
FAILURE MODES IN EMBEDDED SYSTEMS AND ITS PREVENTION 

Ms. Samitha Khaiyum, MCA, M Phil,(PhD)  Dr. Y S Kumaraswamy, M Sc, PhD, PDF (IISC) 

Senior Lecturer and Research scholar, MCA (VTU), Sr Prof and Head, MCA (VTU), 

 DSCE, Bangalore-78                   DSCE, Bangalore-78 

 

ABSTRACT: Systems failures do not occur 

in a vacuum; while a single event may 

trigger the failure, investigation often 

reveals that a history of managerial and 

technical decisions produce conditions 

turning a single event into a disaster. At the 

minimum, investigating case studies 

provides lessons on what to avoid. By 

systematic studies of failure, it may be 

possible to draw general conclusions and 

improve practice as a whole. 

Unfortunately, good systems failure studies 

are rare. Embedded systems failure is a 

volatile topic and the field is filled with a 

vast amount of noise, urban myth, and 

political agendas. 

INTRODUCTION: Systems fail for 

various reasons, ranging from inevitable 

hardware breakdowns to avoidable loss of 

morale. However, the accidents that result in 

system failures are not unique and have 

often been encountered before. 

Technological failure modes in embedded 

systems can be divided into two main 

groups: hardware failure modes and 

software failure modes; the toughest failures 

to prevent however are those caused by 

subtle interactions between hardware and 

software. 
 

Some examples of software failure modes 

are: 
*Buffer overflow: the computer memory is 

smaller than the programmer expected, so 

during operation of the embedded system, 

one of the programs in the system is 

accessing wrong parts of the computer's 

memory. 

*Dangling pointers: this error is common in 

non-safe programming languages in which 

the human programmer is responsible for 

making sure that every pointer points to the 

right memory location at all times. 
*Resource leaks in which programming 

errors lead to the loss of computer control 

over some of the hardware resources; 

memory leaks are the simplest form of 

resource leak. 
*Race conditions in which specific relative 

timing events of different components of the 

system leads to unexpected behavior. Such 

race conditions are often hard to detect by 

testing only. 

*Semantic design, for example: the meaning 

of an arrow between two subsystems in a 

visual software environment should be the 

same as the interpretation of it by the 

hardware. 
 

Some examples of hardware failure modes: 
*Electrical failure: short-circuiting, too high 

voltage/current 
*Mechanical failure: jamming of a valve 

*Temperature effects: deformation of 

components 

*Material failure: corrosion 

Some examples of software failure causes 

are: 

*Deadlock: two or more processes are each 

waiting for the other to finish, so none of the 

processes ever finish. 

*Resource starvation: a process doesn't get 

the resources it needs, so it can never finish. 

*Too small memory 



*Noise 

*Shared interfaces with other systems 

 

Some examples of hardware failure causes: 

*Hostile environments: any factor which 

prevents a system from functioning 

correctly. 

*Badly calibrated sensors 

*Choosing the wrong dimensions 

*Manufacturing/assembly process 

deficiencies 

 

Some failures are not caused by hardware or 

software, but are caused on the system 

level.  

 

An example of a system failure cause: 

Operational failure: human operators make 

mistakes too.  

At the minimum systems failures should be 

studied so as to prevent the same failure 

from occurring twice. However, in addition 

to uncovering specific engineering failures, 

it is possible to draw broader conclusions 

about engineering practice by studying 

failures. Systems failures happen for a 

reason, and these reasons do not have to be 

unique to either the situation or discipline. 

Overview: 

Due to the increasing capabilities and 

functionality of embedded systems, it is 

difficult to prevent or sometimes even detect 

failure modes. One way to ensure reliability 

is extensive testing using techniques such as 

probabilistic reliability modeling. One of the 

problems with these techniques is that they 

are only used in the late stage of 

development. It is better to design quality 

and reliability in, in the early stages of 

development. 

To detect failures in the design process it is 

important to perform different tests on the 

system (especially on the software) at the 

beginning of the design. But tests are often 

expensive and they also should provide the 

correct information: the usability of test 

results depend on the quality of the test. So 

it is not always easy to come up with an 

appropriate test. 

 

Dynamic analysis in the software world is 

the testing and evaluation of software by 

executing programs on a processor. An 

example of a dynamic analysis on hardware 

could be vibration and stress analysis. 

 

These days engineers have developed a 

static analysis for software, which is test-

free: no specific tests need to be developed 

and the software can be checked for flaws 

without having to execute the program. 

 

There are a number of possibilities to reduce 

the chance of failure occurrences. But some 

failures need to be treated more urgent than 

others. At first one should look at the 

frequency with which a systems fails, this is 

called the failure rate of a system. It is 

desired that systems don‟t fail, but if a 

failure is very rare it is often not necessary 

to take steps. 

 

Another aspect of a failure mode is its 

severity. An electrical appliance that short-

circuits can be life threatening, whereas the 

jamming of a valve in vending machine is 

less life threatening. 

