
IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, December 2011 
ISSN : 2250:3439  

https://sites.google.com/site/ijcesjournal 
http://www.ijces.com/ 

34 

 

 

An Evolutionary Algorithm for Mining Association Rules Using Boolean 

Approach 

 
G.Ravi Kumar

1
                       Dr.G.A. Ramachandra

2
                       G.Sunitha

3 

 
1. Research Scholar, Department of Computer Science &Technology, S K University,  Anantapur, 

2. Associate Professor, Department of Computer Science & Technology, S K University, Anantapur 

3. Research Scholar, Rayalaseema University, Kurnool 

 

ABSTRACT 

 
Frequent pattern mining is one of the active research themes in data mining. It plays an important role in all data mining tasks such as 

clustering, classification, prediction, and association analysis. Identifying all frequent patterns is the most time consuming process 

due to a massive number of patterns generated. A reasonable solution is identifying efficient method to finding frequent patterns 

without candidate generation.  In this paper, we present An Evolutionary algorithm for mining association rules using Boolean 

approach for mining association rules in large databases of sales transactions. Traditional association rule algorithms adopt an 

iterative method to discovery, which requires very large calculations and a complicated transaction process. Because of this, a new 

association rule algorithm is proposed in this paper. This new algorithm scanning the database once and avoiding generating 

candidate itemsets in computing frequent itemset and   adopts a Boolean vector “relational calculus” method to discovering frequent 

itemsets. Experimental results show that this algorithm can quickly discover frequent itemsets and effectively mine potential 

association rules. 
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1. Introduction 
Knowledge discovery in databases (KDD) is defined as the non-trivial extraction of valid, implicit, potentially useful 

and ultimately understandable information in large databases [1]. For several years, a wide range of applications in 

various domains have benefited from KDD techniques and many works has been conducted on this topic. The problem 

of mining frequent itemsets arose first as a sub-problem of mining association rules [2]. 

        Association rule mining is one of the most important techniques of data mining. It aims to extract interesting 

correlations, frequent patterns, associations or casual structures among a large set of data items. A typical application is 

market basket analysis, which studies the buying habits of customers by searching for sets of items that are frequently 

purchased together [1]. Other application areas include customer segmentation, store layout, web usage mining, 

software defect detection, telecommunication alarm prediction, and bioinformatics. 

 2. Association rules 

2.1. Problem definition 

Association rule mining is a data mining method to find the interesting association or correlation among a large set of 

data items. A formal statement of the association rule mining problem is as follows [2]. Let { I= Ii, I2,…Im } be a set of 

items. Let D be a set of transactions, where each transaction T is a set of items such that T I .Associated with each 

transaction is a unique identifier, called TID. A transaction T contains X, a set of items in I, if X T .An association 

rule is an implication of the form XY, where X I ,Y I , and XY = XY holds in the 

transaction set D with confidence C if C% of the transactions in D that contain X also contain Y. The rule XY has 

support S in the transaction set D if S% of the transactions in D contain XY. Confidence determines the strength of 

the rule and support measures the frequency of the occurring pattern. A set of items is referred to as itemset. An itemset 

that contains k items is a k-itemset. The occurrence frequency or count of an itemset is the number of transactions that 

contain the itemset. If an itemset has a transaction support higher than a user-specified minimum support threshold, it is 

a frequent itemset. Given a set of transactions, D, the problem of association mining is to find strong rules with support 

and confidence greater than the given minimum support and confidence thresholds, respectively. An association rule 

discovery algorithm can be decomposed into two successive stages [3]. In the first stage, all sets of frequent items are 

discovered. In the second stage, rules are derived from these itemsets. It is important to generate all itemsets efficiently. 

An efficient association rule discovery algorithm is discussed in the next section. 

     In this paper, we proposed a new algorithm based on Boolean method called An Evolutionary algorithm for mining 

association rules using Boolean approach. This algorithm transforms a transaction database into a Boolean data stored 

in bits using bit streams. Meanwhile it uses the Boolean vector “relational calculus” method to discover frequent 

itemsets. We use the fast and simple “and calculus‟‟ in the Boolean table to replace the calculations and complicated 
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transactions that deal with large numbers of itemsets. Experimental results show that this algorithm is more effective 

than the Apriori-like algorithms. 

