
IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

49 
 

Joint Design of Cluster-Based Hierarchical Networking 

Architecture and Key Management System for 

Heterogeneous Wireless Sensor Networks 
 

McKenzie McNeal III, Wei Chen, Sachin Shetty 

 

Tennessee State University, 3500 John A. Merritt Blvd., Nashville, 

Tennessee 37209 

mmcneal01@mytsu.tnstate.edu, {wchen, sshetty}@tnstate.edu 

 

Stanley Aungst 

 

Pennsylvania State University, 1011 Information Science & Technology 

Building, 

University Park, Pennsylvania  16802 

sga103@psu.edu 

 

 
Abstract.  Current communication protocols used for Wireless Sensor Networks (WSNs) have 

been designed to be energy efficient, low redundancy in sensed data, and long network lifetime.  

One major issue that must be addressed is the security of data communication.  Due to the 

limited capabilities of sensor nodes, designing security-based communication protocols present 

a difficult challenge.  Since commonly used encryption schemes require high time complexity 

and large memory, achieving security for WSNs needs unique approaches. In this paper, we 

consider a heterogeneous wireless sensor network (HWSN), where while most nodes are 

resource limited a few nodes can have more energy, stronger processing capability and longer 

communication range and can be used to relax the resource bottleneck.  We propose a joint 

design approach that can best use the benefit that a HWSN brings. We first design a 

reconfigurable hierarchical networking architecture, where the HWSN is divided by the high-

end nodes into regions, the low-end nodes in each region are divided by clusters, and high-end 

nodes and cluster heads form a communication/relay backbone. We then design a key 

management system that uses both public and symmetric key cryptography above the 

hierarchical networking architecture which requires very small number of security keys. The 

evaluation and simulation results show that by using the proposed networking architecture and 

key management scheme only a small amount of keys needs to be preloaded before deployment 

and stored after key setup to achieve secured communication throughout the entire network. 

 

 

Key words: security, key management, sensor networks, heterogeneity 

 

1 Introduction 

 
A wireless sensor network (WSN) of low cost sensor nodes can be densely 

deployed and used for distributed data gathering, monitoring and surveillance in the 

applications of wildlife monitoring, military command, distributed robotics, industrial 

quality control, observation of critical infrastructures, smart buildings, intelligent 

communications, traffic monitoring, examining human heart rates, etc [1].  Some 

mailto:mmcneal01@mytsu.tnstate.edu
mailto:sshetty%7d@tnstate.edu
mailto:sga103@psu.edu


IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

50 
 

research has used WSNs for detecting the release of a poisonous gas [2].  But the 

information gathered by these applications is not properly protected.  Security 

presents a major challenge in WSN design due to the limited resources and constraints 

of the sensor nodes.  Any attacks that occur on the network could drain the limited 

resources.  A security approach requires a certain amount of resources for 

implementation, including memory for storing security keys and code space, time 

complexity for encryption, decryption, and transmission, and energy to power the 

sensor node.  Sensor nodes do not have the capability to support traditional security 

methods.  Some applications may require a WSN to operate unattended or within a 

hostile environment.  This situation exposes the network to physical attacks if the 

environment is open to adversaries, bad weather, etc.  WSNs will also need to be 

managed remotely, which makes it virtually impossible to detect physical tampering 

and physical maintenance issues. 

In this paper, we consider a heterogeneous wireless sensor network (HWSN), 

where while most nodes are resource limited a few nodes can have more energy, 

stronger processing capability and longer communication range and can be used to 

relax the resource bottleneck experienced in homogeneous WSNs and increase the 

lifetime of the network by taking on greater responsibilities than a typical resource 

constrained sensor node [3-5].  Some security methods developed for HWSNs show 

that heterogeneity helps to provide leverage in security by using high-end sensor 

nodes (H-nodes) to take on more security responsibilities than low-end sensor nodes 

