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In this first paper of the series, we demonstrate that quarks and antiquarks are confined to baryons
and antibaryons, respectively; we prove color-anticolor confinement for a baryon-antibaryon pair in
an upgraded Gribov vacuum. We identify the core topologies, dualities, fractional statistics, quan-
tum number order parameters, and baryon wavefunction antisymmetries in 4D fractional quantum
Hall superfluidic space-time, where space and time are dual and conjugate. A White Hole Bag
and Black Hole Bag model baryons and antibaryons, respectively; the bags are dual, opposite,
inverse, and reverse, and are combined to form a White-Black Hole Bag. The quark-antiquark
pairs are confined to the Riemannian holographic ring unit circle of two counter-propagating edge
channels with Rashba spin-orbit coupling on the Fermi scale: a Fermi surface and Mott insula-
tor. The three distinct quark-antiquark pairs for a baryon-antibaryon pair are arranged along the
antiferromagnetic six-coloring kagome lattice manifold; an SU(2)-gauged Bose-Einstein condensate
between two superconductive, superfluidic 3-branes that imposes double-confinement and double-
stereographic superlensing on two dynamical scales for skyrmions with “massive ’Higgs-like’ scalar
amplitude-excitations” and “massless Nambu-Goldstone pseudo-scalar phase-excitations.” We prove
that White-Black Hole Confinement and White-Black Hole Duality are the mechanisms for the
superlensing of baryons and antibaryons.

I. INTRODUCTION

Nature presents an impressive display of mass-energy
puzzles in physics. Black Holes (BH) are one of the
most intriguing objects in nature, both theoretically
and experimentally. Being predicted in 1916 by Karl
Schwarzschild, until recently there has been no clear ex-
perimental evidence of BHs1. White Holes (WH) are the
hypothetical reverse of BHs, which were predicted by the
theory of general relativity (GR); amazingly, there has
been no clear experimental evidence of WHs2. Moreover,
the apparent asymmetry of matter and antimatter in the
visible universe is one of the greatest unsolved problems
in physics3. In this series of papers, we chase down these
mysteries. The theory is directly supported by special rel-
ativity (SR) and GR, and does not contradict or replace
quantum chromo dynamics (QCD) and quantum electro
dynamics (QED); it merely “upgrades” the accuracy and
precision of QCD and QED so they are consistent with
SR and GR. Mathematical and experimental proof for
these claims is provided in this paper.

Quarks and antiquarks are the fundamental building
blocks of matter and antimatter, respectively. We prove
that baryons are WHs and antibaryons are BHs. The
dual WH and BH quantum states are encoded with quan-
tum number order parameters of fractional statistics for

quasiparticles. We prove quark-antiquark confinement
in terms of Laughlin excitations4 that dynamically arise
due to our fractional quantum Hall superfluidic (FQHS)
space-time and topology inspired by the quasiparticle in-
terferometer experiments of Goldman5. We prove that
the quarks and antiquarks confined to the holographic
ring “cancel out” due to the CPT-Theorem. Spontaneous
symmetry breaking (SSB) generates massless “Nambu-
Goldstone pseudo-scalar phase-excitations”6–9 and mas-
sive “Higgs-like scalar amplitude-excitations”10 of Laugh-
lin statistics4

In Section II, we introduce the quark-antiquark con-
finement, duality, and bag models in FQHS space-time.
We explain how WHs and BHs can vary in size, where
their duality is evident on the Fermi scale. Moreover, we
investigate the two dynamical scales that arise in the dou-
ble confinement, double stereographic superlensing, and
double horizons inherent to WHs and BHs. We prove
that a WH-BH pair is composed of three distinct quark-
antiquark pairs, which form three corresponding “thin
color-electric flux tubes”11 of Laughlin excitations4 and
fractional statistics12. We discuss the hadronization pro-
cess and the modified Gribov vacuum, where all prop-
erties in 3D Schwarzschild space can be inferred from
the analogue of the 2D gauge field on the six-coloring
kagome lattice manifold. Additionally, we venture to the
interaction between the boson propagators and gravity
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by introducing “gravitational birefringence”.

In Section III, we discuss the surface and generalized
Riemann coordinates used to encode our FQHS space-
time scenario. We extend the definition of complex num-
bers and use them to represent locations on the 1D Rie-
mann surface; we prove that the complex numbers are
both scalars and Euclidean vectors. We define axis con-
straints for the vectors, which let us construct a pow-
erful 2D generalized coordinate system on the surface
equipped with the Pythagorean identity; the locations
may always be expressed in terms of right triangles with
real and imaginary components.

In Section IV, we explore the three distinct topolog-
ical sub-surface zones for a WH and BH using set and
group theory. We formally define the zones using tri-
chotomy and our generalized coordinates for 2D and 3D
space. We prove that the time-like region is a holographic
ring—a closed curve and simple contour of points, which
can be scaled to, for example, the Fermi radius. We
formally define space and time as being dual. Addition-
ally, we demonstrate that the time-like region represents
the U(1) and SU(2) symmetry groups, which is isomor-
phic to the SO(3) orthogonal group; all 3D properties
are inferred directly from the 2D holographic ring for the
SU(2) gauged Bose-Einstein condensate.

In Section V, we define the White-Black wave-
function (WBWF) of fractional quantum number or-
der parameters (OP) for our quark (q) and anti-
quark (q̄) confinement proof. Additionally, we discuss
the amplitude-excitations10 and phase-excitations6–9 for
Laughlin quasiparticles4 experienced by the WBWF
OPs in our FQHS space-time scenario. For this,
we express the full WBWF antisymmetries and CPT-
transformations.

In Section VI, we express the Lagrangian in terms of ef-
fective potential and effective kinetic for our FQHS space-
time scenario. For this, we apply both Newtonian and
Einsteinian concepts to the q and q̄ confinement proof
and thereby incorporate effective force, effective mass,
and effective acceleration.

To summarize, in this first paper of the series we in-
troduce the topologies, vacuum, generalized coordinates,
fractional statistics, quantum number OPs, WBWF,
gauge symmetry breaking, and Lagrangian for the q and q̄
confinement proof in FQHS space-time; for the scenario,
we provide a series of colorful depictions and an array
of experiments supporting this construction. In the next
paper(s) of this series, we will extend our confinement
scenario by discussing the anyons, phase locking13, Hu-
bius helix (HH)14, attractive and repulsive gravitational
effects of quasiparticle signals on the Lagrangian, modi-
fied Gullstrand–Painlevé reference frames, and Magnifi-
cation Effect.

