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We prove quark (and antiquark) confinement for a baryon-antibaryon pair and design a well-
defined, easy-to-visualize, and simplified mathematical framework for particle and astro physics
based on experimental data. From scratch, we assemble a dual 4D space-time topology and gen-
eralized coordinate system for the Schwarzschild metric. Space-time is equipped with “fractional
quantum number order parameter fields” and topological defects for the simultaneous and sponta-
neous breaking of several symmetries, which are used to construct the baryon wavefunction and its
corresponding antisymmetric tensor. The confined baryon-antibaryon pair is directly connected to
skyrmions with “massive ‘Higgs-like’ scalar amplitude-excitations” and “massless Nambu-Goldstone
pseudo-scalar phase-excitations”. Newton’s second law and Einstein’s relativity are combined to de-
fine a Lagrangian with effective potential and effective kinetic. We prove that our theory upgrades
the prediction precision and accuracy of QCD/QED and general relativity, implements 4D versions
of string theory and Witten’s M-theory, and exemplifies M.C. Escher’s duality.

I. INTRODUCTION

Quarks and antiquarks are the fundamental building
blocks of baryons and antibaryons, respectively. To date,
nature presents an impressive display of mass-energy puz-
zles in physics, including the creation, annihilation, and
confinement of baryons and antibaryons. The mystery
of quark confinement is a colossal problem in physics;
it is the phenomenon that color charged particles (such
as quarks) cannot be isolated singularly, and therefore
cannot be directly observed [1]. In this first paper of the
series, we hunt down this “Great Beast” and prove quark-
antiquark confinement for a baryon-antibaryon pair in a
4D space-time, where the dimension of time is circular
rather than linear. We attack the problem from multiple
perspectives simultaneously to establish a well-defined
gauge theory equipped with Legget’s superfluid configu-
ration of Landau’s order parameter fields [2], Laughlin’s
quasiparticles [3], a baryon wavefunction, antisymmetric
tensors, and more. From scratch, we construct a topo-
logical solution and Lagrangian that intertwines Newto-
nian [4] and Einsteinian concepts [5], improves the pre-
dictive capability of quantum chromo-dynamics (QCD)
and quantum electro-dynamics (QED) [6], reduces di-
mensional complexity of string theory and M-theory [7],
exhibits M.C. Escher’s duality [8], and is directly sup-
ported by a diverse experimental array. In short, the dual
baryon and antibaryon quantum states are encoded with
quantum number order parameters of fractional statistics
for quasiparticles with baryon wavefunction antisymme-
try. We prove quark-antiquark confinement in terms of
Laughlin excitations [3] that dynamically arise due to
our fractional quantum Hall superfluidic (FQHS) space-
time and topology inspired by the quasiparticle inter-
ferometer experiments of Goldman [9]. We prove that
the quarks and antiquarks confined to the holographic

ring “cancel out” due to the CPT-Theorem. Spontaneous
symmetry breaking (SSB) generates massless “Nambu-
Goldstone pseudo-scalar phase-excitations” [10–13] and
massive “Higgs-like scalar amplitude-excitations” [14] of
Laughlin statistics [3]. First, we provide conceptual
quark confinement proof in Section II. Second, we pro-
vide mathematical quark confinement proof in Sections
III, IV, V, and VI.

In Section II, we prepare for our quark confine-
ment proof by conceptually aligning the reader to
our 4D FQHS space-time scenario. We investigate
the two dynamical scales that arise in the double-
confinement, double-stereographic gravitational super-
lensing, and double-horizons inherent to baryons and an-
tibaryons. We prove that a baryon-antibaryon pair is
composed of three distinct quark-antiquark pairs, which
form three corresponding “thin color-electric flux tubes”
[15] of Laughlin excitations [3] and fractional statistics
[16]. We discuss the hadronization process and the mod-
ified Gribov QED/QCD vacuum, where all properties in
3D Schwarzschild space can be inferred from the analogue
of the 2D gauge field on the six-coloring kagome lattice
manifold. Additionally, we venture to the interaction be-
tween the boson propagators and gravity by introducing
“gravitational birefringence”.

In Section III, we begin mathematically constructing
the topology and framework for our quark confinement
proof in FQHS. We discuss the surface and generalized
Riemann coordinates used to encode our FQHS space-
time. We extend the definition of complex numbers and
use them to represent locations on the 1D Riemann sur-
face; we prove that the complex numbers are both scalars
and Euclidean vectors. We define axis constraints for
the vectors, which let us construct a powerful 2D gen-
eralized coordinate system on the surface equipped with
the Pythagorean identity; the locations may always be
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expressed in terms of right triangles with real and imag-
inary components.

In Section IV, we explore the three distinct topologi-
cal sub-surface zones for a baryon and antibaryon using
set and group theory. We formally define the zones us-
ing trichotomy and our generalized coordinates for 2D
and 3D space. We prove that the time-like region is a
holographic ring—a closed curve and simple contour of
points, which can be scaled to, for example, the Fermi
radius. We formally define space and time as being dual.
Additionally, we demonstrate that the time-like region
represents the U(1) and SU(2) symmetry groups, which
is isomorphic to the SO(3) orthogonal group; all 3D prop-
erties are inferred directly from the 2D holographic ring
for the SU(2) gauged Bose-Einstein condensate.

In Section V, we define the Baryon Wavefunction
(BWF) of fractional quantum number order parameters
(OP) for our quark (q) and antiquark (q̄) confinement
proof. Additionally, we discuss the amplitude-excitations
[14] and phase-excitations [10–13] for Laughlin quasipar-
ticles [3] experienced by the BWF OPs in our FQHS
space-time scenario. For this, we express the full BWF
antisymmetries and CPT-transformations.

In Section VI, we express the Lagrangian in terms of ef-
fective potential and effective kinetic for our FQHS space-
time scenario. For this, we apply both Newtonian and
Einsteinian concepts to the q and q̄ confinement proof
and thereby incorporate effective force, effective mass,
and effective acceleration.

In Section VII, we prepare a concise correspondence
to the authors of the Yuan-Mo-Wang (YMW) baryon-
antibaryon SU(3) model [17]. In doing so, we relay the
importance of the YMW model and report on a number
of similarities between it and our confinement scenario.
Additionally, we contrast the models by identifying key
distinctions and suggest that our model may upgrade the
YMW model’s state space and accuracy, and thereby ex-
tend its prediction horizon. Ultimately, we realize that
both constructions exhibit remarkable similarities, and
that it may be possible in the near future to consolidate
these ideas into a single framework.

In Section VIII, we conclude our paper with a brief
recapitulation and outlook where we suggest future re-
search trajectories.

To summarize, in this first paper of the series we in-
troduce the topologies, vacuum, generalized coordinates,
fractional statistics, quantum number OPs, BWF, gauge
symmetry breaking, and Lagrangian for the q and q̄ con-
finement proof in 4D FQHS space-time; for the scenario,
we provide a series of colorful depictions and an array of
experiments supporting this construction. In the next pa-
per(s) of this series, we will extend our confinement sce-
nario by discussing the anyons, phase locking [18], Hubius
helix (HH) [19], attractive and repulsive gravitational ef-
fects of quasiparticle signals on the Lagrangian, modified
Gullstrand–Painlevé reference frames, and Magnification
Effect.

