Gravitational Blueshift and Redshift generated at Laboratory Scale

Fran De Aquino
Maranhao State University, Physics Department, S.Luis/MA, Brazil.
Copyright © 2012 by Fran De Aquino. All Rights Reserved.

In this paper we show that it is possible to produce gravitational blueshift and redshift at laboratory scale by means of a device that can strongly intensify the local gravitational potential. Thus, by using this device, it is possible to generate electromagnetic radiation of any frequency, from ELF radiation \((f < 10\text{Hz})\) up to high energy gamma-rays. In this case, several uses, such as medical imaging, radiotherapy and radioisotope production for PET (positron emission tomography) scanning, could be realized. The device is smaller and less costly than conventional sources of gamma rays.

Key words: Modified theories of gravity, Relativity and Gravitation, Gravitational Redshift and Blueshift.

1. Introduction

It is known that electromagnetic radiation is blueshifted when propagating from a region of weaker gravitational field to a region of stronger gravitational field. In this case the radiation is blueshifted because it gains energy during propagation. In the contrary case, the radiation is redshifted. This effect was predicted by Einstein’s Relativity Theory \([1, 2]\) and was widely confirmed by several experiments \([3, 4]\). It was first confirmed in 1959 in the Pound and Rebka experiment \([3]\).

Here we show that it is possible to produce gravitational blueshift and redshift at laboratory scale by means of a device that can strongly intensify the local gravitational potential \([5]\). Thus, by using this device, it is possible to generate electromagnetic radiation of any frequency, from ELF radiation \((f < 10\text{Hz})\) up to high energy gamma-rays. In this case, several uses, such as in medical imaging, radiotherapy and radioisotope production for PET (positron emission tomography) scanning and others, could be devised. The device is smaller and less costly than conventional sources of gamma rays.

2. Theory

From the quantization of gravity it follows that the gravitational mass \(m_g\) and the inertial mass \(m_i\) are correlated by means of the following factor \([5]\):

\[
\chi = \frac{m_g}{m_{i0}} = \left\{1 - 2 \left[\frac{\sqrt{1 + \left(\frac{\Delta p}{m_{i0}c}\right)^2} - 1}{\sqrt{1 + \left(\frac{\lambda_0}{\lambda}\right)^2} - 1}\right]\right\}
\]

(1)

where \(m_{i0}\) is the rest inertial mass of the particle and \(\Delta p\) is the variation in the particle’s kinetic momentum; \(c\) is the speed of light.

When \(\Delta p\) is produced by the absorption of a photon with wavelength \(\lambda\), it is expressed by \(\Delta p = h/\lambda\). In this case, Eq. (1) becomes

\[
\frac{m_g}{m_{i0}} = \left\{1 - 2 \left[\sqrt{1 + \left(\frac{h/m_{i0}c}{\lambda}\right)^2} - 1\right]\right\}
\]

(2)

\[
= \left\{1 - 2 \left[\sqrt{1 + \left(\frac{\lambda_0}{\lambda}\right)^2} - 1\right]\right\}
\]

where \(\lambda_0 = h/m_{i0}c\) is the De Broglie wavelength for the particle with rest inertial mass \(m_{i0}\).

It has been shown that there is an additional effect - Gravitational Shielding...
effect - produced by a substance whose gravitational mass was reduced or made negative [6]. The effect extends beyond substance (gravitational shielding), up to a certain distance from it (along the central axis of gravitational shielding). This effect shows that in this region the gravity acceleration, \(g_1 \), is reduced at the same proportion, i.e., \(g_1 = \chi_1 g \) where \(\chi_1 = m_f / m_{i0} \) and \(g \) is the gravity acceleration before the gravitational shielding). Consequently, after a second gravitational shielding, the gravity will be given by \(g_2 = \chi_2 g_1 = \chi_1 \chi_2 g \) \(\), where \(\chi_2 \) is the value of the ratio \(m_f / m_{i0} \) for the second gravitational shielding. In a generalized way, we can write that after the \(nth \) gravitational shielding the gravity, \(g_n \), will be given by

\[
g_n = \chi_1 \chi_2 \chi_3 \ldots \chi_n g
\] (3)

This possibility shows that, by means of a battery of gravitational shieldings, we can strongly intensify the gravitational acceleration.

In order to measure the extension of the shielding effect, samples were placed above a superconducting disk with radius \(r_D = 0.1375 m \), which was producing a gravitational shielding. The effect has been detected up to a distance of about 3m from the disk (along the central axis of disk) [7]. This means that the gravitational shielding effect extends, beyond the disk by approximately 20 times the disk radius.