II. ALIGNMENT TO CONFINEMENT

A BH’s event horizon confinement radius εBH =
2MBH strongly depends on it’s mass MBH , which can
vary in scale from the elementary or so called quantum-
dot, to billions of solar-masses. Regardless of scale, this
is known as Black Hole Confinement (BHC) and is mod-
eled as a Black Hole Bag (BHB). Similarly, a WH’s event
horizon confinement radius εWH = 2MWH strongly de-
pends on it’s massMWH , a variable which is well defined
in terms of the atomic numbers of the periodic table
of elements and stars throughout the universe. This is
known as White Hole Confinement (WHC) and is mod-
eled as a White Hole Bag (WHB). The universe is self-
similar. Within this prodigious spectrum there exists the
Fermi scale, at which baryon symmetry is perhaps most
evident; here, these two seemingly unrelated phenom-
ena merge to reflect quark-antiquark confinement. For
example in a proton-antiproton pair, an antiproton of
antimass MBH = Mantiproton = 1 GeV precisely coun-
terbalances a proton of mass MWH = Mproton = 1
GeV due to antiferromagnetic ordering. On this scale
we identify the general mechanism, namely White-Black
Hole Confinement (WBHC), which is responsible for the
dynamics. It is based on the appearance of a critical
radius ε2M = εWH = εBH for quark-antiquark con-
finement at the 1 Fermi scale and the appropriate gen-
eralized dynamics—effective gravito-strong interaction.
So in gravity plus electromagnetism, there is one inter-
esting mechanism—radiation trapping just on the hori-
zon’s surface, that is a coherent particle accumulation
structure13 of fractional statistics and toroidal vortex 15.
The toroidal vortex, that stores information as in the
holographic hypothesis11, intertwines theWHC and BHC
mechanisms, creating WBHC. The toroidal vortex forms
between the spherical shells defined at the inner con-
finement radius ε2M and the outer confinement radius
ε3M = 3M (based on the effective potential); ε2M and
ε3M correspond to the “horizon” and “imaginary surface”,
respectively, in Figure 6 of Witten11; there are two dis-
tinct quantum critical points imposed by a BH or WH
for the double stereographic superlense with the meta-
material, acoustic, double-negative refractive index, and
sub-wavelength features of16–19—see Figure 1. These
facts are evident from the DIS modeling results of the
hadronization process20. Quark-hadron duality in jet for-
mation in DIS leads to a two-step process of hadroniza-
tion, with two scales appearing: large Q2

0 � Λ2
QCD and

small Q2
0 ∼ 1GeV 2. An alternative approach in DIS,

namely “Local Parton Hadron Duality”, also leads to
the two dynamical scales: k perp = Q0 ∼ ΛQCD and
k⊥ = Q0 ∼ 1 GeV20. Both models of the hadronization
process give us the numbers in accord with our model
ε2M ∼ 0.2 − 0.3 fm and ε3M ∼ 1 fm. Another fresh
perspective can be taken from the “Glue drops” model21,
where the authors gave firm evidence of the existence of a
non-perturbative scale, smaller than the usual 1

ΛQCD
∼ 1

fm, which is related to gluonic degrees of freedom. The
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FIG. 1. The Riemannian holographic ring unit circle of two
counter-propagating edge channels defines the TZ for quark-
antiquark confinement and is isometrically embedded on the 1D
Riemann surface. The toroidal vortex between two dynamical
scales for a double stereographic superlense: the spherical shells
located at critical radius ε2M = 2M and ε3M = 3M .

evidence for the presence of a semi-hard scale in hadronic
structure is reviewed from many venues. The most no-
table effects are: QCD sum rules gives 0.3 fm radius of the
corresponding form factor, lattice gives 0.2-0.3 fm for the
correlation length, instanton radius peaks approximately
at 0.3 fm, diffractive gluon bremsstrahlung in hadronic
collisions leads to k⊥ for the gluons in a proton of about
0.7 GeV22. At higher scales, chiral symmetry breaking is
restored and the vacuum does not feel apparent existence
of quark and gluon condensates, which spoil the chiral
symmetry from the start—the mechanism for the spon-
taneous breaking of chiral symmetry and spontaneously
emergent behavior of chaos theory on the Lagrangian.

All together, this brings us to the concept of White-
Black Hole Duality (WBHD), which is responsible for
the stereographic superlensing18 dynamics. At rest, the
massless red, green, and blue quarks are confined to
a WH and circulate counter-clockwise along it’s event
horizon as a left-handed HH (WHH)14 at the speed of
light to generate effective mass, such that all observable
baryons are white; the visible colored quarks are non-
Abelian color-electric-magnetic monopoles23 which emit
red, green, and blue light-rays to render a WH. Sim-
ilarly, the resting antired, antigreen, and antiblue an-
tiquarks are confined to a BH and circulate clockwise
along it’s event horizon as a right-handed HH (BHH)14
to generate effective antimass, such that all “observ-
able” antibaryons are black ; the “visible” anticolored an-
tiquarks are non-Abelian anticolor-electric-magnetic an-
timonopoles23 which emit antired, antigreen, and an-
tiblue light-rays to render a BH; the relative direction
of circulation (with corresponding winding number) dis-
tinguishes between mass (i.e. Mproton) and antimass
(i.e. Mantiproton). For WBHD, the WH and BH bags
are dual, opposite, reverse, and inverse, and are there-

fore modeled as a White-Black Hole Bag (WBHB). The
quark and antiquark trajectories follow Wilson loops
and form a self-consistent6 SU(2) gauged Bose-Einstein
condensate24. These so-called screened quark-gluon po-
tentials are again dual to the BH radiation mechanisms
by Hawking. The electro-strong duality of the poten-
tials continuously transform in FQHS space-time in ac-
cordance with 1D, 2D, and 3D skyrmions24.