(L-nodes) [6-9].  In this paper, we introduce a robust network architecture coupled 

with a secure communication scheme to provide security for HWSNs.  Hierarchical 

networking architecture is defined by two layers of regions and clusters.  The H-nodes 

divide the deployment area into regions, where each L-node belongs to the region of 

the closest H-node. In each region, the L-nodes are clustered. Cluster heads and H-

nodes form a backbone tree that can be used for data aggregation and relay.  This 

architecture allows for self organization without localization information.  A 

combination of both symmetric and asymmetric keys is used to secure node to node 

communication.  For asymmetric key cryptography we use Elliptic curve 

cryptography (ECC) that is feasible for sensor nodes, providing a 160-bit key which is 

securely equivalent to the RSA 1024-bit and thereby provide public key cryptography 

for WSNs [11-12].  For symmetric key cryptography, L-nodes use preloaded keying 

materials and neighbor knowledge to dynamically generate a pair-wise key [13-14]. 

The rest of this paper is organized as follows.  Section II discusses related works 

on security for HWSNs.  Section III presents proposed robust network architecture, 

hierarchical networking architecture self formation/reconfigurations algorithms and 

discuss the roles of H-nodes and L-nodes in data relay.  In section IV, we will discuss 

the key management scheme and secure routing.  Section V shows the simulation 

results and comparative analysis for key storage.  Finally, section VI concludes this 

paper. 

 

2 Related Work 

 
Some research has been done to design security methods for HWSNs.  In [6], a 

hybrid key management scheme called LIGER was proposed.  LIGER uses a 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

51 
 

probabilistic unbalanced key distribution scheme where a relatively large number of 

keys are preloaded onto H-nodes than L-nodes.  The scheme also has the ability to 

change from a standalone key-management system called LION to a key distribution 

center (KDC) based key management system called TIGER in case the sensor 

network is able to communicate with an existing backbone network. 

Lu et al. [7] proposed two key distribution schemes, key-pool based and 

polynomial-pool based schemes, for HWSNs so that H-nodes and L-nodes can 

established at secure communication.  In the key-pool based scheme, if two nodes 

share a key, they can establish secure communication.  In the polynomial-pool based 

scheme, if two nodes exchange IDs, they can establish a secure link with a key only 

known by the two communicating nodes.  The same polynomial generates a different 

key for different pair of nodes. 

Du et al. [8-9] proposed a key distribution scheme that addresses the key 

exchange issue in homogeneous sensor networks by using both public-key and 

symmetric key cryptography to establish secure communication between H-nodes and 

L-nodes.  In this scheme, they introduce the c-neighbor concept, where nodes only 

need to establish a key with communicating neighbors that are in route back to the 

sink.  This helps to save resources of L-nodes so that they are not preloaded with an 

arbitrary number of keys before deployment.  Their performance evaluation show a 

significant decrease in the amount of keys preloaded before deployment from that of 

Eschenauer and Gligor key management distribution scheme [15].  Furthermore, the 

Du-scheme shows better resilience against node compromise by assuming that H-

nodes are tamper resistant and that any compromised L-node has minimal effect on 

the network because it only shares a key with communicating neighbors and not all of 

its surrounding neighbors. 

All of the aforementioned key management system offer beneficial methods to 

establishing secure communication for HWSNs, but we argue that by establishing a 

robust hierarchical networking architecture that defines the different roles for H-nodes 

and L-nodes will offer a measure of security that helps to alleviate some of the 

challenges of key distribution and offer a foundation for secure communication.  

Those challenges include designing reliable and available network architecture, 

forming a high performance network infrastructure through self-organization, 

preloading and storing the least amount keys necessary to achieve secure 

communication between each node and leveraging security tasks to maximize 

network resources. 