II. ALIGNMENT TO CONFINEMENT:
CONCEPTUAL PROOF

At the Fermi scale, a baryon’s event horizon confine-
ment radius εbaryon = 2Mbaryon strongly depends on it’s
mass Mbaryon, which can vary in size in accordance to
its quark composition identified by the Standard Model.
This is known as baryon confinement (for three-quark
confinement) and is modeled as a baryon bag. Simi-
larly, an antibaryon’s event horizon confinement radius
εantibaryon = 2Mantibaryon strongly depends on it’s mass
Mantibaryon. This is known as antibaryon confinement
(for three-antiquark confinement) and is modeled as an
antibaryon bag. A baryon and its antibaryon merge to re-
flect three-pair quark-antiquark confinement. For exam-
ple in a proton-antiproton pair, an antiproton of antimass
Mantibaryon = Mantiproton = 1 GeV precisely counterbal-
ances a proton of mass Mbaryon = Mproton = 1 GeV due
to antiferromagnetic ordering and the CPT-Theorem.
On this scale we identify the general mechanism, namely
Baryon-Antibaryon Confinement (BAC), which is re-
sponsible for the dynamics. It is based on the appear-
ance of a critical radius ε2M = εbaryon = εantibaryon for
quark-antiquark confinement at the 1 Fermi scale and
the appropriate generalized dynamics—effective gravito-
strong interaction. So in gravity plus electromagnetism,
there is one interesting mechanism—radiation trapping
just on the horizon’s surface, that is a coherent particle
accumulation structure [18] of fractional statistics and
toroidal vortex [20]. The toroidal vortex, that stores in-
formation as in the holographic hypothesis [15], inter-
twines the baryon and antibaryon confinement mecha-
nisms, creating BAC. The toroidal vortex forms between
the spherical shells defined at the inner confinement ra-
dius ε2M and the outer confinement radius ε3M = 3M
(based on the effective potential); ε2M and ε3M corre-
spond to the “horizon” and “imaginary surface”, respec-
tively, in Figure 6 of Witten [15]; there are two distinct
quantum critical points imposed by an antibaryon or
baryon for the double-stereographic gravitational super-
lense with the meta-material, acoustic, double-negative
refractive index, and sub-wavelength features of [21–
24]—see Figure 1. These facts are evident from the
DIS modeling results of the hadronization process [25].
Quark-hadron duality in jet formation in DIS leads to
a two-step process of hadronization, with two scales ap-
pearing: large Q2

0 � Λ2
QCD and small Q2

0 ∼ 1GeV 2.
An alternative approach in DIS, namely “Local Parton
Hadron Duality”, also leads to the two dynamical scales:
k⊥ = Q0 ∼ ΛQCD and k⊥ = Q0 ∼ 1 GeV [25]. Both
models of the hadronization process give us the numbers
in accord with our model ε2M ∼ 0.2−0.3 fm and ε3M ∼ 1
fm. Another fresh perspective can be taken from the
“Glue drops” model [26], where the authors gave firm evi-
dence of the existence of a non-perturbative scale, smaller
than the usual 1

ΛQCD
∼ 1 fm, which is related to gluonic

degrees of freedom. The evidence for the presence of a
semi-hard scale in hadronic structure is reviewed from
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many venues. The most notable effects are: QCD sum
rules gives 0.3 fm radius of the corresponding form fac-
tor, lattice gives 0.2-0.3 fm for the correlation length,
instanton radius peaks approximately at 0.3 fm, diffrac-
tive gluon bremsstrahlung in hadronic collisions leads to
k⊥ for the gluons in a proton of about 0.7 GeV [27]. At
higher scales, chiral symmetry breaking is restored and
the vacuum does not feel apparent existence of quark and
gluon condensates, which spoil the chiral symmetry from
the start—the mechanism for the spontaneous breaking
of chiral symmetry and spontaneously emergent behavior
of chaos theory on the Lagrangian.

All together, this brings us to the concept of Baryon-
Antibaryon Duality (BAD), which is responsible for the
stereographic superlensing [23] dynamics. At rest, the
massless red, green, and blue quarks are confined to a
baryon and circulate counter-clockwise along it’s event
horizon as a left-handed HH [19] at the speed of light to
generate effective mass, such that all observable baryons
are white; the visible colored quarks are non-Abelian
color-electric-magnetic monopoles [28] which emit red,
green, and blue light-rays to render a baryon. Simi-
larly, the resting antired, antigreen, and antiblue anti-
quarks are confined to a antibaryon and circulate clock-
wise along it’s event horizon as a right-handed HH [19] to
generate effective antimass, such that all “observable” an-
tibaryons are black (antiwhite); the “visible” anticolored
antiquarks are non-Abelian anticolor-electric-magnetic
antimonopoles [28] which emit antired, antigreen, and
antiblue light-rays to render an antibaryon; the rela-
tive direction of circulation (with corresponding winding
number) distinguishes between mass (i.e. Mproton) and
antimass (i.e. Mantiproton). For BAD, the baryon and
antibaryon bags are dual, opposite, reverse, and inverse,
and are therefore modeled as a Baryon-Antibaryon Bag
(BAB). The quark and antiquark trajectories follow Wil-
son loops and form a self-consistent [10] SU(2) gauged
Bose-Einstein condensate [29]. The electro-strong du-
ality of the potentials continuously transform in FQHS
space-time in accordance with 1D, 2D, and 3D skyrmions
[29].

This rich concept of duality enables us to compute ob-
servables in time-like regions, given the physics in space-
like regions, and vice-versa. Upon considering these dual
fields, the idea of two distance scales comes up naturally.
Our 1D Riemmann surface (2D holographic information
structure) is divided into three distinct topological sub-
surfaces for quasiparticles:

1. Non-Relativistic Space Zone (NSZ) or “Micro” dis-
tance scale of superluminal signals,

2. Time Zone (TZ), and

3. Relativistic Space Zone (RSZ) or “Macro” distance
scale of luminal signals.

The Riemannian holographic ring unit circle represents
the TZ and is isometrically embedded on the surface;
it bifurcates 3D space to establish the NSZ, such that

0 < x < ε2M , and the RSZ, where ε2M < x < ∞—
recall Figure 1. The gauge field is a 3D analogue of the
TZ’s Rashba spin-orbit coupling [29]—see Figure 4. The
quarks (and leptons) are “split” into three distinct ex-
citation degrees of freedom, namely spinon, holon, and
orbitons [3, 30]; the Laughlin excitations of the FQHS
3-branes obey fractional statistics; luminal quasiparticle
signals of the RSZ “sea” execute a closed path around the
NSZ “island” of superluminal quasiparticle signals and
thus acquire statistical phase [9]—see Figure 5.

