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Abstract 

 
         In this article, we have discussed the importance of applying the hazard rate measure in studying matters related 

to change of temperature in pulsating heat pipes. It has been found that the hazard rate decreases with increase in 

diameter of the heat pipe. Finally, it has been validated statistically that the hazard rate increases exponentially as the 

number of turns in the evaporator section of the heat pipe increases.  
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1. Introduction 

        The Heat Pipe Heat Exchanger has received attention since it was launched into industry at the 
beginning of the eighties [1]. A heat pipes is a two-phase heat transfer device with high thermal 
conductivity. As a self-complete energy recovery device that works as a homogeneous flow model, it is 
very efficient and compact. If some of the waste heat generated from boilers can be recovered, a lot of fuel 
can be saved.  

        It is well known that water is excellent as a working fluid for heat pipes for its high latent heat, easy 
availability, and its high resistance to decomposition and degradation. Water was selected as the working 
fluid of the heat pipe system developed by Akyurt et al. [2]. Because of the problem of incompatibility with 
iron, copper was selected initially as the container material. 

        Mathematical models considering the heat transfer effects on operation of a pulsating heat pipe with 
open end was proposed by Zhang and Faghri [3]. They further studied [4] numerically the oscillatory flow 
in pulsating heat pipes. Barua et. al. ([5], [6]) have recently worked on mathematical modelling of change 
of temperature in a pulsating heat pipe. It was established that temperature decreases exponentially with 

respect to time in pulsating heat pipes. In addition, it was found that the rate of change of temperature 
increases with increase in the number of turns. In this article, we are going to discuss as to how hazard rate, 
in the sense in which the term is used in reliability theory, increases with respect to number of turns in the 
evaporator section of a pulsating heat pipe. We are further going to point out that hazard rate decreases with 
increase in the diameter of the heat pipes. 

 

2. Hazard Rate 

       While discussing about hazard rate, we shall have to explain a few introductory matters about 
reliability theory. Reliability is defined as the probability that a device performs properly, for a period of 
time intended, under acceptable operating conditions ([7], pages 318-319).  
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       Assume that t represents a random variable equal to the time to failure of an item, and assume further 
that f (t) is the probability density function concerned. Here t ≥ 0. Let F (t) be the probability distribution 
function defined as 
 

F (t) = ∫ f (x) dx, 
 

the integral being taken from x = 0 to t. Then reliability R (t) of the item is defined as the complementary 
distribution function of the random variable. In other words, 
 

R (t) = 1 - F (t).  

 
If in particular, t follows the exponential probability law, we shall have 
 

f (t) = λ exp (- λt), t ≥ 0, λ > 0. 
 

In this case, we would have 

 
F (t) = 1 - exp (- λt),  

 
and therefore, 
 

R (t) = exp (- λt).  

 
         The hazard rate h(t), known as instantaneous failure rate also, is defined as the probability of an item 
failing in the next instant of time divided by the reliability to that instant. In other words, 
 

h (t) = f (t) / R (t). 
 

When f (t) is exponential, the hazard rate becomes equal to λ, a constant. Indeed for a constant hazard rate, 
the probability law is essentially exponential.  
         When a quantity decreases exponentially with respect a variable taking positive values only, the 
function defining the decrease concerned can be seen to be directly proportional to an exponential 
probability density function. Therefore, in such a case the interpretations can always be expressed in terms 
of the hazard rate, though not probabilistically. We shall discuss more about this point soon.  

         We have found that temperature decreases exponentially with respect to time in pulsating heat pipes. 
We now proceed to explain the matters in terms of hazard rate increasing with number of turns in the 
evaporator section of pulsating heat pipes. Further, we are going to discuss the application of the hazard 
rate measure with reference to heat pipes of different diameters. 

            

3. The Experiments 

          In our experiments, water was selected as the working fluid of the heat pipe system. Copper was 
selected as the material for the pipes as it has a very high thermal conductivity. Copper pipes of diameter ¼ 
inch (= 0.6354 cm.) were constructed. The diameter of a pipe would be expressed in inches here because 
bearing only that unit of measurement, pipes were available. Each pipe was fabricated to take the shape of a 
square. The length of the condenser section was kept constant at 40 cm. We fabricated 5 different heat pipe 
setups with number of turns equal to 1, 2, 3, 4 and 5. 
          Each pipe contained two cut out sections of length 5 cm welded into the main set up. One of them 

acted as water inlet while the other acts as an exit route for air pockets. The pipes were partially filled with 
water and then the openings of the inlet and the outlet sections were plugged with a sealing agent and an 
adhesive tape, the combination of which proved effective enough. 
          The mathematical models are what we were interested in; we were not really interested on the 
operability of the entire heat exchanger set up. That is why we have used insulating materials just for 
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minimizing the heat loss without actually evaluating the critical radius of insulation as it would not really 
affect the mathematical models.   
         The software called Daisy Lab was used for acquisition of data which in our case was temperature. It 
was connected to a thermo-couple to measure the temperature which gets displayed on a computer screen. 