 

3 Robust Hierarchical Networking Architecture 

 
In a HWSN, we use two types of nodes, H-node and L-node, where the H-node 

has greater capabilities and more resources than the L-node.  The network consists of 

a large amount of L-nodes with a small amount of H-nodes.  We define a cluster-

based hierarchical networking architecture (CHNetArch) for the HWSN as follows: 

Definition 1 for HWSN: A HWSN can be represented by an undirected graph G = 

(V,E), where  V is a set of wireless nodes including m H-nodes and n L-nodes, and E 

is a set of edges. Given any two nodes u and v in V, edge   (   )   ,
 
if and only 

if u and v are in the communication range with each other (Figure 1). Without loss of 

generality, we assume that G is a connected graph, m << n, and each L-node u is in 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

52 
 

the communication range of at least one H-node v, i.e., u can receive the signal from 

v, though v may not be able to receive the signal from u, due to the difference of their 

capabilities. 

 

 

 

 

 
 

 

 
Figure 1 - Graph G with a set of wireless nodes, V, and set of edges, E. 

 

 

 

 

Definition 2 of H(G): Given G, we define a region division H(G) = {G1, G2, …, Gm}, 

where m is the number of regions.  G1, G2 , …,Gm are sub-graphs of G divided by H-

nodes H1, H2, …, Hm.  Let Gi = (Vi, Ei).  For each node    :      if and only if v 

is closer to Hi than any other H-node Hj (   ).  Gi is the sub-graph induced from Vi. 

Definition 3 of C(G): Given G, C(G) = {C1, C2, …, Cr} is the set of clusters in G, 

where    (       )    ⋃      
 
   .  Ci is the sub-graph of G induced from CVi.  

Ci is a complete graph and there is a node called as cluster head.  

Definition 4 of BT(G):  Given G, the backbone tree of G is a spanning tree of the H-

nodes and the cluster head nodes from C(G).  It is denoted as BT(G). 

The structure of G, H(G), C(G), and BT(G) are defined as follows: 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

53 
 

 Data structure for G: 

o u.type – L-node or H-node 

o u.id – identification (ID) of node u. 

o u.energy – remaining energy of node u. 

o u.nlist – neighbor list of node u in G. 

 Data structure for H(G): 

o u.regionhead – if u is an L-node, it has the ID of u’s regional head.  

o u.regionlist – if u is an H-node, it has a list of L-nodes in the region. 

 Data structure for C(G): 

o u.status – node u is a cluster member or cluster head. 

o u.cmlist – if u is a cluster head, it has a list of cluster members. 

o u.clusterhead – if u is a cluster member, it has the ID of u’s cluster head. 

 Data structure for BT(G): 

o u.parent – the ID of the parent node for node u. 

o u.childlist – the list of child nodes in the BT(G) for node u. 

There are three algorithms used for self-formation of H(G), C(G), and BT(G); region 

formation, clustering, and backbone tree formation.  There are also three algorithms 

for self-reconfiguration; node move-in, node move-out, and head rotation.  The 

algorithms are written in rounds where during one round, a node can transmit, receive 

and process/compute once. 

 Region Formation – H-nodes divide the sensor field into regions using Voronoi 

Diagram, where each L-node belongs to the region of the closest H-node.  In the 

region formation algorithm, the L-node selects the H-node which has the 

strongest signal to be its region head. 

Algorithm 1 Regional formation of G 

Input:   G = (V, E). 

Output:   H(G) = {G1, G2, …, Gm} 

Round 1: 

1. Each H-node w in G broadcasts a declaration message, (w, “region 

declare”). 

2. When L-node u receives a message (w, “region declare”), u sets w to be 

u.region.  If u receives more than one message, u chooses the sender 

which has strongest signal strength to be u.region. 

 Clustering – L-nodes find neighbors by broadcasting there IDs and receiving and 

accepting IDs of neighboring L-nodes in the same region Gi.  L-nodes are then 

grouped into completed graphs in each region using the clustering algorithm that 

assigns one cluster head (ch) to the cluster members (cm) in the same cluster.  If 

an L-node u has chosen a ch v, but u is selected to be the ch of another node(s), u 

will send a message to remove itself from v’s cluster and become the ch of a new 

cluster.  To assure the head-rotation in the reconfiguration functions, the diameter 

of the cluster is d/2, where d is the maximum communication range of L-node u. 