This rich concept of duality enables us to compute ob-
servables in time-like regions, given the physics in space-
like regions, and vice-versa. Upon considering these dual
fields, the idea of two distance scales comes up naturally.
Our 1D Riemmann surface (2D holographic information
structure) is divided into three distinct topological sub-
surfaces for quasiparticles:

1. Non-Relativistic Space Zone (NSZ) or “Micro” dis-
tance scale of superluminal signals,

2. Time Zone (TZ), and

3. Relativistic Space Zone (RSZ) or “Macro” distance
scale of luminal signals.

The Riemannian holographic ring unit circle represents
the TZ and is isometrically embedded on the surface;
it bifurcates 3D space to establish the NSZ, such that
0 < x < ε2M , and the RSZ, where ε2M < x <∞—recall
Figure 1. The gauge field is a 3D analogue of the TZ’s
Rashba spin-orbit coupling24—see Figure 4. The quarks
(and leptons) are “split” into three distinct excitation de-
grees of freedom, namely spinon, holon, and orbitons4,25;
the Laughlin excitations of the FQHS 3-branes obey frac-
tional statistics; luminal quasiparticle signals of the RSZ
“sea” execute a closed path around the NSZ “island” of
superluminal quasiparticle signals and thus acquire sta-
tistical phase5—see Figure 5.

In QCD, WBHC is a difficult strong coupling problem,
but a somewhat similar phenomenon in nature is much
better understood in QED. The Meissner effect is the
fundamental observation that a superconductor expels
magnetic flux. Suppose that magnetic monopoles be-
come available for study and that we insert a monopole-
antimonopole pair into a superconductor, where the two
poles are separated by a large distance x. What will hap-
pen? A monopole is inescapably a source of the magnetic
flux, but magnetic flux is expelled from a superconductor.
So the optimal solution to this problem, energetically, is
that a thin, non-superconducting tube forms between the
monopole and the antimonopole. The magnetic flux is
confined to this region, which is known as an Abrikosov-
Gorkov flux tube (or a Nielsen-Olesen flux tube in the
context of relativistic field theory). The flux tube has
a certain nonzero energy per unit length, so the energy
required to separate the monopole and antimonopole by
a distance x grows linearly in x, for large x.

As a non-Abelian gauge theory, QCD has fields rather
similar to ordinary electric and magnetic fields but obey
a nonlinear version of Maxwell’s equations. Quarks and
antiquarks are particles that carry the QCD analog of
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electric charge and are confined in to our QCD vacuum
just as ordinary magnetic charges would be in a super-
conductor. The color-electric-magnetic quark monopoles
and anticolor-electric-magnetic antiquark antimonopoles
may be separated by a large distance x to form non-
Abelian dipoles: red-antired, green-antigreen, and blue-
antiblue “thin color-electric flux tubes”11. Now from the
Aharonov–Casher (AC) effect and Aharonov–Bohm (AB)
effect duality26–28, it is evident that this analogy imme-
diately leads to the idea that the QCD vacuum is to a
superconductor, just as electricity is to magnetism, and
just as the AC effect is to the AB effect—see Figure 3.

Furthermore, analogy between WH and BH physics
revealed itself again recently in Olsson’s model29. The
author considered a relativistic string model, where a
massless quark moves at the speed-of-light in a circular
orbit. One can see clearly the x = x0 = ε2M coordi-
nate represents an event horizon or “impenetrable bar-
rier” and the quark moves in the “half harmonic oscilla-
tor” potential. When combined with the phenomenolog-
ical aspects of30,31, a strong QCD/QED string model for
the qq̄ pairs with the associated quasiparticles4 emerges
in our scenario. So for the qq̄ pairs we identify both
open-ended (“linear”) fermionic strings and the closed
(“non-linear”/circular) bosonic strings vibrating in our
conjugate and dual space-time. All of this is supported
by Glue drops21, where the energy of a QCD string is
concentrated in a thin color-electric flux tube11 of ra-
dius ε2M = 0.3 fm. All such particles and quasiparticles
on the Riemann surface which generate effective mass
(and antimass) are projected along the “z-axis” to effec-
tive 3D space (recall Figure 4). Here, events are repre-
sented on the Lagrangian using generalized coordinates
in Schwarzschild space-time on the Riemann surface.

Viewed in certain classes of inertial frames, a superlu-
minal signal travels backwards in time. In QED, Feyn-
man diagrams involve a virtual e+e- pair that influences
the photon propagator. Here, positrons are replaced with
electron-holes. This gives a photon an effective mass
(or antimass) on the order of the Compton wavelength
for the electron (or electron-hole); leptons are split into
quasiparticles4,25. All of this is generalized to QCD,
where a virtual qq̄ pair influences the gauge boson prop-
agator in FQHS space-time; the propagator is a function
which returns a probability amplitude of 1 for the quarks
and baryon confined to the TZ. In both QED and QCD, if
the space-time curvature has a comparable scale, then an
effective boson-gravity interaction is induced; the Higgs-
like amplitude excitations10 for the WH-BH pair impose
effective mass for WHs and quarks, and effective antimass
for BHs and antiquarks. This depends explicitly on the
curvature, in violation of the Strong Equivalence Prin-
ciple. The boson velocity is changed and light-ray no
longer follows the shortest possible path—it bifurcates
to both the NSZ and RSZ distance scales. Moreover,
if the space-time is anisotropic, this change can depend
on the boson’s polarization as well as direction. This is
the quantum phenomena of “gravitational birefringence”.

The effective light-cones for boson propagation in grav-
itational fields no longer coincide with the geometrical
light-cones fixed by the local Lorentz invariance of space-
time, but depend explicitly on the local curvature. This
formulation agrees with the von Karman flow and sym-
metry breaking of32, the kaleidoscope of exotic quantum
phases in the 2D frustrated model of33, and the deviant
Fermi liquid of34, where the TZ serves a Bose metal as
in35. All this works in 4D space-time.