From Electrodynamics we know that when an electromagnetic wave with frequency \(f \) and velocity \(c \) incides on a material with relative permittivity \(\varepsilon_r \), relative magnetic permeability \(\mu_r \) and electrical conductivity \(\sigma \), its velocity is reduced to \(v = c/n_r \) where \(n_r \) is the index of refraction of the material, given by

\[
n_r = \frac{c}{v} = \sqrt{\frac{\varepsilon_r \mu_r}{2 \left(\frac{\sigma}{\varepsilon_r \omega} \right)^2 + 1}}
\] (4)

If \(\sigma \gg \varepsilon_r \omega = 2\pi f \), Eq. (4) reduces to

\[
n_r = \sqrt{\frac{\mu_r \sigma}{4\pi\varepsilon_0 f}}
\] (5)

Thus, the wavelength of the incident radiation (See Fig. 1) becomes

\[
\lambda_{mod} = \frac{v}{f} = \frac{c}{n_r} = \frac{\lambda}{n_r} = \frac{\lambda}{\sqrt{\frac{\mu_r \sigma}{4\pi\varepsilon_0 f}}}
\] (6)

Fig. 1 – Modified Electromagnetic Wave. The wavelength of the electromagnetic wave can be strongly reduced, but its frequency remains the same.

If a lamina with thickness equal to \(\xi \) contains \(n \) atoms/m\(^3\), then the number of atoms per area unit is \(n_\xi \). Thus, if the electromagnetic radiation with frequency \(f \) incides on a area \(S \) of the lamina it reaches \(n_\xi S \) atoms. If it incides on the total area of the lamina, \(S_f \), then the total number of atoms reached by the radiation is \(N = n_\xi S_f \). The number of atoms per unit of volume, \(n \), is given by

\[
n = \frac{N_0 \rho}{A}
\] (7)

where \(N_0 = 6.02 \times 10^{23} \text{atoms/kmole} \) is the Avogadro’s number; \(\rho \) is the matter density of the lamina (in kg/m\(^3\)) and \(A \) is the molar mass(kg/kmole).

When an electromagnetic wave incides on the lamina, it strikes \(N_f \) front atoms, where \(N_f = \phi_m S_f \) \(\), \(\phi_m \) is the “diameter” of the atom. Thus, the electromagnetic wave incides effectively on an area \(S = N_f S_m \), where \(S_m = \frac{1}{4\pi \phi_m^2} \) is the cross section area of
one atom. After these collisions, it carries out \(n_{\text{collisions}} \) with the other atoms (See Fig. 2).

![Diagram of atom collision](image)

Fig. 2 – Collisions inside the lamina.

Thus, the total number of collisions in the volume \(S \xi \) is

\[
N_{\text{collisions}} = N_f + n_{\text{collisions}} = n_{\text{collisions}}(n_f S_m) - n_{\text{collisions}} = n_{\text{collisions}} S \xi
\]

(8)

The power density, \(D \), of the radiation on the lamina can be expressed by

\[
D = \frac{P}{S} = \frac{P}{N_f S_m}
\]

(9)

We can express the total mean number of collisions in each atom, \(n_1 \), by means of the following equation

\[
n_1 = \frac{n_{\text{total photons}} N_{\text{collisions}}}{N}
\]

(10)

Since in each collision a momentum \(\frac{h}{\lambda} \) is transferred to the atom, then the total momentum transferred to the lamina will be \(\Delta p = (n_1 N) \frac{h}{\lambda} \). Therefore, in accordance with Eq. (1), we can write that

\[
\frac{m_{\text{g}()}}{m_{\text{o}()}} = \left\{ 1 - 2 \left[\left(\frac{n_1 N S \xi}{\Delta p} \right)^2 - 1 \right] \right\} = \\
\left\{ 1 - 2 \left[\left(\frac{n_{\text{total photons}} N_{\text{collisions}} S \xi}{\Delta p} \right)^2 - 1 \right] \right\}
\]

(11)

Substitution of Eq. (12) into Eq. (11) yields

\[
\frac{m_{\text{g}()}}{m_{\text{o}()}} = \left\{ 1 - 2 \left[\left(\frac{P}{h f^2} \right)(n_f S \xi) \frac{\lambda_0}{\lambda} \right]^2 - 1 \right\}
\]

(13)

Substitution of \(P \) given by Eq. (9) into Eq. (13) gives

\[
\frac{m_{\text{g}()}}{m_{\text{o}()}} = \left\{ 1 - 2 \left[\left(\frac{N_f S_m D}{f^2} \right)(n_f S \xi) \frac{1}{\lambda} \right]^2 - 1 \right\}
\]

(14)

Substitution of \(N_f = n_f S_f \phi_m \) and \(S = N_f S_m \) into Eq. (14) results

\[
\frac{m_{\text{g}()}}{m_{\text{o}()}} = \left\{ 1 - 2 \left[\left(\frac{N_f S_m D}{f^2} \right)(n_f S \xi) \frac{1}{\lambda} \right]^2 - 1 \right\}
\]

(15)

where \(m_{\text{o}()} = \rho_{(l)} V_{(l)} \).