Algorithm 2 Cluster Formation 

Input: A region     ( ) 
Output: C(Gi), a clustering of Gi 

Algorithm 2.1 – Neighbor Discovery at each node u 

Round 1: 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

54 
 

1. Node u broadcasts a message using range d/4, (u, “Hello neighbor.”), 

and then receives messages from neighbors. 

2. If node u receives the message, (v, “Hello neighbor.”), add v to u.nlist. 

Algorithm 2.2 – Clustering of node u 

Round 1: 

1. Node u checks u.nlist and find neighbor node v with smallest ID. 

2. Node u transmits message to v, (u, v, “Cluster head request.”). 

3. Node u receives message from v, (v, u, “Cluster head request.”). 

Round 2: 

1. If node u receives message from v, (u, v, “Cluster head request.”), u adds 

v to u.cmlist. 

2. Node u transmits acknowledgement message to cluster member v, (v, u, 

“Cluster head acknowledgement.”). 

3. Node u receives a message from node v, (v, u, “Cluster head 

acknowledgement.”). 

Round 3: 

1. If cluster member u receives a message from node v, (v, u, “Cluster head 

acknowledgement.”), u sets v as cluster head. 

2. If u is a cluster member of v, and receives a message (w, v, “Cluster 

head request.”) from neighboring node w, then u transmits to v, (u, v, “I 

am cluster head.  Remove me as a cluster member.”). 

3. Node u receives messages, (v, u, “I am cluster head.  Remove me as a 

cluster member.”). 

Round 4: 

1. If cluster head u receives message (v, u, “I am cluster head.  Remove me 

as a cluster member.”), and v is a cluster member of u, u removes v from 

u.cmlist. 

2. If node u does not find cluster head in u.nlist, then u becomes a cluster 

head. 

3. If node u is cluster head and has a u.nlist, but no u.cmlist, then u must 

choose a neighbor node v with smallest ID to be its cluster head. 

 Backbone Tree Formation – The Basestation and H-nodes form a spanning tree 

BT(S) that connects all BT(Gi).  Chs and H-nodes form the communication 

backbone in which the information is sent in bi-direction between the base station 

and region heads (H-hodes), between the region head and cluster heads in each 

region, and between the cluster head and cluster members in its cluster through 

the entire network. 

Algorithm 3.1 – Spanning Tree BT(S) formation 

Input: Basestation and H-nodes 

Output: BT(S) 

Round 1: 

1. Basestation, B, broadcasts a message (B, “Find children.”). 

Round 2: 

1. If the basestation, B, receives message from h, (h, B, “I am a child.”), B 

adds h to B.childlist. 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

55 
 

2. B sends h a confirmation message, (B, h, “I am your parent”). (This 

message is only sent from B to h to ensure that H-nodes out bi-direction 

communication range do not add B as a parent). 

Round 3: (Rounds 3 & 4 are repeated for all H-nodes until BT(S) is formed) 

1. If h receives message from B, (B, h, “I am your parent”), then h sets B to 

be its parent, h.parent = B. 

2. If h receives messages, (v, “Find children”) and h.parent = null, then h 

chooses v with weakest signal within threshold D to be its parent, then 

sends reply.  

3. h sends reply to v, (h, v, “I am a child”). 

Round 4: 

1. If h receives messages, (v, h, “I am a child”), then h adds v to h.childlist. 

2. If h.parent   null, h broadcasts message, (h, “Find children”). (H-nodes 

do not broadcast to find children unless it has a parent.) 