The qq̄ pairs for a WH-BH pair are “superbound” to the
vacuum36 as coupled oscillators37 (see Figure 2) and form
red-antired, green-antigreen, and blue-antiblue Nambu-
Goldstone pions, which are Nambu-Goldstone bosons;
the SSB of the three distinct pions generates colored
amplitude-excitations10 and phase-excitations6–9. The
qq̄ pairs of the three distinct thin color-electric flux
tubes are confined to the TZ, which is a Riemannian
holographic ring unit circle on a 1D Riemann surface
equipped with a six-coloring (three coloring plus three
anticoloring) kagome lattice manifold generalization of38
with antiferromagnetic ordering4. The ring exhibits the
Rashba and fractional quantum Hall effects39, along with
spin-Hall current40 and chiral magnetic moments41. The
qq̄ pairs are uniformly arranged along the kagome lattice
with the triangular chirality of42 and the self-assembling
observables of13,43 (recall Figure 3). The quasiparti-
cles of the SU(2) gauged Bose-Einstein condensate are
direct 3D analogs of the spontaneously emerging QED
and QCD. The kagome lattice hexagonal structure is
self-similar to, for example, graphene, which explains
the “plasmaron” observations in quasi-freestanding doped
graphene44 and the “soundaron” observations of45. The
quarks can also be thought as moving along the “caustics”
inside the toroidal vortex, where the quark’s trajectories
are trapped between the dual scale dynamics—they are
“gliding” along the surface and are reflected back to the
center. The dual confinement boundaries located at ε2M
and ε3M act as reflecting and focusing stereographic su-
perlenses. So WHs and BHs become seashells closed on
ε3M

46.
When we come to the vacuum estate, the richness

of WBHD is shining brightly: Gribov’s QED/QCD
vacuum36 resembles a complicated structure of Unruh-
Boulware-Hartle-Hawking ’s BH vacuum and is fed with
solid-state physics along with notions of forbidden zones,
Fermi surfaces, particles and holes to encode the WBHB
on the Riemann surface. But there are some new
diagrams that arise with the new zones, and novel
types of excitations—enabling us to upgrade Gribov’s
model. This new vacuum differs drastically from
Dirac’s vacuum and contains a total of 18 zones for
the six-coloring (kagome lattice) manifold on the Rie-
mann surface—Figure 4; these zones are populated
with quasiparticles4,25 spontaneously generated by the
qq̄ pairs confined to the TZ with the spin-orbit coupling
of40,49–51. The TZ acquires a geometric phase26,27,52,
so the quasiparticles confined to the TZ are dual to
those signals propagated across the NSZ and RSZ zones.
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FIG. 2. Schematic of the multiple synchronized quark and antiquark solid-state oscillators (colored and anticolored circles) coupled to
generate frequencies for the SU(2) gauged Bose-Einstein condensate with skyrmions24 in the loop configuration based on the work of
Afshari37; the coupling circuits (gray triangles) shift the phase of the oscillators.

FIG. 3. The loop-induced zero-energy dynamics are described as “gluon dynamics”. The 3 distinct qq̄ pairs for the WH-BH pair are
“superbound” as coupled oscillators37 to the Fermi surface in the upgraded Gribov vacuum generalized from36 and are confined to the
kagome lattice antiferromagnet on the six-coloring manifold. The qq̄ pairs spontaneously generate phase-excitations (massless and pseudo-
scalar)6–9 and “Higgs-like” amplitude-excitations (massive and scalar)10 Laughlin excitations4. The toroidal vortex along the Riemannian
holographic ring unit circle for a WH and/or BH is defined as a toroidal vortex between the spherical shells located at critical radius
ε2M = 2M and ε3M = 3M ; double stereographic superlenses18 for two dynamical scales22. An affinity exists between WBHD and M.C.
Escher’s duality, where the combined WH event horizon and BH event horizon at ε2M exhibit the double horizon phenomena47. The
qq̄ pairs confined to the TZ form thin color-electric flux tubes11 in the QCD vacuum of the NSZ and exhibit the AC effect, while thin
magnetic flux tubes in the RSZ superconductive region exhibit antiferromagnetic ordering and the AB effect; the QCD vacuum is to a
superconductor, just as electricity is to magnetism, and just as the AC effect is to the AB effect. This model exhibits vortex-antivortex
dancing48 and confirms the spontaneous appearance of a stable 3D skyrmion in the SU(2) gauged Bose-Einstein condensate of24 confined
to the Riemannian holographic ring unit circle on our 1D Riemann surface.

Laughlin’s fractional quantization12 is axiomatic in this
scenario. At proper temperature and pressure, the vac-
uum is consistent with Chernodub53. Clearly, in treating
the WBHD and superlensing dynamics, it is very conve-
nient to separate the RSZ and NSZ degrees of freedom
(Born–Oppenheimer approximation).

The NSZ and RSZ both represent superconductive,
FQHS 3-branes interconnected by the TZ, which serves
as a common (2D) surface boundary at ε2M . The WH

and BH are spinning objects confined to the TZ so they
generate whirlpools on both 3-brane distance scales in
accordance with seashells closed on ε3M

46, thereby ex-
hibiting the Magnus effect54 and generating a vortex-
antivortex dance48; these whirlpools are described on the
Riemann surface using spirals (i.e. weighted Fibonacci
sequence and/or golden spiral). The TZ is a topologi-
cal Mott insulator for25,49,55,56, a Fermi surface as in57,
a Goldman-Laughlin quasiparticle interferometer of two
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FIG. 4. The gauge-invariant TZ delineates the NSZ and RSZ: a 2-sphere which is dual to both 3-branes, where the SU(2) Bose–Einstein
condensate and gauge field is a 3D analogue of the Rashba spin-orbit coupling of the TZ, supporting the 1D, 2D, and 3D Skyrmion
structures24 (all). The WH-BH pair comprises the three distinct qq̄ pairs and is modeled as a WBHB in the new Gribov vacuum with 18
quasiparticle signal zones (bottom).