Now, considering that the lamina is inside an ELF electromagnetic field with \(E \) and \(B \), then we can write that [9]

\[
D = \frac{n_f l E^2}{2 \mu_0 c}
\]

(16)

Substitution of Eq. (16) into Eq. (15) gives

\[
\frac{m_{\text{g}()}}{m_{\text{o}()}} = \left\{ 1 - 2 \left[\left(\frac{n_f l^2 S_f S_m^2 \mu_0 c^2}{2 \mu_0 m_{\text{o}()} f^2} \right) \frac{1}{\lambda} \right]^2 - 1 \right\}
\]

(17)

In the case in which the area \(S_f \) is just the area of the cross-section of the lamina(\(S_a \)), we obtain from Eq. (17), considering that \(m_{\text{o}()} = \rho_{(l)} S_a \xi \), the following expression

\[
n_{\text{total photons}} N_{\text{collisions}} = \left(\frac{P}{h f^2} \right)(n_f S \xi)
\]

(12)
\[
\frac{m_{g(l)}}{m_{0(l)}} = \left\{1 - 2 \left[1 + \left(\frac{n_r(l)A_s S_o E_m^2}{2 \mu_0 \rho_0 f^2 f^2} \right)^2 \right]^{-1} \right\} \quad (18)
\]

According to Eq. (6) we have
\[
\lambda = \lambda_{m0} = \frac{v}{f} = \frac{c}{n_r(l)f}
\]
Substitution of Eq. (19) into Eq. (18) gives
\[
\frac{m_{g(l)}}{m_{0(l)}} = \left\{1 - 2 \left[1 + \left(\frac{4 \mu_0 \rho_0 f^2 f^2}{4 \mu_0 \rho_0 f^2 f^2} \right)^2 \right]^{-1} \right\} \quad (20)
\]

Note that \(E = E_m \sin \omega t \). The average value for \(E^2 \) is equal to \(\frac{1}{2} E_m^2 \) because \(E \) varies sinusoidally (\(E_m \) is the maximum value for \(E \)). On the other hand, \(E_{rms} = E_m / \sqrt{2} \). Consequently we can change \(E^4 \) by \(E_{rms}^4 \), and the equation above can be rewritten as follows
\[
\chi = \frac{m_{g(l)}}{m_{0(l)}} = \left\{1 - 2 \left[1 + \left(\frac{n_r(l)^4 S_o^2 E_m^4}{4 \mu_0^2 \rho_0^2 f^2 f^2} \right)^2 \right]^{-1} \right\} \quad (21)
\]

Now consider the Gravitational Shift Device shown in Fig.3.
Inside the device there is a dielectric tube (\(\varepsilon_r \equiv 1 \)) with the following characteristics:
\(\alpha = 60 \text{mm}, \quad S_o = \pi \alpha^2 / 4 = 2.83 \times 10^{-3} \text{m}^2 \).
Inside the tube there is an Aluminum sphere with 30mm radius and mass \(M_{gs} = 0.30536 \text{kg} \). The tube is filled with air at ambient temperature and 1atm. Thus, inside the tube, the air density is
\(\rho_{air} = 1.2 \text{ kg} \cdot \text{m}^{-3} \) \quad (22)
The number of atoms of air (Nitrogen) per unit of volume, \(n_{air} \), according to Eq.(7), is given by
\[
n_{air} = N_0 \rho_{air} = 5.16 \times 10^{25} \text{ atoms/m}^3 \quad (23)
\]