Algorithm 3.2 – Region BT(  ) formation 

Input: A region     ( ) 
Output: BT(Gi) 

Round 1: 

1. H-node, h, at region Gi broadcasts a message (h, “Find children.”). 

Round 2: 

1. If the H-node, h, receives message from u, (u, h, “I am a child.”), h adds 

u to h.childlist. 

2. h sends u a confirmation message, (h, u, “I am your parent”). (This 

message is only sent from h to u to ensure that cluster heads out bi-

direction communication range do not add h as a parent). 

Round 3: (Rounds 3 & 4 are repeated for all cluster head u in region until BT(Gi) 

is formed) 

1. If u receives message from h, (h, u, “I am your parent”), then sets h to be 

its parent, u.parent = h. 

2. If u receives messages, (v, “Find children”) and u.parent = null, then u 

chooses v with weakest signal within threshold d to be its parent, then 

send reply.  

3. u sends reply to v, (u, v, “I am a child”). 

Round 4: 

1. If u receives messages, (v, u, “I am a child”), then u adds v to u.childlist. 

2. If u.parent   null, u broadcasts message, (u, “Find children”). (cluster 

heads do not broadcast to find children unless it has a parent.) 

After the network formation is complete, H-nodes and L-nodes have specific roles in 

the cluster-based hierarchical networking architecture as shown in Figure 2.   Those 

roles are defined as follows: 

 

 

 

 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

56 
 

 
 

 
Figure 2 – Cluster-based hierarchical networking architecture (CHNetArch) for HWSNs. 

 

 

 

 

 Cluster members (cms) communicate only and directly with their cluster head 

(ch). 

 Cluster heads communicate with cms in their cluster and with neighboring chs on 

the backbone tree. 

 Information on the backbone tree travels from child to parent (ch to ch) until it 

reaches the H-node of their region head. 

 H-nodes send information to neighboring H-nodes in route to the 

sink/basestation. 

We assume all collisions are avoided by using MAC protocol CSMA/CA. The 

network self-reconfiguration is supported by the following functions: 

 Node Move-in – New L-node joins the network and becomes a ch or cm 

depending on its surrounding neighbors. 

Algorithm 4 – Node Move-In for node u in G 

Input: New node u, G, H(G), C(G), and BT(G) 

Output: Update G, H(G), C(G), and BT(G) 

Round 1: 

1. New node u broadcast message at range d/4, (u, “Hello, I want to join”). 

2. If cluster head u within range, u receives message, (v, “Hello, I want to 

join”). 

Round 2: 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

57 
 

1. If cluster head u receives (v, “Hello, I want to join”), u transmits reply 

(u, v, “Hello new cluster member.”). 

2. If new node u receives replies (v, u, “Hello new cluster member.”), u 

chooses v with strongest signal and sets v to be cluster head. 

Round 3: 

1. If new node u receives reply (v, u, “Hello new cluster member.”), u 

sends a confirmation message, (u, v, “Cluster member confirmed”). 

2. If cluster head u receives confirmation message, (v, u, “Cluster member 

confirmed”), u adds v to cluster member list, u.cmlist. 

3. If new node u receives no reply, it designates itself as a cluster head, 

then broadcast a message at range d, (u, “Hello, I want to join.”), to find 

parent node from backbone tree. 

4. If cluster head u within range, u receives message, (v, “Hello, I want to 

join.”) 

Round 4: 

1. If cluster head u receives message, (v, “Hello, I want to join.”), u 

transmits message, (u, v, “Hello new child node”). 

2. If new node u receives messages, (v, u, “Hello new child node”), u 

chooses v with strongest signal and sets v as its parent, u.parent = v. 

Round 5: 

1. If new node u receives message, (v, u, “Hello new child node”), u 

transmits confirmation message, (u, v, “Parent confirmed”). 

2. If cluster head u receives message, (v, u, “Parent confirmed”), u adds v 

to child node list, u.childlist. 

 Node Move-out – ch or cm leaves the network and connectivity is maintained. 