In QCD, BAC is a difficult strong coupling problem,
but a somewhat similar phenomenon in nature is much
better understood in QED. The Meissner effect is the
fundamental observation that a superconductor expels
magnetic flux. Suppose that magnetic monopoles be-
come available for study and that we insert a monopole-
antimonopole pair into a superconductor, where the two
poles are separated by a large distance x. What will hap-
pen? A monopole is inescapably a source of the magnetic
flux, but magnetic flux is expelled from a superconductor.
So the optimal solution to this problem, energetically, is
that a thin, non-superconducting tube forms between the
monopole and the antimonopole. The magnetic flux is
confined to this region, which is known as an Abrikosov-
Gorkov flux tube (or a Nielsen-Olesen flux tube in the
context of relativistic field theory). The flux tube has
a certain nonzero energy per unit length, so the energy
required to separate the monopole and antimonopole by
a distance x grows linearly in x, for large x.

As a non-Abelian gauge theory, QCD has fields rather
similar to ordinary electric and magnetic fields but obey
a nonlinear version of Maxwell’s equations. Quarks and
antiquarks are particles that carry the QCD analog of
electric charge and are confined in our QCD vacuum
just as ordinary magnetic charges would be in a super-
conductor. The color-electric-magnetic quark monopoles
and anticolor-electric-magnetic antiquark antimonopoles
may be separated by a large distance x to form non-
Abelian dipoles: red-antired, green-antigreen, and blue-
antiblue “thin color-electric flux tubes” [15]. Now from
the Aharonov–Casher (AC) effect and Aharonov–Bohm
(AB) effect duality [31–33], it is evident that this analogy
immediately leads to the idea that the QCD vacuum is
to a superconductor, just as electricity is to magnetism,
and just as the AC effect is to the AB effect—see Figure
3.

In [34], the author considered a relativistic string
model, where a massless quark moves at the speed-
of-light in a circular orbit. One can see clearly the
x = x0 = ε2M coordinate represents an event horizon or
“impenetrable barrier” and the quark moves in the “half
harmonic oscillator” potential. When combined with the
phenomenological aspects of [35, 36], a strong QCD/QED
string model for the qq̄ pairs with the associated quasi-
particles [3] emerges in our scenario. So for the qq̄ pairs
we identify both open-ended (“linear”) fermionic strings
and the closed (“non-linear”/circular) bosonic strings vi-
brating in our conjugate and dual space-time. All of this
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FIG. 1. The Riemannian holographic ring unit circle of two counter-propagating edge channels defines the TZ for quark-
antiquark confinement and is isometrically embedded on the 1D Riemann surface. The toroidal vortex between two dynamical
scales for a double-stereographic gravitational superlense: the spherical shells located at critical radius ε2M = 2M and ε3M =
3M .

is supported by Glue drops [26], where the energy of a
QCD string is concentrated in a thin color-electric flux
tube [15] of radius ε2M = 0.3 fm. All such particles and
quasiparticles on the Riemann surface which generate ef-
fective mass (and antimass) are projected along the “z-
axis” to effective 3D space (recall Figure 4). Here, events
are represented on the Lagrangian using generalized co-
ordinates in Schwarzschild space-time on the Riemann
surface.

Viewed in certain classes of inertial frames, a superlu-
minal signal travels backwards in time. In QED, Feyn-
man diagrams involve a virtual e+e- pair that influences
the photon propagator. Here, positrons are replaced with
electron-holes. This gives a photon an effective mass
(or antimass) on the order of the Compton wavelength
for the electron (or electron-hole); leptons are split into
quasiparticles [3, 30]. All of this is generalized to QCD,
where a virtual qq̄ pair influences the gauge boson prop-
agator in FQHS space-time; the propagator is a func-
tion which returns a probability amplitude of 1 for the
quarks and baryon confined to the TZ. In both QED
and QCD, if the space-time curvature has a comparable
scale, then an effective boson-gravity interaction is in-
duced; the Higgs-like amplitude excitations [14] for the
baryon-antibaryon pair impose effective mass for baryons
and quarks, and effective antimass for antibaryons and
antiquarks. This depends explicitly on the curvature, in
violation of the Strong Equivalence Principle. The boson
velocity is changed and light-ray no longer follows the
shortest possible path—it bifurcates to both the NSZ
and RSZ distance scales. Moreover, if the space-time

is anisotropic, this change can depend on the boson’s
polarization as well as direction. This is the quantum
phenomena of “gravitational birefringence”. The effective
light-cones for boson propagation in gravitational fields
no longer coincide with the geometrical light-cones fixed
by the local Lorentz invariance of space-time, but de-
pend explicitly on the local curvature. This formulation
agrees with the von Karman flow and symmetry breaking
of [37], the kaleidoscope of exotic quantum phases in the
2D frustrated model of [38], and the deviant Fermi liquid
of [39], where the TZ serves a Bose metal as in [40]. All
this works in 4D space-time.

The qq̄ pairs for a baryon-antibaryon pair are “super-
bound” to the vacuum [41] as coupled oscillators [42]
(see Figure 2) and form red-antired, green-antigreen, and
blue-antiblue Nambu-Goldstone pions, which are Nambu-
Goldstone bosons; the SSB of the three distinct pions
generates colored amplitude-excitations [14] and phase-
excitations [10–13]. The qq̄ pairs of the three distinct thin
color-electric flux tubes are confined to the TZ, which is
a Riemannian holographic ring unit circle on a 1D Rie-
mann surface equipped with a six-coloring (three coloring
plus three anticoloring) kagome lattice manifold general-
ization of [43] with antiferromagnetic ordering [3]. The
ring exhibits the Rashba and fractional quantum Hall
effects [44], along with spin-Hall current [45] and chi-
ral magnetic moments [46]. The qq̄ pairs are uniformly
arranged along the kagome lattice with the triangular
chirality of [47] and the self-assembling observables of
[18, 48] (recall Figure 3). The quasiparticles of the SU(2)
gauged Bose-Einstein condensate are direct 3D analogs of
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the spontaneously emerging QED and QCD. The kagome
lattice hexagonal structure is self-similar to, for exam-
ple, graphene, which explains the “plasmaron” observa-
tions in quasi-freestanding doped graphene [49] and the
“soundaron” observations of [50]. The quarks can also be
thought as moving along the “caustics” inside the toroidal
vortex, where the quark’s trajectories are trapped be-
tween the dual scale dynamics—they are “gliding” along
the surface and are reflected back to the center. The
dual confinement boundaries located at ε2M and ε3M act
as reflecting and focusing stereographic superlenses. So
baryons and antibaryons become seashells closed on ε3M
[51].