3. Related works 
The Apriori algorithm[3] proposed by Agrawal et al. is a classical algorithm for association rules mining. The name of 

the algorithm comes after a prior knowledge about frequent itemsets was used. The prior knowledge is that any non-

empty subset of a frequent itemset is also frequent. Apriori algorithm uses a level-wised and iterative approach, it first 

generates the candidates then test them to delete the non-frequent itemsets. Most of previous studies adopted an Apriori-

like candidates generation-and-test approach. 

          Han et al. developed the FP-growth algorithm[4] that is based on frequent pattern tree. Comparing with Apriori 

algorithm, this algorithm has following features. (1) It uses FP-tree to store the main information of the database. The 

algorithm scans the database only twice, avoids multiple database scans and reduces I/O time. (2) It does not need to 

generate candidates, reduces the large amount of time that is consumed in candidates generation and test. (3) It uses a 

divide-and-conquer approach in the mining process, so the searching space is significantly decreased. The efficiency of 

the Fpgrowth algorithm is about an order of magnitude faster than the Apriori algorithm. 

        However, there still exist some aspects in FP-growth algorithm that can be improved. For example, it needs to 

recursively generate huge number of conditional FP-trees that consumes much more memory and more time. It has 

appeared several improved FP-growth algorithms based on original one. Fan and Li [5] presented a constrained subtree 

based approach to avoid the generation of huge number of conditional FP-trees recursively in the mining process. They 

also reduced the fields in each FP-tree node. Their approach has better time and space scalability than FP-growth 

algorithm. Grahne and Zhu [5] proposed an array-based technique to reduce the time cost in FP-tree traverse. They also 

implemented their own memory management for allocating and deallocating tree nodes.Qin et al. combined several 

advanced techniques above, presented a compact FP-tree based frequent patterns mining algorithm, CFPmine [6]. It 

uses constrained subtrees of a compact FP-tree to mine frequent pattern, so that it is doesn‟t need to construct 

conditional FP-trees in the mining process, so the memory cost is reduecd. It also uses an array-based technique to 

reduce the time on traverse of the CFP-tree, the efficiency is improved.  

4. Proposed Algorithm 

Amount of data in the database is increasing day-by-day. So, the process of generating frequent itemsets turns 

out to be the bottleneck in mining association rules. Therefore, researchers have focused on developing efficient and 

effective algorithms for the generation of frequent itemsets.  

Our algorithm is an effective algorithm for mining association rules in large databases .Like the Apriori 

algorithm, our algorithm mines association rules in two steps. In the first step compute frequent itemsets using logic OR 

and AND operations . In the second step, to derive all interesting association rules based on the computed frequent 

itemsets using logic AND and XOR operations. By scanning the database only once and avoiding generating candidate 

itemsets in computing frequent itemsets, the Implemented algorithm gains significant performance improvement over 

the Apriori algorithm.  

4.1    Generation of Frequent Itemsets  

The implemented algorithm generates frequent itemsets through evolutionary iterations based on two tables, 

the item details table and the transaction table. Section 4.1.1 describes the transforming transaction data into boolean 

data. Then, Section 4.2 describes the process of generating frequent k − itemsets.  

4.1.1    Transforming a transaction details into a Boolean Table  

            The Boolean table is a matrix with element values of „1‟ or „0‟ ,where items are present in the 

transaction means 1 otherwise 0.Finally, a column vector Ck is utilized to store the reference count of all 

frequent k-itemsets in the k
th

  iteration.The reference count on a k-itemset can be obtained by counting the 

number of l‟s in the corresponding row of boolean table .  

4.2    Generation of Frequent k-itemsets: 

Frequent k-itemsets can be generated through the following iteration:  

Repeat  

1. Read a pair of different rows from a Boolean table .  

2. Applying OR operation on these two rows will get a new temporary itemset. If the temporary itemset contains more 

than k different items or is already produced by a previous OR operation, proceeding to step l (i.e., ignore this new 

itemset); otherwise, go to step 3 (i.e., until a new k-itemset has been found).  

3. Performing AND operation on the two rows of Boolean table , correspond to the rows of step2. The result shows that, 

which transactions contain this new k-itemset. And then counting the number of 1‟s in the result to get the reference 

count of this new k-itemset. If the count is less than the number of transactions required by the minimum support, the 

new k-itemset is discarded. 

After the generation of frequent k-itemset, the Boolean table of the k-itemset and its corresponding reference 

count vector are kept in frequent itemset table for generating association rules.  
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4.3    Generation of Association Rules  

In this section, the way that our algorithm mines association rules from the final frequent itemsets table is 

presented.  