Algorithm 5 – Node Move-Out for u in G 

Input: Moving-out node u, G, H(G), C(G), and BT(G) 

Output: Update G, H(G), C(G), and BT(G) 

 Case I 

Round 1: 

1. If node u is pure cluster member, u sends message to cluster head v, (u, 

v, “I’m leaving”). 

2. If cluster head u receives message, (v, u, “I’m leaving”), u removes node 

v from neighbor list, u.nlist, and cluster member list, u.cmlist. 

Round 2: 

1. If cluster head u receives message, (v, u, “I’m leaving”), u sends 

message to each cluster member v (including leaving node), (u, v, 

“Remove node w from neighbor list.”). 

2. If cluster member u receives message, (v, u, “Remove node w from 

neighbor list.”), and u = w, then u leaves cluster; else u removes w from 

u.nlist. 

Case II 

Round 1 – 4: 

1. If node u is cluster head, perform head rotation. 

Round 5 – 6: 

1. Follow algorithm for Case I. 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

58 
 

 Head Rotation – New ch is selected when an existing ch is low on resources or 

even compromised. 

Algorithm 6 –Head Rotation for u in C(G) 

Input: Cluster head node u, G, H(G), C(G), and BT(G) 

Output: Update G, H(G), C(G), and BT(G) 

Round 1: 

1. Cluster head u sends message to request energy remaining from each 

cluster member v, (u, v, “Energy request”). 

2. If cluster member u receives message from cluster head v, (v, u, “Energy 

request”), u checks remaining energy. 

Round 2: 

1. Cluster member u sends message with remaining energy to cluster head 

v, (u, v, “Energy remaining”). 

2. If cluster head u receives message from cluster member v, (v, u, “Energy 

remaining”), u chooses cluster member v with most remaining energy to 

be new cluster head. 

Round 3: 

1. Cluster head u sends message to each cluster member v that cluster 

member w is the new cluster head, (u, v, “w is the new cluster head”). 

2. If cluster member u receives message, (v, u, “w is the new cluster head”) 

and if u = w, u changes its status u.status = cluster head, else u sets it 

cluster head to be new cluster head w, u.clusterhead = w. 

Round 4: 

1. If cluster member u receives message, (v, u, “w is the new cluster 

head”), u sends message to old cluster head v to confirm new cluster 

head w, (u, v, “Cluster head w confirmed”). 

2. If old cluster head u receives messages (v, u, “Cluster head w 

confirmed”), u changes its status, u.status, to cluster member.  

 

4 Key Management System 

 
4.1 Key Cryptography 

 

We propose a key management system supported by public key and symmetric 

key cryptography.  Both cryptographic methods have their strengths and weaknesses, 

but when they are used together the weaknesses will be overcome and the security 

will be provided.  We also propose the use of two types of keys for tasks such as data 

aggregation, which may occur at intermediate nodes during data transmission.  Public 

key cryptography was initially classified as infeasible for WSNs.  Recent studies have 

shown that ECC is feasible for existing sensor node hardware and therefore feasible 

for WSNs [12].  Our key management system couples ECC with the polynomial-

based key distribution scheme.  The polynomial-based scheme allows two nodes to 

generate a pair wise key using a randomly generated symmetric bi-variate t-degree 

polynomial f(x,y), where  (   )  ∑     
    

      over a finite field Fq.  Each sensor 

needs to store a t-degree polynomial which occupies (   )      storage space.  To 

establish a pair wise key, both sensor nodes need to evaluate the polynomial at the ID 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

59 
 

of the other sensor node.  The polynomial-based scheme is secured up to a degree of t, 

where t is the number of nodes that needs to be compromised in order for an 

adversary to know the symmetric key generated between any two nodes [13, 14]. 