When we come to the vacuum estate, the richness
of BAD is shining brightly: Gribov’s QED/QCD vac-
uum [41] resembles a complicated structure of Unruh-
Boulware-Hartle-Hawking ’s black hole vacuum and is fed
with solid-state physics along with notions of forbid-
den zones, Fermi surfaces, particles and holes to en-
code the BAB on the Riemann surface. But there are
some new diagrams that arise with the new zones, and
novel types of excitations—enabling us to upgrade Gri-
bov’s model. This new vacuum differs drastically from
Dirac’s vacuum and contains a total of 18 zones for the
six-coloring (kagome lattice) manifold on the Riemann
surface—Figure 4; these zones are populated with quasi-
particles [3, 30] spontaneously generated by the qq̄ pairs
confined to the TZ with the spin-orbit coupling of [45, 53–
55]. The TZ acquires a geometric phase [31, 32, 56],
so the quasiparticles confined to the TZ are dual to
those signals propagated across the NSZ and RSZ zones.
Laughlin’s fractional quantization [16] is axiomatic in this
scenario. At proper temperature and pressure, the vac-
uum is consistent with Chernodub [57]. Clearly, in treat-
ing the BAD and superlensing dynamics, it is very con-
venient to separate the RSZ and NSZ degrees of freedom
(Born–Oppenheimer approximation).

The NSZ and RSZ both represent superconductive,
FQHS 3-branes interconnected by the TZ, which serves
as a common (2D) surface boundary at ε2M . The baryon
and antibaryon are spinning objects confined to the TZ so
they generate whirlpools on both 3-brane distance scales
in accordance with seashells closed on ε3M [51], thereby
exhibiting the Magnus effect [58] and generating a vortex-
antivortex dance [52]; these whirlpools are described on
the Riemann surface using spirals (i.e. weighted Fi-
bonacci sequence and/or golden spiral). The TZ is a
topological Mott insulator for [30, 53, 59, 60], a Fermi
surface as in [61], a Goldman-Laughlin quasiparticle in-
terferometer of two counter-propagating edge channels
as in [9], a Gedanken interferometer as in [62], a quan-
tum critical point as in [3, 63], and a non-perturbative,
self-consistent, SU(2) gauged Bose-Einstein condensate
as in [10] that satisfies Novikov’s self-consistency princi-
ple as in [64]; a picture emerges of the vacuum as a con-
ductor instead of “Dirac’s insulator”, with a new mass
scale that reflects the position of the “Fermi surface”
[41]. The six-coloring antiferromagnetic alignment of the

qq̄ pairs spontaneously generate the physical behavior of
the strong interaction as in [3] and thereby triggers par-
ity doubling, CPT violations, and different polarization
rotation velocities on both the NSZ and RSZ distance
scales simultaneously. Here, we identify the Dirac quan-
tization and spin-charge magnetic monopole relations of
[65], Fermi liquid deviations of [63], non-linear optics,
analogue gravity, and photon emissions analogous to the
Hawking radiation as in [66], and Andreev reflections of
[67, 68]; the TZ’s current continuously undergoes charge-
transformation between the NSZ’s and RSZ’s supercur-
rent. The qq̄ resonances form the exotic meson and broad
locking states as in [69]. The qq̄ pairs and their waves are
phase locked, spontaneously aligning to form dynamical
1D coherent accumulation structures with time-periodic
flows [18] and a von Kármán vortex street [20] with im-
pact parameters.

III. THE SPACE-TIME SURFACE AND
GENERALIZED RIEMANN COORDINATES

Let X be the 1D Riemann surface. We define the
complex number x = xR + xI as a position-point and
position-vector on X; x ∈ X is both a complex scalar
and Euclidean vector with amplitude |x| and phase 〈x〉,
which are analogous to magnitude and direction in con-
ventional notation. The orthogonal components of x,
namely xR ∈ R1 and xI ∈ I1 as axis-constrained real
and imaginary Euclidean vectors, respectively (where in
this case I denotes imaginary rather than irrational); the
simple trichotomy axis-constraints for the R-axis are

xR > 0⇔ 〈xR〉 = 2π = 0, (1)
xR = 0⇔ 〈xR〉 = @, (2)
xR < 0⇔ 〈xR〉 = π, (3)

and for the I-axis are

xI > 0⇔ 〈xI〉 =
π

2
, (4)

xI = 0⇔ 〈xI〉 = @, (5)

xI < 0⇔ 〈xI〉 =
3π

2
, (6)

such that

|xR| = |x| cos(〈x〉), (7)
|xI| = |x| sin(〈x〉), (8)

with Pythagorean form

|x|2 = x2
R + x2

I , ∀x ∈ X. (9)

Thus, we’ve defined the 2D generalized (Riemann) coor-
dinate system of X as

2DX : (x) = (xR + xI) = (xR, xI) = (|x|, 〈x〉), ∀x ∈ X,
(10)

5



The Hadronic Journal • Volume 35 • Number 5 • October 2012

FIG. 2. Schematic of the multiple synchronized quark and antiquark solid-state oscillators (colored and anticolored circles)
coupled to generate frequencies for the SU(2) gauged Bose-Einstein condensate with skyrmions [29] in the loop configuration
based on the work of Afshari [42]; the coupling circuits (gray triangles) shift the phase of the oscillators.

FIG. 3. The loop-induced zero-energy dynamics are described as “gluon dynamics”. The 3 distinct qq̄ pairs for the baryon-
antibaryon pair are “superbound” as coupled oscillators [42] to the Fermi surface in the upgraded Gribov vacuum generalized
from [41] and are confined to the kagome lattice antiferromagnet on the six-coloring manifold. The qq̄ pairs spontaneously
generate phase-excitations (massless and pseudo-scalar) [10–13] and “Higgs-like” amplitude-excitations (massive and scalar) [14]
Laughlin excitations [3]. The toroidal vortex along the Riemannian holographic ring unit circle for a baryon and/or antibaryon
is defined as a toroidal vortex between the spherical shells located at critical radius ε2M = 2M and ε3M = 3M ; double
stereographic superlenses [23] for two dynamical scales [27]. An affinity exists between BAD and M.C. Escher’s duality, where
the combined baryon event horizon and antibaryon event horizon at ε2M exhibit the double horizon phenomena [8]. The qq̄
pairs confined to the TZ form thin color-electric flux tubes [15] in the QCD vacuum of the NSZ and exhibit the AC effect,
while thin magnetic flux tubes in the RSZ superconductive region exhibit antiferromagnetic ordering and the AB effect; the
QCD vacuum is to a superconductor, just as electricity is to magnetism, and just as the AC effect is to the AB effect. This
model exhibits vortex-antivortex dancing [52] and confirms the spontaneous appearance of a stable 3D skyrmion in the SU(2)
gauged Bose-Einstein condensate of [29] confined to the Riemannian holographic ring unit circle on our 1D Riemann surface.

with respect to the unique reference origin-point O ∈ X,
such that (O) = (0 + 0i) = (0, 0i) = (0, 0π); (x) =
(xR + xI) are 1D Riemann coordinates, (xR, xI) are 2D
Cartesian coordinates, and (|x|, 〈x〉) are Polar coordi-
nates; a Complex-Cartesian-Polar synchronized and gen-
eralized coordinate system. The real and imaginary axis-
constraints ensure that the generalized coordinates may
always be expressed as a right-triangle with Pythagorean
properties.