FIG. 5. The upgraded Gribov QCD/QED vacuum with 18 zones for quasiparticle signals pertaining to a WBHB on the 1D Riemann
surface. The qq̄ pairs are confined to the TZ, which is dual to the NSZ and the RSZ. The six-coloring spinon, holon, and orbiton excitations
are spontaneously generated and confined to the TZ, which acquires a geometric phase; the TZ excitations are dual to those of the NSZ
and RSZ 3-branes.
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counter-propagating edge channels as in5, a Gedanken
interferometer as in58, a quantum critical point as in4,59,
and a non-perturbative, self-consistent, SU(2) gauged
Bose-Einstein condensate as in6 that satisfies Novikov’s
self-consistency principle as in60; a picture emerges of the
vacuum as a conductor instead of “Dirac’s insulator”, with
a new mass scale that reflects the position of the “Fermi
surface”36. The six-coloring antiferromagnetic alignment
of the qq̄ pairs spontaneously generate the physical be-
havior of the strong interaction as in4 and thereby trig-
gers parity doubling, CPT violations, and different po-
larization rotation velocities on both the NSZ and RSZ
distance scales simultaneously. Here, we identify the
Dirac quantization and spin-charge magnetic monopole
relations of61, Fermi liquid deviations of59, non-linear op-
tics, analogue gravity, and photon emissions analogous to
the Hawking radiation as in62, and Andreev reflections
of63,64; the TZ’s current continuously undergoes charge-
transformation between the NSZ’s and RSZ’s supercur-
rent. The qq̄ resonances form the exotic meson and broad
locking states as in65. The qq̄ pairs and their waves are
phase locked, spontaneously aligning to form dynamical
1D coherent accumulation structures with time-periodic
flows13 and a von Kármán vortex street15 with impact
parameters.

III. THE SPACE-TIME SURFACE AND
GENERALIZED RIEMANN COORDINATES

Let X be the 1D Riemann surface. We define the
complex number x = xR + xI as a position-point and
position-vector on X; x ∈ X is both a complex scalar
and Euclidean vector with amplitude |x| and phase 〈x〉,
which are analogous to magnitude and direction in con-
ventional notation. The orthogonal components of x,
namely xR ∈ R1 and xI ∈ I1 as axis-constrained real
and imaginary Euclidean vectors, respectively (where in
this case I denotes imaginary rather than irrational); the
simple trichotomy axis-constraints for the R-axis are

xR > 0⇔ 〈xR〉 = 2π = 0, (1)
xR = 0⇔ 〈xR〉 = @, (2)
xR < 0⇔ 〈xR〉 = π, (3)

and for the I-axis are

xI > 0⇔ 〈xI〉 =
π

2
, (4)

xI = 0⇔ 〈xI〉 = @, (5)

xI < 0⇔ 〈xI〉 =
3π

2
, (6)

such that

|xR| = |x| cos(〈x〉), (7)
|xI| = |x| sin(〈x〉), (8)

with Pythagorean form

|x|2 = x2
R + x2

I , ∀x ∈ X. (9)

Thus, we’ve defined the 2D generalized (Riemann) coor-
dinate system of X as
2DX : (x) = (xR + xI) = (xR, xI) = (|x|, 〈x〉), ∀x ∈ X,

(10)
with respect to the unique reference origin-point O ∈ X,
such that (O) = (0 + 0i) = (0, 0i) = (0, 0π); (x) =
(xR + xI) are 1D Riemann coordinates, (xR, xI) are 2D
Cartesian coordinates, and (|x|, 〈x〉) are Polar coordi-
nates; a Complex-Cartesian-Polar synchronized and gen-
eralized coordinate system. The real and imaginary axis-
constraints ensure that the generalized coordinates may
always be expressed as a right-triangle with Pythagorean
properties.

So how to we extend our 2D generalized coordinates
of Definition (10) to 3D Schwarzschild space? Well, for
a WH or BH of scale M (located precisely at the ori-
gin position-point O ∈ X) we define the 3D generalized
(Schwarzschild) coordinate system of X as

3DX : (ux, |x|, 〈x〉) = (
M

|x|
, |x|, 〈x〉), ∀x ∈ X. (11)

IV. ZONES

We define T as the TZ of X. So T is a topolog-
ical representation of a Riemannian unit circle, where
the critical radius of T is scaled and normalized to pre-
cisely ε2M = 2M = π

2 εscalar. We prove WBHC on T .
εscalar is the time unit scale-normalizing constant and
ε2M is the inner confinement radius of T . Next, we
define the circumference and wavelength of T , namely
Tλ = Tcircumference = Twavelength = 2πεscalar, as being
equivalent to the (normalized)Mikhail Grimov’s area fill-
ing conjecture66: Tarea = Tλ; T ⊂ X is a closed curve
and simple contour of surface position-points.

We use zone trichotomy to simultaneously define the
TZ and SZ regions of X: we define X− and X+ as the
NSZ and RSZ of X, respectively. The surface T delin-
eates the topological sub-surfaces X− and X+ on X; T is
a Mott insulator25 and Fermi surface36 which delineates
two dual superconductors25,49,55,56,63,64. Thus, ∀x ∈ X
we know that precisely one of the following conditions
must be satisfied:

|x| < ε2M ⇔ x ∈ X−, (12)
|x| = ε2M ⇔ x ∈ T, (13)
|x| > ε2M ⇔ x ∈ X+, (14)

where clearly X− ∩ T = T ∩ X+ = X− ∩ X+ = ∅ and
X− ∪ T ∪X+ = X. Hence, T is the multiplicative group
of all non-zero complex 1-vectors, such that

T = {t ∈ X : |t| = ε2M}, (15)

where we define all T position-points as time-points and

X− = {s ∈ X : |s| < ε2M}, (16)
X+ = {s ∈ X : |s| > ε2M}, (17)
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FIG. 6. The TZ is dual to both distance scales and imposes the double-confinement and double-lensing of M.C. Escher’s duality47; it is a
stereographic superlense18 between the two 3-brane distance scales.

FIG. 7. Inopin’s interpretation of M.C. Escher’s double-horizons of47 is directly connected to the q → q̄ transitions, past-present switching,
time-reversal operation, and CPT-Theorem on the Riemann surface: time is circular and non-linear, so the past is the future. The quarks
switch back and forth between the conjugate space-time regions with the appearance and disappearance of 3 quantum critical points in
the QCD phase diagram.

where we define all S = X−∪X+ position-points as space-
points. So clearly,

ε22M = |t|2 = |tR|2 + |tI|2, ∀t ∈ T, (18)

|x|2 = |xR|2 + |xI|2, ∀x ∈ X. (19)

So T is isometrically embedded in X with the one-to-one
holographic mappings f : T ↪→ X and f : T → X− ∪X+

with dual simultaneous bijections

fTime : X− ←↩ T ↪→ X+, (20)
fSpace : X− ↪→ T ←↩ X+, (21)

for our dual space-time; we’ve proven that T is dual to
X− and T is also dual to X+. Interestingly, this formula-
tion may provide a simplification to the Riemann-Hilbert
problem as expressed in, for example,67. Now because T
is a type of Riemannian circle and holographic ring, we
know it is a 2-sphere for the SU(2) gauged Bose-Einstein
condensate24. Thus, for the position-point and position-
vector t ∈ T we apply Definition (10) to express the
2-sphere generalized and synchronized 2D Riemann co-
ordinates
2DT : (t) = (tR+tI) = (tR, tI) = (|t|, 〈t〉) = (ε, 〈t〉), ∀t ∈ T,

