond to density variations as in Figures 9 and 10. In this figure the active gravitational
mass is the same for each case, as represented by the solitary exterior parabola.
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9 Rethinking motion

Having no horizons or singularities, the geometry of the present scheme is, in
at least this respect, simpler than general relativity. Also the conceptual basis
is simpler. In general relativity, a positive accelerometer reading is equivocal as
to whether it indicates motion or not. Of course, it indicates “acceleration with
respect to a local geodesic.” But the body on which it rests is typically deemed
to be static. The prevailing understanding of motion thus involves scrambling
up the terms so that it is not unusual to find oxymoronic expressions as “ac-
celeration of a particle at rest.” [11,12] This is all due to our heritage of having
evolved on the surface of a huge spherical mass. In spite of the readings on
co-moving accelerometers, most things around us appear not to move, so we
think we too are at rest. Our visual impressions dominate our thinking, even
as our tactile experience (flattened undersides) indicates that we accelerate,
as though matter were an inexhaustible source of perpetual propulsion. Con-
trary to this experience, the laws of physics have evolved to reflect our visual
impression of staticness. Of course these laws have proven to be remarkably
successful for an impressively wide range of circumstances.

But there is a huge gap—not because it is inaccessible, but because we
just haven’t thought about looking there. We don’t know how test objects
fall near the centers of gravitating bodies. The laws give clear predictions.
But these particular predictions have not been tested. If in fact gravity is
a force of attraction, if spacetime curvature causes falling bodies to move
inwardly, then the predictions will be verified when they are finally tested. But
if accelerometer readings are actually not equivocal, if they really indicate the
state of motion of matter and space, then how are we to conceive that a falling
test object doesn’t pass the center?

We again come to the distinction between motion through pre-existing
space and the motion of space. This corresponds to the distinction between
thinking spacetime curvature causes inward motion versus the present idea
that outward motion is the cause of spacetime curvature. Attractive forces
cause motion through space. If true for gravity, then the test object would os-
cillate through the antipodal hole. By the present view, what happens instead
is that the space that once separated the test object from the center—when
the object begins to fall—moves outwardly past it. At first this results in an
increasing relative speed. But as the amount of intervening space diminishes
and as the amount of matter responsible for the separation also diminishes
(because the falling body is increasingly below the surface of the larger body)
so does the rate at which it moves past the falling body.

It must be borne in mind that this description rests on the idea that dif-
ferences in accelerometer readings and differences in clock rates correspond
to physically real differences in acceleration and velocity. An object rigidly
attached to the gravitating body (beyond r = 0) is thus initially endowed
with both a stationary outward acceleration and a stationary outward veloc-
ity. Accordingly, the speed of the dropped object immediately after release
does not fall from zero to increasingly negative values. Rather, its initially
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positive value remains positive and decreases to zero as it gets closer to the
center. The standard of “rest” is thus not the seemingly static body, but the
trajectory of a test object falling radially from infinity (”maximal geodesic”).
If this view is correct then any test object whose apparent motion is due only
to the gravitating mass and which falls radially inside the gravitating mass,
will not quite reach the center.

10 Deeper implications: inertial mass and the direction of time

This conception of motion conflicts with standard physics in many ways. To
make sense it would require the existence of a fourth dimension of space, as
mentioned in §7.3. If the laboratory test described in §7.4 should neverthe-
less support our prediction, then at least two persistent enigmas in standard
physics could begin to be understood. If gravity is correctly conceived as a
process of stationary outward motion, then the resistance posed to linear ac-
celeration (inertia) could be understood as being due to this same process. The
greater the magnitude of omnidirectional motion (of space) the more difficult
it is to change the state of linear motion (through space).