So how to we extend our 2D generalized coordinates

of Definition (10) to 3D Schwarzschild space? Well, for
a baryon or antibaryon of scale M (located precisely at
the origin position-point O ∈ X) we define the 3D gen-
eralized (Schwarzschild) coordinate system of X as

3DX : (ux, |x|, 〈x〉) = (
M

|x|
, |x|, 〈x〉), ∀x ∈ X. (11)
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FIG. 4. The gauge-invariant TZ delineates the NSZ and RSZ: a 2-sphere which is dual to both 3-branes, where the SU(2)
Bose–Einstein condensate and gauge field is a 3D analogue of the Rashba spin-orbit coupling of the TZ, supporting the 1D,
2D, and 3D Skyrmion structures [29] (all). The baryon-antibaryon pair comprises the three distinct qq̄ pairs and is modeled as
a BAB in the new Gribov vacuum with 18 quasiparticle signal zones (bottom).

IV. ZONES

We define T as the TZ of X. So T is a topolog-
ical representation of a Riemannian unit circle, where
the critical radius of T is scaled and normalized to pre-
cisely ε2M = 2M = π

2 εscalar. We prove BAC on T .
εscalar is the time unit scale-normalizing constant and
ε2M is the inner confinement radius of T . Next, we
define the circumference and wavelength of T , namely
Tλ = Tcircumference = Twavelength = 2πεscalar, as being
equivalent to the (normalized)Mikhail Grimov’s area fill-
ing conjecture [70]: Tarea = Tλ; T ⊂ X is a closed curve
and simple contour of surface position-points.

We use zone trichotomy to simultaneously define the
TZ and SZ regions of X: we define X− and X+ as the
NSZ and RSZ of X, respectively. The surface T delin-
eates the topological sub-surfaces X− and X+ on X; T
is a Mott insulator [30] and Fermi surface [41] which de-
lineates two dual superconductors [30, 53, 59, 60, 67, 68].
Thus, ∀x ∈ X we know that precisely one of the following

conditions must be satisfied:

|x| < ε2M ⇔ x ∈ X−, (12)
|x| = ε2M ⇔ x ∈ T, (13)
|x| > ε2M ⇔ x ∈ X+, (14)

where clearly X− ∩ T = T ∩ X+ = X− ∩ X+ = ∅ and
X− ∪ T ∪X+ = X. Hence, T is the multiplicative group
of all non-zero complex 1-vectors, such that

T = {t ∈ X : |t| = ε2M}, (15)

where we define all T position-points as time-points and

X− = {s ∈ X : |s| < ε2M}, (16)
X+ = {s ∈ X : |s| > ε2M}, (17)

where we define all S = X−∪X+ position-points as space-
points. So clearly,

ε22M = |t|2 = |tR|2 + |tI|2, ∀t ∈ T, (18)

|x|2 = |xR|2 + |xI|2, ∀x ∈ X. (19)
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FIG. 5. The upgraded Gribov QCD/QED vacuum with 18 zones for quasiparticle signals pertaining to a BAB on the 1D
Riemann surface. The qq̄ pairs are confined to the TZ, which is dual to the NSZ and the RSZ. The six-coloring spinon,
holon, and orbiton excitations are spontaneously generated and confined to the TZ, which acquires a geometric phase; the TZ
excitations are dual to those of the NSZ and RSZ 3-branes.

So T is isometrically embedded in X with the one-to-one
holographic mappings f : T ↪→ X and f : T → X− ∪X+

with dual simultaneous bijections

fTime : X− ←↩ T ↪→ X+, (20)
fSpace : X− ↪→ T ←↩ X+, (21)

for our dual space-time; we’ve proven that T is dual to
X− and T is also dual to X+. Interestingly, this formula-
tion may provide a simplification to the Riemann-Hilbert
problem as expressed in, for example, [71]. Now because
T is a type of Riemannian circle and holographic ring,
we know it is a 2-sphere for the SU(2) gauged Bose-
Einstein condensate [29]. Thus, for the position-point
and position-vector t ∈ T we apply Definition (10) to ex-
press the 2-sphere generalized and synchronized 2D Rie-
mann coordinates

2DT : (t) = (tR+tI) = (tR, tI) = (|t|, 〈t〉) = (ε, 〈t〉), ∀t ∈ T,
(22)

and in 3D Schwarzschild coordinates

3DT : (ut, |t|, 〈t〉) = (
M

|t|
, |t|, 〈t〉), ∀t ∈ T. (23)

Now because ∀t ∈ T we have the uniform radius |t| =
ε2M , we can alternatively drop the |t| amplitude co-
ordinate and just use the 〈t〉 phase coordinate to di-
rectly specify position-points on the 1D non-linear sur-
face. Therefore, T is

• the 1D circular Abelian group U(1);

• the 2D spherical non-Abelian group SU(2); and

• isomorphic to the 3D orthogonal non-Abelian group
SO(3),

which directly supports 1D, 2D, and 3D skyrmions [29].
So parity doubling [27] is synonymous of the term degen-
eracy, and Escher gave an example of how one can estab-
lish 2D - 3D correspondence [8]. We see here again the
road to the t’Hooft and Maldacena holographic model for
high-energy physics—all the 3D properties are inferred
directly from the 2D (Riemannian holographic ring) do-
main [72].

We define T as a “fermiwire,” which is nothing more
than a “nanowire” [55, 73] with Rashba spin-orbit cou-
pling [30, 32, 44] on the Fermi scale. The spin geo-
metric phase for electrons in [32] is applied directly to
the spin Hall effect [44], effective spin-dependent flux,
and Andreev reflections [67, 68] of the quarks and an-
tiquarks confined to the universal curve T (the holo-
graphic ring with uniform radius |t| = ε2M ) embedded
in X; the duality derivation between the AAS effect
and the AC effect of [32] is written for T as Φmag

Φ0/2
⇐⇒√

1 +
(

2mt〈t〉|t|
~2

)2

, ∀t ∈ T, where Φmag is the magnetic

flux, Φ0 = h/e is the one flux quantum period, 〈t〉 = α is
the amplitude and strength of the Rashba spin-orbit in-
teraction, andmt is the effective mass; the left term is the

8
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FIG. 6. The TZ is dual to both distance scales and imposes the double-confinement and double-lensing of M.C. Escher’s duality
[8]; it is a stereographic superlense [23] between the two 3-brane distance scales.

FIG. 7. Inopin’s interpretation of M.C. Escher’s double-horizons of [8] is directly connected to the q → q̄ transitions, past-
present switching, time-reversal operation, and CPT-Theorem on the Riemann surface: time is circular and non-linear, so
the past is the future. The quarks switch back and forth between the conjugate space-time regions with the appearance and
disappearance of 3 quantum critical points in the QCD phase diagram.