The parallel metallic plates (p), shown in Fig.3 are subjected to different drop voltages. The two sets of plates (D), placed on the extremes of the tube, are subjected to \(V_{(D)rms} = 16.22V \) at \(f = 1 \text{Hz} \), while the central set of plates (A) is subjected to \(V_{(A)rms} = 191.98V \) at \(f = 1 \text{Hz} \). Since \(d = 98 \text{mm} \), then the intensity of the electric field, which passes through the 36 cylindrical air laminas (each one with 5mm thickness) of the two sets (D), is
\[
E_{(D)rms} = V_{(D)rms} / d = 16553V / m
\]
and the intensity of the electric field, which passes through the 7 cylindrical air laminas of the central set (A), is given by
\[
E_{(A)rms} = V_{(A)rms} / d = 1.959 \times 10^3 \text{V/m}
\]

Note that the metallic rings (5mm thickness) are positioned in such way to block the electric field out of the cylindrical air laminas. The objective is to turn each one of these laminas into a Gravity Control Cells (GCC) \[10\]. Thus, the system shown in Fig. 3 has 3 sets of GCC. Two with 18 GCC each, and one with 19 GCC. The two sets with 18 GCC each are positioned at the extremes of the tube (D). They work as gravitational decelerator while the other set with 19 GCC (A) works as a gravitational accelerator, intensifying the gravity acceleration and the gravitational potential produced by the mass \(M_{gs} \) of the Aluminum sphere. According to Eq. (3) the gravity, after the 19th GCC becomes \(g_{19} = \chi^{19}G M_{gs} / r_1^2 \), and the gravitational potential \(\phi = \chi^{19}G M_{gs} / r_1 \), where \(\chi = m_{g(l)}/m_{d(l)} \), is given by Eq. (21) and \(r_1 = 35 \text{mm} \) is the distance between the center of the Aluminum sphere and the surface of the first GCC of the set (A).

The objective of the sets (D), with 18 GCC each, is to reduce strongly the value of the external gravity along the axis of the tube. In this case, the value of the external gravity, \(g_{ext} \), is reduced by the factor \(\chi_{d}^{18} g_{ext} \),
where $\chi_d = 10^{-2}$. For example, if the base BS of the system is positioned on the Earth surface, then $g_{\text{ext}} = 9.81 \text{m/s}^2$ is reduced to $\chi_d g_{\text{ext}}$ and, after the set A, it is increased by χ°. Since the system is designed for $\chi = -308.5$, then the gravity acceleration on the sphere becomes $\chi^\circ \chi_d g_{\text{ext}} = 2.4 \times 10^{-12} \text{m/s}^2$, this value is much smaller than $g_{\text{sphere}} = \frac{GM_{\text{gs}}}{r_s^2} = 2.26 \times 10^{-8} \text{m/s}^2$.

The values of χ and χ_d, according to Eq. (21) are given by

$$\chi = \left\{ \begin{array}{ll}
1 - 2 \left[\frac{n^4 E_{(A)\text{rms}}^4}{1 + \frac{2 \pi^2}{4} \frac{\rho_{m}^2}{\mu} \frac{\phi_{m}^2}{E_{(A)\text{rms}}} - 1} \right] \\
1 - 2 \left[\frac{n^4 E_{(D)\text{rms}}^4}{1 + \frac{2 \pi^2}{4} \frac{\rho_{m}^2}{\mu} \frac{\phi_{m}^2}{E_{(D)\text{rms}}} - 1} \right]
\end{array} \right. \quad (24)$$

$$\chi_d = \left\{ \begin{array}{ll}
1 - 2 \left[\frac{n^4 E_{(A)\text{rms}}^4}{1 + \frac{2 \pi^2}{4} \frac{\rho_{m}^2}{\mu} \frac{\phi_{m}^2}{E_{(A)\text{rms}}} - 1} \right] \\
1 - 2 \left[\frac{n^4 E_{(D)\text{rms}}^4}{1 + \frac{2 \pi^2}{4} \frac{\rho_{m}^2}{\mu} \frac{\phi_{m}^2}{E_{(D)\text{rms}}} - 1} \right]
\end{array} \right. \quad (25)$$

where $n_{\text{air}} = \sqrt{\varepsilon_r \mu_r} \approx 1$, since $(\sigma << \omega \varepsilon)$; $n_{\text{air}} = 5.16 \times 10^{25} \text{atoms}/\text{m}^3$, $\phi_m = 1.55 \times 10^{-10} \text{m}$, $S_m = \pi \phi_m^2 / 4 = 1.88 \times 10^{-20} \text{m}^2$ and $f = 11 \text{Hz}$. Since $E_{(A)\text{rms}} = 1.959 \times 10^3 \text{V/m}$ and $E_{(D)\text{rms}} = 165.53 \text{V/m}$, we get

$$\chi = -308.5 \quad (26)$$

and

$$\chi_d \approx 10^{-2} \quad (27)$$

Then the gravitational acceleration after the 19th gravitational shielding of the set A (See Fig.3) is