(22)
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and in 3D Schwarzschild coordinates

3DT : (ut, |t|, 〈t〉) = (
M

|t|
, |t|, 〈t〉), ∀t ∈ T. (23)

Now because ∀t ∈ T we have the uniform radius |t| =
ε2M , we can alternatively drop the |t| amplitude co-
ordinate and just use the 〈t〉 phase coordinate to di-
rectly specify position-points on the 1D non-linear sur-
face. Therefore, T is

• the 1D circular Abelian group U(1);

• the 2D spherical non-Abelian group SU(2); and

• isomorphic to the 3D orthogonal non-Abelian group
SO(3),

which directly supports 1D, 2D, and 3D skyrmions24. So
parity doubling22 is synonymous of the term degener-
acy, and Escher gave an example of how one can estab-
lish 2D - 3D correspondence47. We see here again the
road to the t’Hooft and Maldacena holographic model
for high-energy physics—all the 3D properties are in-
ferred directly from the 2D (Riemannian holographic
ring) domain68.

We define T as a “fermiwire,” which is nothing
more than a “nanowire”51,69 with Rashba spin-orbit
coupling25,27,39 on the Fermi scale. The spin geomet-
ric phase for electrons in27 is applied directly to the spin
Hall effect39, effective spin-dependent flux, and Andreev
reflections63,64 of the quarks and antiquarks confined to
the universal curve T (the holographic ring with uniform
radius |t| = ε2M ) embedded in X; the duality deriva-
tion between the AAS effect and the AC effect of27 is

written for T as Φmag

Φ0/2
⇐⇒

√
1 +

(
2mt〈t〉|t|

~2

)2

, ∀t ∈ T,
where Φmag is the magnetic flux, Φ0 = h/e is the one flux
quantum period, 〈t〉 = α is the amplitude and strength of
the Rashba spin-orbit interaction, and mt is the effective
mass; the left term is the AAS effect flux and the right
term is the time-reversal AC effect oscillation unit with
effective spin-dependent flux for the conductance modu-
lation and voltage dependence observations of the AAS
amplitude at zero magnetic field27. This formulation is
crucial to our six-coloring quark-antiquark configuration
for the WBHC scenario because the magneto-resistance
oscillations of27,70 along T are attributed to the AAS ef-
fect.

V. THE WAVEFUNCTION DEFINITION OF
FRACTIONAL QUANTUM NUMBER ORDER

PARAMETERS

Landau introduced the concept of OPs71, which we de-
fine as complex scalar fields6 on X. Here, we construct
the WBWF using OPs and Laughlin statistics4 in our
non-Abelian SU(2) gauge theory. In the theory of super-
fluidity the OP measures the existence of Bose condensed

particles (Cooper pairs) and is given by the probability
amplitude of such particles. The inter-particle forces be-
tween quarks and antiquarks, and between 4He and be-
tween 3He atoms, are rotationally invariant in spin and
orbital space and, of course, conserve quantum number22.
The latter symmetry gives rise to gauge symmetry, which
is broken in any superfluid. First, for the theory of
isotropic superfluids like a BCS superconductor or su-
perfluid 4He, we define the global OP ψ = ψR + ψI as a
complex number (which inherits the notation similar to
x as defined in Section III without loss of generality); ψ
is both a complex scalar and Euclidean vector with the
amplitude |ψ|10 and phase 〈ψ〉 components6. Then for
local gauge SSB, we define the OP ψ[x] as the complex
scalar field

ψ[x] = ψ[x]R + ψ[x]I, ∀x ∈ X, (24)

where |ψ[x]| and 〈ψ[x]〉 are the “gauge” amplitude and
phase components local to x ∈ X, respectively, in ac-
cordance to Englert6. Furthermore, we define ∆|ψ[x]|
and ∆〈ψ[x]〉 as the change of the OP’s amplitude and
phase due to a “massive Higgs-like amplitude-excitation”
and “massless Nambu-Goldstone phase-excitation” com-
ponents, respectively—see Figures 8 and 9. Since the
Mott insulator and stereographic superlense T is dual to
both X− and X+, we express Equation (24) specifically
for time-points as the parametric function

ψ(t) = ψ(t)R + ψ(t)I, ∀t ∈ T, (25)

where the SU(2) gauge-invariant T acquires a Berry–
Aharonov–Anandan geometric phase as in52; T is an or-
dered medium equipped with an OP space for topological
defects. The classical energy density distribution along
T is a function of the OP ψ(t); within the ordered (su-
perfluid) phase, Nambu-Goldstone and Higgs modes arise
from the 〈ψ(t)〉 and |ψ(t)|, respectively, where the energy
density transforms into a function for T with a minimum
at |ψ(t)| = 010. So |ψ(t)| is excited with a periodic mod-
ulation of the spin-orbit coupling, which amounts to a
“shaking” of the energy density (effective) potential for
topological deformations along T in accordance with10.
Furthermore, because the WH-BH pair is confined to T
on the kagome lattice of antiferromagnetic ordering38,
we define the WBWF for the six-coloring position-points
{r, g, b} ⊂ T and { barr, ḡ, b̄} ⊂ T of three colored quarks
and three anticolored antiquarks in the vacuum, respec-
tively (recall Figures 3 and 4).

Above the critical temperature the system is invariant
under an arbitrary change of the phase 〈ψ[x]〉 → 〈ψ[x]〉′,
i.e. under a gauge transformation. Below the critical
temperature a particular value of 〈ψ〉 is spontaneously
preferred. In anisotropic superfluids, additional sym-
metries can be spontaneously broken, corresponding to
multiple OP components of the WBWF. In 3He—the
best studied example with multiple OP components—
the pairs are in a spin-triplet state, meaning that ro-
tational symmetry in spin space is broken, just as in a
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FIG. 8. A complex scalar field ψ(t) experiences a massive “Higgs-like” amplitude-excitation10 (right), which is characteristic of the
Nambu-Goldstone scalar boson SSB order parameter fluctuations discussed by6; a classical wave imposes volume effects and stretches the
vacuum field.