AAS effect flux and the right term is the time-reversal AC
effect oscillation unit with effective spin-dependent flux
for the conductance modulation and voltage dependence
observations of the AAS amplitude at zero magnetic field
[32]. This formulation is crucial to our six-coloring quark-

antiquark configuration for the BAC scenario because the
magneto-resistance oscillations of [32, 74] along T are at-
tributed to the AAS effect.
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V. THE WAVEFUNCTION DEFINITION OF
FRACTIONAL QUANTUM NUMBER ORDER

PARAMETERS

Landau introduced the concept of OPs [2], which we
define as complex scalar fields [10] on X. Here, we con-
struct the BWF using OPs and Laughlin statistics [3] in
our non-Abelian SU(2) gauge theory. In the theory of
superfluidity the OP measures the existence of Bose con-
densed particles (Cooper pairs) and is given by the prob-
ability amplitude of such particles. The inter-particle
forces between quarks and antiquarks, and between 4He
and between 3He atoms, are rotationally invariant in spin
and orbital space and, of course, conserve quantum num-
ber [27]. The latter symmetry gives rise to gauge sym-
metry, which is broken in any superfluid. First, for the
theory of isotropic superfluids like a BCS superconductor
or superfluid 4He, we define the global OP ψ = ψR + ψI
as a complex number (which inherits the notation similar
to x as defined in Section III without loss of generality);
ψ is both a complex scalar and Euclidean vector with
the amplitude |ψ| [14] and phase 〈ψ〉 components [10].
Then for local gauge SSB, we define the OP ψ[x] as the
complex scalar field

ψ[x] = ψ[x]R + ψ[x]I, ∀x ∈ X, (24)

where |ψ[x]| and 〈ψ[x]〉 are the “gauge” amplitude and
phase components local to x ∈ X, respectively, in accor-
dance to Englert [10]. Furthermore, we define ∆|ψ[x]|
and ∆〈ψ[x]〉 as the change of the OP’s amplitude and
phase due to a “massive Higgs-like amplitude-excitation”
and “massless Nambu-Goldstone phase-excitation” com-
ponents, respectively—see Figures 8 and 9. Since the
Mott insulator and stereographic superlense T is dual to
both X− and X+, we express Equation (24) specifically
for time-points as the parametric function

ψ(t) = ψ(t)R + ψ(t)I, ∀t ∈ T, (25)

where the SU(2) gauge-invariant T acquires a Berry–
Aharonov–Anandan geometric phase as in [56]; T is an
ordered medium equipped with an OP space for topo-
logical defects. The classical energy density distribution
along T is a function of the OP ψ(t); within the ordered
(superfluid) phase, Nambu-Goldstone and Higgs modes
arise from the 〈ψ(t)〉 and |ψ(t)|, respectively, where the
energy density transforms into a function for T with a
minimum at |ψ(t)| = 0 [14]. So |ψ(t)| is excited with
a periodic modulation of the spin-orbit coupling, which
amounts to a “shaking” of the energy density (effective)
potential for topological deformations along T in ac-
cordance with [14]. Furthermore, because the baryon-
antibaryon pair is confined to T on the kagome lattice
of antiferromagnetic ordering [43], we define the BWF
for the six-coloring position-points {r, g, b} subsetT and
{r̄, ḡ, b̄} ⊂ T of three colored quarks and three anticol-
ored antiquarks in the vacuum, respectively (recall Fig-
ures 3 and 4).

Above the critical temperature the system is invariant
under an arbitrary change of the phase 〈ψ[x]〉 → 〈ψ[x]〉′,
i.e. under a gauge transformation. Below the critical
temperature a particular value of 〈ψ〉 is spontaneously
preferred. In anisotropic superfluids, additional symme-
tries can be spontaneously broken, corresponding to mul-
tiple OP components of the BWF. In 3He—the best stud-
ied example with multiple OP components—the pairs are
in a spin-triplet state, meaning that rotational symmetry
in spin space is broken, just as in a magnet. At the same
time, the anisotropy of the Cooper-pair wavefunction in
orbital space calls for a spontaneous breakdown of orbital
rotation symmetry, as in liquid crystals [27]. Including
the gauge symmetry, three symmetries are therefore bro-
ken in superfluid 3He. The theoretical discovery that
several simultaneously broken symmetries can appear in
condensed matter was made by Antony Leggett, and rep-
resented a breakthrough in the theory of anisotropic su-
perfluids, 3He [2]. This leads to superfluid phases whose
properties cannot be understood by simply adding the
properties of systems in which each symmetry is broken
individually. Such phases may have long range order in
combined, rather than individual degrees of freedom. So
to construct a strong BWF constraint for BAC to T , we
“Cooper pair” the OP set of strongly conserved quantum
numbers

ΦOP = {ψC , ψI , ψJ}, (26)

which is listed in Table I; the spin-orbit coupling of [44,
45, 65] applies directly to T , where ψJ(t) is identical to
the “BSO-vector” of [73], such that

ψJ(t) = ψS(t) + ψL(t), ∀t ∈ T. (27)

The qq̄ pairs confined to T on the six-coloring kagome lat-
tice manifold are located at position-points r, g, b, r̄, ḡ, c̄ ∈
T ; they adhere to the uniformly-arranged position-point
constraints

〈r〉 = 〈r̄〉 ± π, 〈g〉 = 〈ḡ〉 ± π, and 〈b〉 = 〈b̄〉 ± π, (28)

with uniform amplitudes |r| = |g| = |b| = |r̄| = |ḡ| =
|b̄| = ε2M , and antiferromagnetic ordering

〈ψJ(r)〉 = 〈ψJ(r̄)〉 ± π, (29)
〈ψJ(g)〉 = 〈ψJ(ḡ)〉 ± π, and (30)

〈ψJ(b)〉 = 〈ψJ(b̄)〉 ± π, (31)

(recall Figure 3). A little flight of imagination lead us to
this new approach, where the OPs ∀t ∈ T are “Cooper
paired” to form a Leggett superfluid B phase of [2] with
azimuthal “alpha” phase angle 〈t〉; the OPs ∀ψ ∈ ΦOP
rotate freely in 2D and 3D space, while the superfluid B
phase angle 〈t〉 ∈ {〈r〉, 〈g〉, 〈b〉, 〈r̄〉, 〈ḡ〉, 〈b̄〉} between them
remains constant. Such phases form correlated helices
along T , serving as constraints for the BWF—see Figure
10.

Next, we construct our BWF for the BAB states. For
a baryon and antibaryon centered on the origin-point
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FIG. 8. A complex scalar field ψ(t) experiences a massive “Higgs-like” amplitude-excitation [14] (right), which is characteristic
of the Nambu-Goldstone scalar boson SSB order parameter fluctuations discussed by [10]; a classical wave imposes volume
effects and stretches the vacuum field.

FIG. 9. A complex scalar field ψ(t) experiences a phase-excitation (right), which is characteristic of the Nambu-Goldstone
pseudo-scalar SSB order parameter fluctuations discussed by [10]; a classical wave imposes rotational effects on the vacuum
field in accordance with vacuum degeneracy.