The room temperature was fixed at 29
o 
Centigrade. Every experiment was replicated thrice, and the average 

temperatures in the condenser section after every minute were noted.  
         In a second set of experiments, copper pipes of three different diameters viz. ¼ inch (= 0.6354 cm.), 
½ inch (= 1.2708 cm.) and 5/8 inch (= 1.5885 cm.) were constructed. Each pipe was made to take the shape 
of a square. The length of the evaporator section varied for each of the diameter types and was alternately 
selected as 30 cm, 35 cm and 40 cm respectively. We thus have fabricated nine different heat pipes in this 

set of experiments. 

 

4. Analysis of the Data 

       Numerical and statistical analysis of the data collected would now lead us to certain conclusions 
related to heat transfer. The analysis in detail has been reported in a monograph by the present author [8]. 
We are going to discuss the statistical analytical matters with reference to mathematical modeling of the 

data generated. Equations of the type 
 

T = C + α exp (- λ τ), τ ≥ 0, α > 0, λ > 0. 
 

where T and τ
 
stand for temperature and time respectively, C is a predetermined constant, α and λ being 

parameters, were hypothesized and fitted.  

        At this point, we would like to discuss a matter regarding the definition of a random variable. 
Randomness is one term which is widely misunderstood. Rohatgi and Saleh ([9], page 41) have clearly 
mentioned that the notion of probability does not enter into the definition of randomness. A random 
variable is usually said to be one that is associated with some probability law of errors. However, from the 
measure theoretic standpoint, if we can associate a density function f(x) with the variable X defined in some 
interval [a, b] such that  

 
∫a

b 
f(x) dx = 1, 

 
then X would said to be a random variable with reference to f(x), the concerned density function. In other 
words, if a variable is probabilistic, it must necessarily be random. However, if a variable is random, it need 
not be probabilistic in the statistical sense. For example,  

 
∫0

1 
2x dx = 1, 

 
and therefore X here is random variable by definition, but not necessarily probabilistic following some 
probability law of errors in the statistical sense. This has a very important implication. The broader measure 
theoretic definition of randomness asserts us that all principles of probability theory would automatically be 

applicable to a random variable. Now for   
 

T = C + α exp (- λ τ), τ ≥ 0, α > 0, λ > 0, 
 

it can be seen that the variable  
 

λ (T - C)/ α = λ exp (- λ τ) 

 
 is a negative exponential function of τ, which can be seen to be a density function in the measure theoretic 
sense. Hence, use of the term hazard rate to define λ here would be mathematically valid, though τ here is 
not probabilistic. 
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        In table- 1 below, we are going to show the estimated values of the hazard rates for different number 
of turns fitted using the standard method of least squares estimation of linear parameters. The equation is 
transferable to the form  
 

              loge (T - C) = loge α - λ τ.  
 

The coefficients of determination, which actually are the squares of the correlation coefficients between (T 
- C) and τ, expressed in percentages, would also be computed. The coefficient of determination expresses 
the level of acceptability of the linear mathematical model concerned. For example, if the coefficient of 
determination in a particular case is 95.88, then it can be concluded that 95.88% of the relationship between 

the two variables concerned, in this case loge (T - C) and τ, in the simple linear regression model, can be 
attributed to mathematical reasons while the rest 4.12% is attributed to randomness. Thus a high coefficient 
of determination reflects high acceptability of the mathematical model concerned. We are going to tabulate 
below the equations estimated from the experimental observations and their coefficients of determination 
concerned.  