 

4.2 Preloaded Keys and Materials 

 

Before the nodes are deployed, both H-nodes and L-nodes are preloaded with an 

initial temporary symmetric key KG.  Each H-node is preloaded with its ECC 

public/private key pair. Therefore, each H-node has a total of 3 keys.  We propose 

two cases for preloading L-nodes.  Preloading for H-nodes remains the same in both 

cases.  In case 1 each L-node is preloaded with its private key from its ECC 

public/private key pair for a total of 2 keys.  In case 2 each L-node is preloaded with 

its ECC public/private key pair for a total of 3 keys.  Let M represent the number of 

H-nodes and N represent the number of L-nodes, then the number of preloaded keys 

for the entire network is: 

 

 Case 1:          . (1) 

   

 Case 2:          . (2) 

   

The L-nodes are also pre-loaded with a randomly generated symmetric bi- polynomial 

that will used to generate a symmetric key with a neighboring L-node such as the cm 

to ch communication. 

 

4.3 Stored Keys 

 

After the nodes are deployed, they perform neighbor discovery and clustering 

processes.  The key KG is used during neighbor discovery and clustering so that 

information is broadcasted securely.  Even though we present 2 cases for preloading 

keys, key storage is the same for both cases.  Once H-nodes have divided the sensor 

field into regions, L-nodes have been clustered, and the backbone tree has been 

formed, key exchange can start by using KG to securely communicate.  Key exchange 

will be discussed in detail in the next section.  The number of keys stored depends on 

the number of clusters throughout the entire network.  The following variables help 

define the amount of keys stored: 

 hN  – number of L-nodes in the region of a H-node 

 hK  – number of the neighbors of a H-node on backbone tree 

 chN  – number of the cluster members in a cluster with cluster head ch 

 chK – number of the neighbors of a cluster head on the backbone tree 

 cN  – number of  the clusters in the network 

After key exchange each node stores a certain number of keys depending on their role 

in the network hierarchy: 

 H-node – stores ECC public/private key pair, public keys of all L-nodes in its 

region and the public keys of all its neighboring H-nodes in the backbone tree.  



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

60 
 

The keys stored for neighboring H-nodes are public keys of parent and children 

on backbone tree.  Let Ah represent the number of total keys stored at one H-

node, then: 

 

            . (3) 

   

 Cluster Head – stores private key of ECC pair, public key of the regional head, 

distinct symmetric keys with all cms generated by symmetric polynomial, and 

distinct key with parent and children on backbone tree.  Let Bh represent the 

number keys stored by a ch, then: 

 

               . (4) 

   

 Cluster Member – stores private key of ECC pair, the public key of their region 

head, and a distinct symmetric key with ch for a total of 3 keys. 

 

       . (5) 

   

Let Kall represent the total number of keys stored in the entire network.  By summing 

equations 3-5 for all H-nodes, cluster heads, and cluster members, then Kall is 

calculated as follows: 

 

      ∑         ∑           ∑           . (6) 

   

Let M represent the number of H-nodes and N represent the number of L-nodes, the 

number of edges in BT(G) is (    )   .  There are no more than 2 keys stored 

between each edge, meaning that each node stores a key to securely communicate 

with the neighbor of an edge on BT(G).  Therefore the summation of keys stored for 

Kh and Kch by all H-nodes and chs on BT(G) is not larger than  [(    )   ].  
Since Nc represents the number clusters as well as chs in the network, the number cms 

is     .  For keys stored by all H-nodes to securely communicate with L-nodes in 

its region, Nh = N.  For keys stored by all chs to securely communicate with cms, Nch 

=     . If we rewrite equation 6 in terms of M, N, and Nc, then we get equation 7 

for Kall. 

 

          [(    )   ]         (    ) . (7) 

   

Therefore, we get, 

 

                    . (8) 

   

4.4 Key Distribution and Set-up 

 

As mentioned in the previous section, once the nodes are deployed, they begin to 

build the CHNetArch.  Since nodes do not know their location, signal strength can be 

used to determine the proximity of a neighboring node.  The following key and 

message notations are used to discuss this section: 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

61 
 

 KG – a temporary preloaded global symmetric key known by all nodes that is 

used for encryption and decryption, and discarded and no longer needed 

once the network architecture is established and key exchange is complete. 

 xpb/xpr – public and private key of node x. 