O ∈ X and confined to T we define the full baryon and
antibaryon states as

Ψtotal(r, g, b) = Ψ(r)×Ψ(g)×Ψ(b) and (32)

Ψtotal(r̄, ḡ, b̄) = Ψ(r̄)×Ψ(ḡ)×Ψ(b̄), (33)

respectively, for the BAC and BAD; the red, green, and
blue quark wavefunctions respectively located at time-
points r, g, b ∈ T on the three-coloring triangular sub-
lattice are

Ψ(r) = ψC(r)× ψJ(r)× ψI(r)× r, Ψ(r)
def
= 〈r|Ψ〉,

(34)

Ψ(g) = ψC(g)× ψJ(g)× ψI(g)× g, Ψ(g)
def
= 〈g|Ψ〉,

(35)

Ψ(b) = ψC(b)× ψJ(b)× ψI(b)× b, Ψ(b)
def
= 〈b|Ψ〉,

(36)

and the antired, antigreen, and antiblue antiquark wave-
functions respectively located at time-points r̄, ḡ, b̄ ∈ T

on the three-anticoloring triangular sub-lattice are

Ψ(r̄) = ψC(r̄)× ψJ(r̄)× ψI(r̄)× r̄, Ψ(r̄)
def
= 〈r̄|Ψ〉,

(37)

Ψ(ḡ) = ψC(ḡ)× ψJ(ḡ)× ψI(ḡ)× ḡ, Ψ(ḡ)
def
= 〈ḡ|Ψ〉,

(38)

Ψ(b̄) = ψC(b̄)× ψJ(b̄)× ψI(b̄)× b̄, Ψ(b̄)
def
= 〈b̄|Ψ〉;

(39)

the BWF for the three distinct qq̄ pairs that are confined
to T along the six-coloring kagome lattice manifold (recall
Figure 3). So the antisymmetric BWF is described with
the six-coloring components

Ψ(r, r̄) = −Ψ(r̄, r), (40)
Ψ(g, ḡ) = −Ψ(ḡ, g), and (41)

Ψ(b, b̄) = −Ψ(b̄, b), (42)

for the confined quark and antiquark (two-particle) cases.
So for Definition (32) and the related six-coloring Defi-

nitions (31–37), we define the full BWF antisymmetriza-
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TABLE I. The quantum number order parameters for the BWF states on the 1D Riemann surface X. Here, ψJ = ψS + ψL

and ψJ(t) = ψS(t) + ψL(t) for the spin-orbit coupling of the holographic confinement ring T ⊂ X.

Order Parameter Symbol Global Local
Color Charge C ψC = ψCR + ψCI ψC [x] = ψC [x]R + ψC [x]I

Isospin I ψI = ψIR + ψII ψI [x] = ψI [x]R + ψI [x]I
Orbital Angular Momentum L ψL = ψLR + ψLI ψL[x] = ψL[x]R + ψL[x]I
Spin Angular Momentum S ψS = ψSR + ψSI ψS [x] = ψS [x]R + ψS [x]I
Total Angular Momentum J ψJ = ψJR + ψJI ψJ [x] = ψJ [x]R + ψJ [x]I

FIG. 10. Leggett’s [2] six distinct superfluid B phase angles for the three qq̄ pairs confined to T along the six-coloring kagome
lattice of antiferromagnetic ordering [3, 43]. The superfluid B phase angles 〈r〉, 〈g〉, 〈b〉, 〈r̄〉, 〈ḡ〉, 〈b̄〉 remain constant and correlate
the OPs as they rotate freely in 2D and 3D space; this long range order applies ∀t ∈ T , ∀ψ ∈ ΦOP , to form correlated helices
along T ; this concept serves as a strong BWF constraint and applies to all OPs for a given time-point. In this diagram, only
ψJ(t) and ψI(t) are shown, but ψC(t) is also correlated with 〈t〉.

tion via the covariant antisymmetric metric tensor: the
2D antisymmetric BWF matrix(

0 Ψtotal(r, g, b)

Ψtotal(r̄, ḡ, b̄) 0

)
(43)

and the expanded 3D antisymmetric BWF matrix 0 Ψ(r) Ψ(g)

Ψ(r̄) 0 Ψ(b)

Ψ(ḡ) Ψ(b̄) 0

 (44)

for T . So given complex tangent vectors µ and ν we
define

gx(µ, ν) = −gx(ν, µ) ∈ C, ∀x ∈ X; (45)

the tensor describes the X curvature (“vector phase”)
〈gx(µ, ν)〉 and the field strength (“vector amplitude”)
|gx(µ, ν)| at a position-point x ∈ X. The Levi-Civita
symbol for the color singlet function is

ζrgb = ζrgb =


+1 if (r, g, b) is (1, 2, 3), (2, 3, 1), or (3, 1, 2)

0 if r = g or g = b or b = r

−1 if (r, g, b) is (3, 2, 1), (2, 1, 3), or (1, 3, 2)

(46)

The CPT-Theorem is a fundamental property of T .
Hence, for a baryon or antibaryon of scale M we have

12
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the OP charge transformation(s), ∀ψ ∈ ΦOP ,

C :



ψ(t) 7→ −ψ(t),(
ψ(t)R

ψ(t)I

)
7→

(
−ψ(t)R

−ψ(t)I

)
,(

|ψ(t)|
〈ψ(t)〉

)
7→

(
|ψ(t)|

〈ψ(t)〉 ± π

)
,

(47)

the parity transformation(s) (in generalized 2D Riemann
coordinates for 3D Schwarzschild space) is the flip in the
sign of the one coordinate

P :



tRtI
M
|t|

 7→

−tR−tI
−M|t|

 ,

 |t|〈t〉
M
|t|

 7→

 |t|
〈t〉 ± π
−M|t|

 ,

(48)

and time reversal transformation(s)

T :



t 7→ −t,(
tR

tI

)
7→

(
−tR
−tI

)
,(

|t|
〈t〉

)
7→

(
|t|

〈t〉 ± π

)
,

(49)

which comprise a CPT-transformation, ∀t ∈ T . We see
that for Definitions (47), (48), and (49) there are mul-
tiple equivalent transformations for each case because
the generalized Riemann coordinates of Definition (10)
and the OP Definition (24) use synchronized Complex-
Cartesian-Polar values (where the magnitude and direc-
tion of the Polar components are replaced with amplitude
and phase, respectively).

VI. THE LAGRANGIAN: EFFECTIVE
POTENTIAL AND EFFECTIVE KINETIC

Here, we express the gauged SSB in our FQHS space-
time scenario on X, which is applicable to both 2D and
3D space; the Lagrangian is defined as

L[x] = EK [x]− EP [x], ∀x ∈ X, (50)

using our generalized coordinates, where EK [x] and
EP [x] are the effective kinetic and effective potential, re-
spectively, for a position-point x. From [75] the gauge
boson’s EP is defined as

EP [x] =

√
1− 2ux
|x|

, ∀x ∈ X. (51)

The EP depends on the Schwarzschild geometry but not
on the choice of orbit. Only one EP is required to an-
alyze the motion of all radiation (including radio waves,

radar pulses, gamma rays, etc.). It is important to stress
EP differences and similarities between a massive parti-
cle and its massless limit: radiation-rays. Next, the EK
is defined as

EK [x] =
1

2
mxv

2
x =

1

2

Fx
ax
v2
x, ∀x ∈ X, (52)

where Fx is the effective force, where mx is the effective
mass, ax is the effective acceleration, and vx is the effec-
tive velocity of the particle at x in the FQHS space-time.
Einstein’s Fx, the EP per unit of particle effective mass
mx, is defined as

Fx = mxax =
EP [x]

mx
=

√√√√(1− 2ux)

[
1 +

( J
mx

)2

|x|2

]
, ∀x ∈ X,

(53)
where the ax along coordinate phase 〈x〉 is

ax =
1

~2

∑
mx

∂2ε(kx)

∂k〈x〉∂kmx

exEmx
, ∀x ∈ X, (54)

where kx is the wave vector, ε(kx) is the dispersion re-
lation, and ex is the point charge in an external electric
field E.