 

Despite all the effort an engineer can put 

into designing a system that doesn‟t fail, 

failures will always occur. For example: an 

average cell phone these days contains as 

much as 2 million lines of software code. It 

is very likely that in one of those lines a 

fault is introduced. Systems are getting even 

more complex. For instance: that same cell 

phone is expected to have as much as 10 

million lines of code in 10 years. Therefore 

a design should be more robust. When the 



system detects something goes wrong it can 

signal this and go into a safe mode until the 

user takes appropriate actions. Take for 

example again the jamming of a valve of the 

vending machine: the machine can light all 

its leds to signal something is wrong and 

cease providing soda until it is repaired. 

 

Failures are also to be expected when 

separate systems have to work together,.So 

they have to cooperate in order to play the 

entire theme correctly. 

 

The cost of designing embedded control 

systems tends to increase exponentially with 

increasing reliability: removing X% of the 

faults in a system will not necessarily 

improve the reliability by X% (a study at 

IBM proved that with removing 60% of the 

errors, only 3% reliability was added). In 

some cases, it may therefore be more cost 

effective to not investigate in more 

trustworthy systems but to pay the failure 

costs. However one has to keep in mind that 

this strategy can lead to a bad name of the 

company for selling systems that cannot be 

trusted. There is always a trade-off between 

different design criteria, depending on the 

system. Off course, critical systems should 

always be designed as reliable as possible. 

 

 

This all stresses out how important it is to 

rule out failures in the design process. 

Fortunately, engineers have developed some 

procedures to do this systematically. All the 

following procedures can be used in what is 

called safety engineering. The study of 

failures is an important aspect of designing 

embedded control systems as it can safe 

time, money and even lives, and helps with 

eventual future modification of a system. 

 

 

Design Process and Control 

 

 

The process starts by generating the 

User/Product‟s set of needs that are 

documented as the features of the system.  

This is typically described by documenting 

the intended use of the device to be 

designed. 

The Design Inputs or Requirements phase is 

the next critical point. The basic form fit and 

function are determined and then broken 

down to a list of requirements. These can 

then be partitioned into: 

 Electronic Requirements  

 Software Requirements  

 Mechanical Requirements  

 Environmental Requirements.  

Documenting the Design Input in a 

Requirements Specification and is adept at 

converting and documenting informal and 

even verbal requirements is required. The 

design input, whether formal or informal, 

results in a list of “SHALLs”. These can be: 

 Directly Stated  

 Derived by the Design Engineer 

from Stated Requirements  



 Referenced by a Stated Requirement 

to another document  

 Referenced to an Agency 

specification  

It is the design engineer's responsibility to 

generate a design which complies to this list 

of SHALLs. 

The design process produces many 

documents, which have various names and 

means of subdivision and organization, but 

most are similar to the Design Specification 

and Test Plan. 

These design inputs are used for the product 

Design and the generation of the Design 

Specification.  The Design Specification 

converts the raw requirements to detailed 

and parametric specifications from which a 

design can be generated.  

Also generated is the test plan which 

provides test procedures and pass/fail 

criterion linked through the design 

specification to the requirements document. 

This linkage is usually called Requirements 

Traceability and the tool often used to 

demonstrate this linkage, is a Requirements 

Verification Matrix.  

These outputs combined with schematics, 

software code, PCB databases, Mechanical 

models, etc. are the resultant of the design 

activity and are the Design outputs.  All 

Design outputs combined together results in 

the Final product.  

Design Reviews are a required part of all 

Benchmark Design Projects and the review 

board consists of the design team, 

independent reviewers and usually the 

customer. These give the design team 

benefit of the review board„s aggregate 

experience and ensure that the required level 

of rigor and design discipline has been used 

in the execution of the design process. 

Design Verification / Validation 

The Verification and Validation Process is a 

methodology used to prove conformance to 

product features and design 

inputs/requirements. 

Design Verification confirms that the results 

of the design process meet the design 

requirements. Design Validation ensures 

that the resultant device or product performs 

the intended function.  

The Test Plan provides the various methods 

to prove conformance to the requirements, 

which include: 

 Inspection/Audit  

 Analysis  

 Review  

 Test  

Inspections or audits can be performed by 

the design team, an independent team or the 

customer. These run the gamut from 

ensuring compliance to process through 

determining “as designed / as built” 

criterion. 

Analysis is usually performed by the 

designer and offered in support of a 

statement of compliance or in defense of the 

design during a review.  

Test is the most visible method used in the 

verification process. A series of electrical, 

mechanical and environmental stimulus is 

applied to the design or its subsystems and 

the responses are measured and judged for 

compliance to the specifications and 

requirements.  

 



References:  

1. Embedded Systems Case Studies, 

Carnegie Mellon University, Spring 1999, 

Michael Collins 

2.Embedded Control Systems 

Design/Failure modes and prevention 

3.www.ece.cmu.edu/.../koopman07_depend

ability_everyday_embedded_abs.pdf 

 

 