Based on the above-mentioned observation, the implemented algorithm mines an association rule by first 

identifying the potential antecedent and potential consequent, and then validates if such a rule satisfies the minimum 

confidence requirement. The basic ideas for mining association rules are described as follows.  

1. Elimination of the rows of 1-itemsets from frequent item table which have no opportunity to be an antecedent or a 

consequent of any association rules. The algorithm simply counts the occurrences of 1s in each column of Boolean 

table. A 1-itemset whose corresponding column has only one 1 in the whole column should be eliminated.  

2. Performing an AND operation on two rows, say X and Z, of item details in frequent item table , and then comparing 

the results with the one which has less number of items, assuming it is X. If they are equal, then the frequent itemset 

with less number of items (i.e., X in this case) is a potential antecedent.  

3. Applying an XOR operation on the two rows chosen in step 2. The result, denoted as Y, of the XOR operation 

constitutes a potential consequent with X being its corresponding antecedent.  

 4. If support (Z) / support(X) is greater than or equal to the minimum confidence, then the association rule X Y is 

generated. 

 Step 2 through step 4 is referred for any combination of X and Z, until no new rules is found.  Number of association 

rules, are created, to store the antecedent X, consequent   Y support and confidence for each association rule XY.   

 

If the association rule X Y holds, then all X, Y and X U Y must be frequent itemsets. Since X U Y contains 

both X and Y, it can be inferred that if a frequent itemset is not a subset of any another frequent itemset in frequent item 

details, then it can be neither an antecedent nor a consequent of any association rule. This observation is the foundation 

of the implemented algorithm in mining association rules. To expedite the mining process, from the frequent item table, 

those frequent itemsets that are not subset of any other frequent itemsets can be eliminated at first. However, it has been 

found that only frequent 1-itemsets are candidates for the elimination.  

 

4.4. ILLUSTRATIVE EXAMPLE 

Let I = {i1, i2, ···, in} be a set of items. Given a set of sales transactions D, where each transaction T is a subset 

of I, an association rule is an expression of the form  

                                                 X Y 

  Where X and Y are subsets of I. An association rule X Y holds in the transaction set D with a confidence c 

and support s. 

 Sample database D in figure 4.1 is taken for consideration. The database has 4 sales transactions with 5 items, 

i.e. {Bread, Milk, Jam, Sugar, and Butter}. 

 All items have individual code numbers, i.e. 

Item Code 

Bread 1 

Milk 2 

Jam 3 

Juice 4 

Coke 5 

 

Figure 4.1 Items with code 

 

 Transaction T1 of the sample database D shown in figure 4.2 states that items 1, 3 and 4 were purchased. 

According to the figure 4.1, item codes 1, 3 and 4 significantly show items Bread, Jam and Sugar.  

TID Items 

T1 1,3,4 

T2 2,3,5 

T3 1,2,3,5 

T4 2,5 

 

Figure 4.2 Transactional Database 

 4.4.1 Transforming a transaction details into a Boolean Table : 

The item details table , transaction table and Count(C) are first initialized. 

 

 1 2 3 4 5 T1 T2 T3 T4 C 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, December 2011 
ISSN : 2250:3439  

https://sites.google.com/site/ijcesjournal 
http://www.ijces.com/ 

37 

 

1 1 0 0 0 0 1 0 1 0 2 

2 0 1 0 0 0 0 1 1 1 3 

3 0 0 1 0 0 1 1 1 0 3 

4 0 0 0 1 0 1 0 0 0 1 

5 0 0 0 0 1 0 1 1 1 3 

 

Figure 4.3 Boolean table 

 

 

 

 

4.4.2 Generate Frequent k-Itemsets: 

  After construction of the initial item and transaction table, the corresponding row which doesn‟t 

support minimum support requirement is removed. 

 

 1 2 3 4 5 T1 T2 T3 T4 C 

1 1 0 0 0 0 1 0 1 0 2 

2 0 1 0 0 0 0 1 1 1 3 

3 0 0 1 0 0 1 1 1 0 3 

5 0 0 0 0 1 0 1 1 1 3 

 

Figure 4.4 frequent-1 item table 

4.4.3  Generation of Frequent k-itemsets: 

By performing OR and AND operations on frequent item table (in Figure 4.2), respectively, frequent k-item 

table is derived in Figure 4.5(a). It is noted that the itemset {1, 5} is not in table , because it fails to satisfy the minimum 

support requirement. Similarly, frequent item-3 table is derived from frequent -2 item table  which contains only one 

frequent 3-itemset, as shown in Figure 4.5(b).  