FIG. 9. A complex scalar field ψ(t) experiences a phase-excitation (right), which is characteristic of the Nambu-Goldstone pseudo-scalar
SSB order parameter fluctuations discussed by6; a classical wave imposes rotational effects on the vacuum field in accordance with vacuum
degeneracy.

magnet. At the same time, the anisotropy of the Cooper-
pair wavefunction in orbital space calls for a spontaneous
breakdown of orbital rotation symmetry, as in liquid crys-
tals22. Including the gauge symmetry, three symmetries
are therefore broken in superfluid 3He. The theoretical
discovery that several simultaneously broken symmetries
can appear in condensed matter was made by Antony
Leggett, and represented a breakthrough in the theory of
anisotropic superfluids, 3He71. This leads to superfluid
phases whose properties cannot be understood by simply
adding the properties of systems in which each symme-
try is broken individually. Such phases may have long
range order in combined, rather than individual degrees
of freedom. So to construct a strong WBWF constraint
for WBHC to T , we “Cooper pair” the OP set of strongly
conserved quantum numbers

ΦOP = {ψC , ψI , ψJ}, (26)

which is listed in Table I; the spin-orbit coupling of39,40,61
applies directly to T , where ψJ(t) is identical to the

“BSO-vector” of69, such that

ψJ(t) = ψS(t) + ψL(t), ∀t ∈ T. (27)

The qq̄ pairs confined to T on the six-coloring kagome lat-
tice manifold are located at position-points r, g, b, r̄, ḡ, c̄ ∈
T ; they adhere to the uniformly-arranged position-point
constraints

〈r〉 = 〈r̄〉 ± π, 〈g〉 = 〈ḡ〉 ± π, and 〈b〉 = 〈b̄〉 ± π, (28)

with uniform amplitudes |r| = |g| = |b| = |r̄| = |ḡ| =
|b̄| = ε2M , and antiferromagnetic ordering

〈ψJ(r)〉 = 〈ψJ(r̄)〉 ± π, (29)
〈ψJ(g)〉 = 〈ψJ(ḡ)〉 ± π, and (30)

〈ψJ(b)〉 = 〈ψJ(b̄)〉 ± π, (31)

(recall Figure 3). A little flight of imagination lead us to
this new approach, where the OPs ∀t ∈ T are “Cooper
paired” to form a Leggett superfluid B phase of71 with
azimuthal “alpha” phase angle 〈t〉; the OPs ∀ψ ∈ ΦOP
rotate freely in 2D and 3D space, while the superfluid
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B phase angle 〈t〉 ∈ {〈r〉, 〈g〉, 〈b〉, 〈r̄〉, 〈ḡ〉, 〈b̄〉} between
them remains constant. Such phases form correlated he-
lices along T , serving as constraints for the WBWF—see
Figure 10.

Next, we construct our WBWF for the WBHB states.
For a WH and BH centered on the origin-point O ∈ X
and confined to T we define the full baryon and an-
tibaryon states as

Ψtotal(r, g, b) = Ψ(r)×Ψ(g)×Ψ(b) and (32)

Ψtotal(r̄, ḡ, b̄) = Ψ(r̄)×Ψ(ḡ)×Ψ(b̄), (33)

respectively, for the WBHC and WBHD; the red, green,
and blue quark wavefunctions respectively located at
time-points r, g, b ∈ T on the three-coloring triangular
sub-lattice are

Ψ(r) = ψC(r)× ψJ(r)× ψI(r)× r, Ψ(r)
def
= 〈r|Ψ〉,

(34)

Ψ(g) = ψC(g)× ψJ(g)× ψI(g)× g, Ψ(g)
def
= 〈g|Ψ〉,

(35)

Ψ(b) = ψC(b)× ψJ(b)× ψI(b)× b, Ψ(b)
def
= 〈b|Ψ〉,

(36)

and the antired, antigreen, and antiblue antiquark wave-
functions respectively located at time-points r̄, ḡ, b̄ ∈ T
on the three-anticoloring triangular sub-lattice are

Ψ(r̄) = ψC(r̄)× ψJ(r̄)× ψI(r̄)× r̄, Ψ(r̄)
def
= 〈r̄|Ψ〉,

(37)

Ψ(ḡ) = ψC(ḡ)× ψJ(ḡ)× ψI(ḡ)× ḡ, Ψ(ḡ)
def
= 〈ḡ|Ψ〉,

(38)

Ψ(b̄) = ψC(b̄)× ψJ(b̄)× ψI(b̄)× b̄, Ψ(b̄)
def
= 〈b̄|Ψ〉;

(39)

the WBWF for the three distinct qq̄ pairs that are con-
fined to T along the six-coloring kagome lattice manifold
(recall Figure 3). So the antisymmetric WBWF is de-
scribed with the six-coloring components

Ψ(r, r̄) = −Ψ(r̄, r), (40)
Ψ(g, ḡ) = −Ψ(ḡ, g), and (41)

Ψ(b, b̄) = −Ψ(b̄, b), (42)

for the confined quark and antiquark (two-particle) cases.
So for Definition (32) and the related six-coloring Def-

initions (31–37), we define the full WBWF antisym-
metrization via the covariant antisymmetric metric ten-
sor: the 2D antisymmetric WBWF matrix(

0 Ψtotal(r, g, b)

Ψtotal(r̄, ḡ, b̄) 0

)
(43)

and the expanded 3D antisymmetric WBWF matrix 0 Ψ(r) Ψ(g)

Ψ(r̄) 0 Ψ(b)

Ψ(ḡ) Ψ(b̄) 0

 (44)

for T . So given complex tangent vectors µ and ν we
define

gx(µ, ν) = −gx(ν, µ) ∈ C, ∀x ∈ X; (45)

the tensor describes the X curvature (“vector phase”)
〈gx(µ, ν)〉 and the field strength (“vector amplitude”)
|gx(µ, ν)| at a position-point x ∈ X. The Levi-Civita
symbol for the color singlet function is

ζrgb = ζrgb =


+1 if (r, g, b) is (1, 2, 3), (2, 3, 1), or (3, 1, 2)

0 if r = g or g = b or b = r

−1 if (r, g, b) is (3, 2, 1), (2, 1, 3), or (1, 3, 2)

(46)
The CPT-Theorem is a fundamental property of T .