VII. A BRIEF CORRESPONDENCE TO YUAN,
MO, AND WANG

So now that we’ve presented our model, we realize
that it inherits exceptional components from the YMW
baryon-antibaryon SU(3) model [17]; in particular, it
is evident that their ideas and applied methodology
strongly support our BAC proof. Here, we compare and
contrast our model with the YMW model and provide
a brief correspondence aimed at unifying the conceptual
and mathematical components of both schemes. We’ve
identified the YMW model as a well-defined framework
that provides crucial insight into the nature of (theo-
retical and experimental) particle physics. Moreover,
we’ve found that the construction of our BAC proof has
inevitably led us to assemble a theory and framework
that effectively replicates core expressions of the YMW
paradigm, bringing us along similar paths of exploration.

To summarize, the YMW model is a nonet scheme
which predicts many new baryon-antibaryon bound
states and their possible productions in quarkonium de-
cays and B decays [17]. It is designed to classify the
increased number of experimentally observed enhance-
ments near the baryon-antibaryon threshold. It is largely
based on the Fermi-Yang-Sakata (FYS) model [76, 77],
in which mesons were interpreted as baryon-antibaryon
bound states [17]. The discovery of the increased num-
ber of baryon-antibaryon enhancements near thresholds
reminds the YMW authors of the era prior to the devel-
opment of the SU(3) quark model over half a century ago,
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when the so-called elementary particles emerged one-by-
one [17]. So YMW return to the FYS model and extend
various aspects of it.

First, we identify a few key similarities between our
model and the YMW model [17]. In short, both schemes:

• Share the core hexagon structure equipped with a
baryon-antibaryon pair.

• Intertwine a hexagon and circle(s) to encode certain
fundamental aspects of the baryon-antibaryon state
space.

• Predict many new baryon-antibaryon bound states.

• Accommodate the enhancements near the baryon-
antibaryon mass thresholds.

• Predict the increase and decrease of masses for the
dual three-quark system (the baryon and the an-
tibaryon) with respect the baryon-antibaryon mass
threshold.

• Organize quark-antiquark pairs into flavorless
mesons.

• Account for pseudo-scalar meson states.

• Support the possible charmonium and B decay
modes as listed by YMW.

Second, we identify a few key dissimilarities between
our model and the YMWmodel [17]. In doing so, we clar-
ify that our model is not only consistent with the YMW
model, but upgrades many of its components by simpli-
fying the nonet representation from SU(3) to SU(2) and
extending its state space, accuracy, and predictive capa-
bility. In short, the schemes differ in that:

• The hexagon structure of the YMWmodel does not
incorporate the six-coloring kagome lattice antifer-
romagnet, whereas our model does; but the YMW
model can be equipped with this powerful lattice
structure to fundamentally enhance its representa-
tional capability.

• The YMW model does not model the quarks as
coupled oscillators which generate effective mass,
whereas our model does; but the YMW model can
be equipped with quark coupled oscillators to at-
tribute its mass increases and decreases to the ef-
fective mass generated by the interconnected oscil-
lators.

• The YMWmodel employs classic quantum numbers
(for total angular momentum, isospin, strangeness,
and charge) to encode the system state, whereas
our model employs quantum number OPs (for to-
tal angular momentum, isospin, and color charge)
to encode the system state with additional preci-
sion; but the YMW model can be equipped with
quantum number OPs of fractional statistics to

construct a well-defined (baryon and antibaryon)
wavefunction in state space, where the OPs are cor-
related with superfluid B phases [2].

• The YMW model only accounts for pseudo-scalar
mesons, whereas our model accounts for pseudo-
scalar and scalar mesons, while directly associating
these components to massless Nambu-Goldstone
phase-excitations [11–13] and massive Higgs-like
amplitude-excitations [14], respectively; but the
YMW model can be equipped with scalar mesons,
phase-excitations, and amplitude-excitations that
correspond to a “Goldstone Family” of gauge bosons
for SSB.

• The YMW model does not define a Lagrangian
that is consistent with Newtonian and Einsteinian
paradigms in 4D space-time, whereas ours does;
but the YMW model can be simplified and formu-
lated as such to highlight these additional space-
time and dynamical system relationships.

• The circular structures of the YMW model do not
consider a well-defined circular dimension of time
that is modeled as a Riemannian holographic ring
unit circle, stereographic gravitational superlense
[23], Gedanken interferometer [62], and Mott in-
sulator [30] that is dual to both superconduct-
ing 3-branes which simultaneously triggers CPT-
violations on the dual distance scales, whereas ours
model does employ these notions; but the YMW
model can be equipped with this paradigm so it is
consistent with, for example, M.C. Escher’s duality
[8].

• The YMW model is not based upon a dual space-
time topology equipped with topological deforma-
tions of intertwined superluminal (non-relativistic)
signals and luminal (relativistic) signals, whereas
our model does incorporate this arrangement; but
the YMW model can be equipped with such energy
deformations, signal classifications, and topological
structure.

At this point we’ve provided a brief report that com-
pares and contrasts some high-level aspects between the
two models. For the future, this suggests that we may
clarify a plethora of new ideas and fundamental relation-
ships through an objective consolidation of both frame-
works.

VIII. CONCLUSION AND OUTLOOK

In this first paper of the series, we introduced the
topologies, vacuum, generalized coordinates, fractional
statistics, BWF quantum number OPs, gauge symme-
try breaking, and Lagrangian for our BAC proof and
BAD in 4D FQHS space-time that complies with New-
tonian and Einsteinian mechanics, and low-dimensional
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implementations of string theory and M-theory. In the
next paper(s) of this series, we will extend our quark-
antiquark confinement scenario by discussing the anyons,
phase locking, HH, attractive and repulsive gravitational
effects of quasiparticle signals on the Lagrangian, modi-
fied Gullstrand–Painlevé reference frames, and Magnifi-
cation Effect.

In our opinion, this proof of quark-antiquark con-
finement with the amplitude–excitations and phase–
excitations begins to reveal additional fundamental
mechanisms and relationships inherent to our universe.

In doing so, we’ve been able to shed more light on a
number of mysterious concepts in nature, including an-
tibaryons, baryons, baryon asymmetry, creation, anni-
hilation, double horizons, and FQHS space-time. We
suspect that these formulations, which are inspired by
a plethora of experimental data, can be used to con-
struct a unified field theory in the near future, thereby
advancing physics to the “next level.” Through global co-
operation, competition, hard work, and creativity, these
powerful concepts can be further scrutinized, extended,
and applied to virtually all areas of mathematics, science,
medicine, and engineering.
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