After the iteration is completed, the final frequent items, which is needed for generation of the association 

rules, is shown in figure 4.6 

 1 2 3 4 5 T1 T2 T3 T4 C 

1,3 1 0 1 0 0 1 0 1 0 2 

2,3 0 1 1 0 0 0 1 1 0 3 

2,5 0 0 1 0 1 0 1 1 1 3 

3,5 0 0 1 0 1 0 1 1 0 3 

a) frequent 2-item table 

 

 1 2 3 4 5 T1 T2 T3 T4 C 

2,3,5 0 1 1 0 1 0 1 1 0 2 

b) frequent item-3 table 

Figure 4.5 Generation of frequent k-itemsets 

 
Upon concatenation all Items and count tables to form the final frequent item table. This table will have all 

frequent itemsets and their counts.   

 1 2 3 4 5 C 

1 1 0 0 0 0 2 

2 0 1 0 0 0 3 

3 0 0 1 0 0 3 

5 0 0 0 0 1 3 

1,3 1 0 1 0 0 2 

2,3 0 1 1 0 0 3 

2,5 0 0 1 0 1 3 

3,5 0 0 1 0 1 3 

2,3,5 0 1 1 0 1 2 

Figure 4.6 frequent item table 

 
4.5 Generation of Association Rules 
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In this section, the way that Boolean algorithm mines association rules from the final frequent itemsets table is 

presented. 

 

Considering row {2} and row {2, 5} in the frequent item table of Figure 4.6 , by performing bit-wise AND 

operation on the row {2} and the row {2, 5}, a binary vector (01000) is obtained, which is exactly the same as that of 

row {2}. Therefore, {2} is an antecedent. By performing a bit-wise XOR operation on row {2} and row {2, 5} itemset 

{5} is derived as the corresponding consequent. A rule of 25 is therefore discovered. By checking the counts of {2, 

5} and {2} in frequent item table  and performing the necessary computations, the support and the confidence of this 

rule, which is 75% and 100% is calculated, respectively. 

 

 

 

 

 

Antecedent Consequent Support Confidence 

1 3 50% 100% 

2 3 50% 67% 

2 5 75% 100% 

2 3,5 50% 67% 

3 1 50% 67% 

3 2 50% 67% 

3 5 50% 67% 

3 2,5 50% 67% 

5 2 75% 100% 

5 3 50% 67% 

5 2,3 50% 67% 

2,3 5 50% 100% 

2,5 3 50% 67% 

3,5 2 50% 100% 

 

Figure 4.7 Derived Association Rules  

 

5. REULTS 

 
In order to appraise the performance of the proposed algorithm, we conducted an experiment using the Apriori 

algorithm and our algorithm. The algorithms were implemented in java and tested on a WindowsXP Professional 

platform. The test database T20I4D100K was generated synthetically by an algorithm designed by the IBM Quest 

project. The number of items N is set to 1000; |D| is the number of transactions; |T| is the averages size of transactions, 

and |I| is the average size of the maximum frequent itemsets. Figure 5.1 presents the experimental results for different 

numbers of minimum supports. The results show that the performance of our algorithm is much better than that of the 

Apriori algorithm. Moreover, the better the performance efficiency of our algorithm is, the smaller the minimum 

support. This is because the smaller the minimum support, the more candidate itemsets the Apriori algorithm has to 

determine, and also the Apriori algorithm‟s join and pruning processes take more time to execute. However, the our 

algorithm does not produce candidate itemsets, and it spends less time calculating k-supports with the Boolean item 

table pruned. 

T2014D100K 
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                                                         Figure 5.1 Performances of Apriori and our algorithm 

6. Conclusions  

 
Association rules are basic data mining tools for initial data exploration usually applied to large data sets, seeking to 

identify the most common groups of items occurring together. The most common application of association rule mining 

is market basket analysis. In this paper, An Evolutionary algorithm for mining association rules using Boolean approach  

is proposed. The main features of this algorithm are that it only scans the transaction database once, it does not produce 

candidate itemsets, and it adopts the Boolean vector “relational calculus” to discover frequent itemsets. In addition, it 

stores all transaction data in bits, so it needs less memory space and can be applied to mining large  databases. 
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