$$g_{19} = \chi^\circ g_1 = \chi^\circ GM_{\text{gs}} / r_1^2 \quad (28)$$

and the gravitational potential is

$$\varphi = \chi^\circ \varphi_1 = \chi^\circ GM_{\text{gs}} / r_1 \quad (29)$$

Thus, if photons with frequency f_0 are emitted from a point 0 near the Earth’s surface, where the gravitational potential is $\varphi_0 \approx -GM_{\text{gs}} / r_0$ (See photons source in Fig.3), and these photons pass through the region in front of the 19th gravitational shielding, where the gravitational potential is increased to the value expressed by Eq. (29) then the frequency of the photons in this region, according to Einstein’s relativity theory, becomes $f = f_0 + \Delta f$, where Δf is given by

$$\Delta f = \frac{\varphi - \varphi_0}{c^2} f_0 = -\frac{\chi^\circ GM_{\text{gs}} / r_1 + GM_{\text{gs}} / r_0}{c^2} \quad (30)$$

If $\chi < 0$, then $\chi^\circ < 0$ and $\Delta f > 0$ (blueshift). Note that, if the number n of Gravitational Shieldings in the set A is odd $(n = 1, 3, 5, 7, \ldots)$ then the result is $\Delta f > 0$ (blueshift). But, if n is even ($n = 2, 4, 6, 8, \ldots)$ and $\left| \chi^\circ M_{\text{gs}} / r_1 \right| > \left| M_0 / r_0 \right|$ then the result is $\Delta f < 0$ (redshift). Note that to reduce $f_0 = 10^{14} \text{Hz}$ down to $f \approx 10^{11} \text{Hz}$ it is necessary that $\Delta f = -0.999 \times 10^{14} \text{Hz}$. This precision is not easy to be obtained in practice. On the other hand, if for example,

† The gravitational shielding effect extends beyond the gravitational shielding by approximately 20 times its radius (along the central axis of the gravitational shielding). [7] Here, this means that, in absence of the set D (bottom of the device), the gravitational shielding effect extends, beyond the 19th gravitational shielding, by approximately 20 $(\alpha/2) \approx 600 \text{mm}$.

| The electrical conductivity of air, inside the dielectric tube, is equal to the electrical conductivity of Earth’s atmosphere near the land, whose average value is $\sigma_{\text{air}} \approx 1 \times 10^{-14} \text{S/m}$ [11]. |
$f_0 = 10^{14} \text{ Hz}$ and $\Delta f = -10^{10} \text{ Hz}$ then $f = f_0 + \Delta f \approx 10^{14} \text{ Hz}$ i.e., the redshift is negligible. However, the device can be useful to generate ELF radiation by redshift. For example, if $f_0 = 1 \text{ GHz}$, $n = 18$ and $\chi = 95.15278521$, then we obtain ELF radiation with frequency $f \approx 1 \text{ Hz}$. Radiation of any frequency can be generated by gravitational blueshift. For example, if $f_0 = 10^{14} \text{ Hz}$ and $\Delta f = +10^8 \text{ Hz}$ then $f = f_0 + \Delta f \approx 10^{18} \text{ Hz}$. What means that a light beam with frequency 10^{14} Hz was converted into a gamma-ray beam with frequency 10^{18} Hz. Similarly, if $f_0 = 1 \text{ MHz}$ and $\Delta f = +9 \text{ MHz}$, then $f = f_0 + \Delta f \approx 10 \text{ MHz}$, and so on.

Now, consider the device shown in Fig. 3, where $\chi = -308.5$, $M_{gs} = 0.30536 \text{ kg}$, $r_i = 35 \text{ mm}$. According to Eq. (30), it can produce a Δf given by

$$\Delta f \approx \frac{-\chi^{19}GM_{gs}}{c^2} \approx 3.6 \times 10^{22} \text{ Hz}$$

Thus, we get

$$f = f_0 + \Delta f \approx 3.6 \times 10^{22} \text{ Hz}$$

What means that the device is able to convert any type of electromagnetic radiation (frequency f_0) into a gamma-ray beam with frequency $3.6 \times 10^{22} \text{ Hz}$. Thus, by controlling the value of χ and f_0, it is possible to generate radiation of any frequency.
Fig. 3 – Schematic diagram of the Gravitational Shift Device (Blueshift and Redshift) – The device can generate electromagnetic radiation of any frequency, since ELF radiation ($f < 10$ Hz) up to high energy gamma-rays.
References