 

Table 1: Equations for Different Number of Turns 

Number of turns The equation Coefficient of determination 

1 T = 29 + 45.98223 e
-0.19932 τ

 87.61 

2 T = 29 + 45.79230 e
-0.21201 τ

 90.42 

3 T = 29 + 38.63779 e
-0.21285 τ

 95.88 

4 T = 29 + 39.26839 e
-0.21881 τ

 94.15 

5 T = 29 + 38.32226 e
-0.21847 τ

 94.33 

 

It can be seen that the hazard rate increases with increase in the number of turns. As for the fits, it can be 
seen that the coefficients of determination are very high, thus showing that the log-linear fits are good 

enough.                      
Table 2: The Cases of Single Loops with Length 30 cm 

Diameter The equation Coefficient of determination 

¼ inch T = 29 + 26.45727e
-0.33842 τ. 97.12 

1/2 inch T = 29 + 33.97826e
-0.10462 τ. 98.92 

5/8 inch T = 29 + 43.91557e
-0.06439 τ. 99.44 

 

Table 3: The Cases of Single Loops with Length 35 cm 

Diameter The equation Coefficient of determination 

¼ inch T = 29 + 26.21167 e
-0.22985

 
τ. 99.53 

1/2 inch T = 29 + 37.28030 e
-0.10089 τ. 99.47 

5/8 inch T = 29 + 49.14209 e
-0.06541 τ. 99.51 

 

Table 4: The Cases of Single Loops with Length 40 cm 

Diameter The equation Coefficient of determination 

¼ inch T = 29 + 29.81405e
-0.25262 τ. 99.79 
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1/2 inch T = 29 + 34.32479e
-0.09192 τ. 97.85 

5/8 inch T = 29 + 56.89776e
-0.05266 τ. 99.29 

 

         In Tables 2, 3 and 4, we have shown the equations concerned for heat pipes with single loops for 
three different lengths of the evaporator section of the heat pipes.          We can clearly see that for any 
fixed length of the evaporator section of the heat pipe, the hazard rate decreases steeply with increase in the 
diameter of the pipe. Here too it can be seen that the coefficients of determination are very high indeed, 
reflecting the fact that the statistical fits are good enough. 

         We now proceed to find statistically the possible relation between the log linear regression parameter 
λ and the number n of turns in the evaporator section of the pipes. It can be observed that λ increases as the 
number of turns increases. As soon as it has been established that decrement of temperature is negative 
exponential, we are already certain that in any particular number of turns in the evaporator section the 
hazard rate is constant, independent of time. We hypothesize that the hazard rate λ increases exponentially 
with respect to number of turns. If this hypothesis is found to be nonrejectable, it  would help us in drawing 

a conclusion that we should not possibly go on increasing the number of turns indefinitely because this 
would have an adverse effect on cooling. The hypothesized equation in this case is  

               λ = ξ e
 ψ n

, ξ ≥ 0, ψ ≥ 0.                                                             
Once again, as it is transformable to the linear form of the type 

              loge λ = loge ξ + ψ n, 

we can use the method of least squares to fit the equation.  

 

Table 5: Hypothesized Values of the Hazard Rates 

Number of Turns Calculated Hazard Rates Hypothesized Hazard Rates 

1 0.19932 0.20324 

2 0.21201 0.20766 

3 0.21285 0.21217 

4 0.21881 0.21678 

5 0.21847 0.22149 

                          

         We could conclude that the log linear equation fits the data very well. Indeed, it could be seen that 

the coefficient of determination is 80.84. In other words, 80.84% of the variations are due to this 
mathematical relationship. Hence, it can be concluded that φ follow the positive exponential law. We 
therefore conclude that the equation 

             λ = 0.19892 e
 0.021504 n

   
is statistically valid with coefficient of determination 80.84%. In table- 5 above, we are showing the 
estimated values of the hazard rates for different number of turns.            

         We have thus found that hazard rate increases exponentially with respect to number of turns in the 
evaporator section. When plotted, the curve looks almost like a straight line. However, we have found that 
an exponential fit does have a very high coefficient of determination, and therefore we can now say that the 
positive growth is indeed exponential. One point is obvious here. Perfect optimization of the number of 
turns with respect to hazard rate is not possible because the curve concerned is an increasing one though the 
rate of increase is very slow. 

  

5. Conclusions 

         Hazard rate as defined in reliability theory is an important measure in defining certain physical 
parameters. Particularly when we have an exponential decay curve, the hazard rate will be a constant. In 
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studying the change of temperature in a heat pipe heat exchanger with respect to time, this measure can 
help us to decide how length of the evaporator section, diameter of the pipe and number of turns in the pipe 
affects the rate of change of temperature.  
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