Hence, for a WH or BH of scale M we have the OP
charge transformation(s), ∀ψ ∈ ΦOP ,

C :



ψ(t) 7→ −ψ(t),(
ψ(t)R

ψ(t)I

)
7→

(
−ψ(t)R

−ψ(t)I

)
,(

|ψ(t)|
〈ψ(t)〉

)
7→

(
|ψ(t)|

〈ψ(t)〉 ± π

)
,

(47)

the parity transformation(s) (in generalized 2D Riemann
coordinates for 3D Schwarzschild space) is the flip in the
sign of the one coordinate

P :



tRtI
M
|t|

 7→

−tR−tI
−M|t|

 ,

 |t|〈t〉
M
|t|

 7→

 |t|
〈t〉 ± π
−M|t|

 ,

(48)

and time reversal transformation(s)

T :



t 7→ −t,(
tR

tI

)
7→

(
−tR
−tI

)
,(

|t|
〈t〉

)
7→

(
|t|

〈t〉 ± π

)
,

(49)

which comprise a CPT-transformation, ∀t ∈ T . We see
that for Definitions (47), (48), and (49) there are mul-
tiple equivalent transformations for each case because
the generalized Riemann coordinates of Definition (10)
and the OP Definition (24) use synchronized Complex-
Cartesian-Polar values (where the magnitude and direc-
tion of the Polar components are replaced with amplitude
and phase, respectively).

VI. THE LAGRANGIAN: EFFECTIVE
POTENTIAL AND EFFECTIVE KINETIC

Here, we express the gauged SSB in our FQHS space-
time scenario on X, which is applicable to both 2D and



12

TABLE I. The quantum number order parameters for the WBWF states on the 1D Riemann surface X. Here, ψJ = ψS + ψL and
ψJ (t) = ψS(t) + ψL(t) for the spin-orbit coupling of the holographic confinement ring T ⊂ X.

Order Parameter Symbol Global Local
Color Charge C ψC = ψCR + ψCI ψC [x] = ψC [x]R + ψC [x]I

Isospin I ψI = ψIR + ψII ψI [x] = ψI [x]R + ψI [x]I
Orbital Angular Momentum L ψL = ψLR + ψLI ψL[x] = ψL[x]R + ψL[x]I
Spin Angular Momentum S ψS = ψSR + ψSI ψS [x] = ψS [x]R + ψS [x]I
Total Angular Momentum J ψJ = ψJR + ψJI ψJ [x] = ψJ [x]R + ψJ [x]I

FIG. 10. Leggett’s71 six distinct superfluid B phase angles for the three qq̄ pairs confined to T along the six-coloring kagome lattice
of antiferromagnetic ordering4,38. The superfluid B phase angles 〈r〉, 〈g〉, 〈b〉, 〈r̄〉, 〈ḡ〉, 〈b̄〉 remain constant and correlate the OPs as they
rotate freely in 2D and 3D space; this long range order applies ∀t ∈ T , ∀ψ ∈ ΦOP , to form correlated helices along T ; this concept serves
as a strong WBWF constraint and applies to all OPs for a given time-point. In this diagram, only ψJ (t) and ψI(t) are shown, but ψC(t)

is also correlated with 〈t〉.

3D space; the Lagrangian is defined as

L[x] = EK [x]− EP [x], ∀x ∈ X, (50)

using our generalized coordinates, where EK [x] and
EP [x] are the effective kinetic and effective potential, re-
spectively, for a position-point x. From72 the gauge bo-
son’s EP is defined as

EP [x] =

√
1− 2ux
|x|

, ∀x ∈ X. (51)

The EP depends on the Schwarzschild geometry but not
on the choice of orbit. Only one EP is required to an-
alyze the motion of all radiation (including radio waves,
radar pulses, gamma rays, etc.). It is important to stress
EP differences and similarities between a massive parti-
cle and its massless limit: radiation-rays. Next, the EK
is defined as

EK [x] =
1

2
mxv

2
x =

1

2

Fx
ax
v2
x, ∀x ∈ X, (52)

where Fx is the effective force, where mx is the effective
mass, ax is the effective acceleration, and vx is the effec-
tive velocity of the particle at x in the FQHS space-time.

Einstein’s Fx, the EP per unit of particle effective mass
mx, is defined as

Fx = mxax =
EP [x]

mx
=

√√√√(1− 2ux)

[
1 +

( J
mx

)2

|x|2

]
, ∀x ∈ X,

(53)
where the ax along coordinate phase 〈x〉 is

ax =
1

~2

∑
mx

∂2ε(kx)

∂k〈x〉∂kmx

exEmx
, ∀x ∈ X, (54)

where kx is the wave vector, ε(kx) is the dispersion re-
lation, and ex is the point charge in an external electric
field E.

VII. CONCLUSION AND OUTLOOK

In this first paper of the series, we introduced the
topologies, vacuum, 2D and 3D generalized coordi-
nates, fractional statistics, WBWF quantum number
OPs, gauge symmetry breaking, and Lagrangian for our
WBHC proof and WBHD in FQHS space-time. In the



13

next paper(s) of this series, we will extend our quark-
antiquark confinement scenario by discussing the anyons,
phase locking, HH, attractive and repulsive gravitational
effects of quasiparticle signals on the Lagrangian, modi-
fied Gullstrand–Painlevé reference frames, and Magnifi-
cation Effect.

In our opinion, this proof of quark-antiquark con-
finement with the amplitude–excitations and phase–
excitations begins to reveal additional fundamental
mechanisms and relationships inherent to our universe.
In doing so, we’ve been able to shed more light on a

number of mysterious concepts in nature, including BHs,
WHs, baryon asymmetry, creation, annihilation, double
horizons, and FQHS space-time. We suspect that these
formulations, which are inspired by a plethora of exper-
imental data, can be used to construct a unified field
theory in the near future, thereby advancing physics to
the “next level.” Through global cooperation, competi-
tion, hard work, and creativity, these powerful concepts
can be further scrutinized, extended, and applied to vir-
tually all areas of mathematics, science, medicine, and
engineering.
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