Finally, we have the potential to shed light on the time asymmetry problem.
This is easily understood in terms of the proposed experiment. If the Newto-
nian oscillation prediction were to be confirmed, then an idealized video of the
motion would look exactly the same whether it was played forward or back-
ward. Whereas, if the non-oscillation prediction were to be confirmed, then
one direction could be clearly distinguished from the other. If the test object
appears to move upward and reach the surface, the video is being played back-
ward because this cannot happen in nature (without an extraneous source of
propulsion). If the non-oscillation prediction were confirmed then time asym-
metry could be succinctly characterized as follows. Time only increases because
space and matter also only increase. The failure to solve the problem of time’s
arrow has been due to the failure to discover space’s arrow and matter’s arrow.

11 Conclusion

Schiller has argued that the maximum force principle and general relativity
are equivalent, that they can each be derived from the other. In the present
paper we have shown that exactly the same maximum force follows from a
simple application of the equivalence principle, the limiting speed of light and
the inverse square law of gravity. Our first equation, representing the speed ac-
quired from constant proper acceleration, involves a horizon, a communication
barrier with respect to the accelerating observer and an observer remaining at
rest in the original inertial system. Motivated by the equivalence principle, we
have exchanged the time variable and the acceleration in this equation with
stationary gravitational quantities (3).

By the reasoning elucidated in the later sections we have come to see that
the key difference in the meaning of these equations is that (1) represents
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motion through space, whereas (3) represents motion of space. In both cases
the speed of light is an unreachable limit. But in the latter, gravitational case,
this does not lead to a horizon. There is no communication barrier. Also there
are no singularities. These features are all conducive to simple geometrical
expression.

Of great importance for the new approach is that the magnitude of space-
time curvature for exterior fields is nearly the same as that for general rela-
tivity, except in the strong field regime. Even more important is that it would
be relatively easy to test the emerging model with a laboratory experiment. If
the results of the modified Cavendish experiment should confirm the standard
prediction, then our derivation of the maximum force would be proven to be
an inconsequential coincidence. The novel conceptions of matter, space, time,
and gravitation presented in this paper should then all be discarded. But per-
haps the experiment will support these conceptions. The highest priority is to
find out, one way or the other.

12 Appendix

A reviewer has suggested that the step from Eq (1) to Eq (3) may be mistaken,
that it fails to account for discussions such as that of Hamilton [13] or Desloge
and Philpott,[14,15] and therefore the implications concerning horizons and
deviations from general relativity may also be mistaken. The cited literature
concerns uniformly accelerated reference frames. It concerns the question of
exactly how such frames should be defined, consequences for observers therein
and some discussion about the connection to general relativity. The reviewer
pointed out the standard result that, “the existence of horizons for accelerated
observers in flat spacetime is known to be equivalent to the existence of a
horizon for an observer of a black hole located at spatial infinity.” This view
is thus similar to that of Schiller, which may be correct. I admit that the
approach taken in the present paper might not be physically true.

But the work of Hamilton, Desloge and Philpott (et al) does not invalidate
the logic of the present approach. Eq (3)—which simply replaces a kinematic
quantity with a gravitational quantity—is a logically possible step from Eq
(1). The step is non-standard, but it does not conflict with any known physical
facts. The equivalence principle, being a heuristic device for relating the effects
of uniform acceleration with spacetime curvature, motivated the step. But
even independent of the equivalence principle, Eq (3) is clearly mathematically
correct. Only Nature can tell us whether or not it is also physically correct.
The fact that the equation so transparently leads to the same maximum force
discussed by Schiller suggests that it is worthy of further exploration.

Following the trail where it leads, we directly come to the question of space-
time curvature inside massive bodies—a domain for which empirical evidence
is clearly lacking. The degree of spacetime curvature implied by the present
approach, as per Eq (5), is nearly the same as that of general relativity for
(weak) exterior fields. But it deviates markedly for interior fields. Which ap-
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proach holds up better for the interior is an empirical question whose answer
remains to be discovered. Therefore, I have emphasized the importance of test-
ing the validity of the derivation of maximum force and the other analogies
I’ve proposed with the simple laboratory experiment discussed in §7.4.
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