 Kuv – symmetric key shared between node u and v, where Kuv = Kvu, and 

created by the symmetric bivariate polynomial. 

 Broadcast message  – {plain text, encrypted text} 

o plain text – {sender.id, encrypted text} 

o encrypted text – {plaint text, Encryption_key(sender.id, 

sender.regionhead, sender.message)} 

o message from node x – {x.id, Encryption_key(x.id, x.regionhead, 

x.message)}. 

 Unicast message from node x to node y – {plain text, encrypted text} 

o plaint text – {sender.id, receiver.id, encrypted text} 

o encrypted text – {plain text, Encryption_key(x.id, y.id, 

x.regionhead,  x.message)} 

o message from node x to node y – {(x.id, y.id), Encryption_key(x.id, 

y.id, x.regionhead,  x.message)} 

The IDs are sent in plaintext to allow each node to know who is sending the message 

and whether it is meant for them to decrypt or forward according the communication 

protocol.  Other materials may be sent with the message if requested by the sender or 

for authentication purposes.  These keys are used in the different phases of building 

the network architecture as follows. 

The IDs for the each message is sent in plaintext to allow each node to know who is 

sending the message, who is receiver and whether the message should be decrypted or 

forwarded.  The IDs for each message is also sent in the encrypted text to verify the 

ID of the sender and receiver of the message.  The IDs in plain text must be the same 

as the IDs in encrypted text.  Public/private keys may be sent with an encrypted 

message if requested by sender for authentication purposes. 

I. Key Management Protocol during self-formation of CHNetArch – The 

following steps describes how secure information and security keys are 

exchanged during self-formation of CHNetArch. 

a. Regional Formation – regional heads (h) use KG to broadcast an 

encrypted message, {h.id, KG(h.id, hpb, h.message)}, including its ID, 

separating the deployed area into regions where L-nodes select the H-

node with the strongest signal as its regional head.  Each L-node that 

receives that broadcast message decrypts the message using KG.  The ID 

of the sending node is added as the regional head for L-nodes.  This 

broadcast message also includes the public key of the regional node’s 

ECC pair.  This allows for any future broadcasts after network setup 

from regional heads to be decrypted and authenticated. 

b. Neighbor Discovery – each L-node (u) uses KG to broadcast an 

encrypted message, {u.id, KG(u.id, u.region, u.message)}, including its 

ID, to its neighboring L-nodes.  Each L-node that receives the message 

from a neighbor uses KG to decrypt the message and add the ID of the 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

62 
 

neighbor to its neighbor list.  The ID of the regional head (u.regionhead) 

is also included with the message so that nodes only add neighbors from 

the same region. 

c. Clustering – each L-node (u) selects the neighbor node (v) with the 

smallest ID and uses KG to send an encrypted cluster head request 

message to v, {(u.id,v.id), KG(u.id, v.id, u.region, u.message)}.  If v 

receives the cluster head request, it decrypts the message using KG, 

changes its status (u.status) to be cluster head and sends an 

acknowledgement message encrypted with KG, {(v.id,u.id), KG(v.id, u.id, 

v.region, v.message)}.  If u receives the acknowledgement message, it 

decrypts the message using KG.   If an L-node (u) receives a cluster head 

request when it is already a cluster member of cluster, it uses KG to send 

an encrypted message to its cluster head (v), {(u.id,v.id), KG(u.id, v.id, 

u.region, u.message)}, requesting to be removed as a cluster member. 

The ID of the regional head is included the messages to prevent nodes 

from joining a cluster outside their region.  After clustering, all L-nodes 

are either cluster members or cluster heads.  Cluster members discard 

KG because it is no longer needed.  After network setup cluster members 

and cluster heads the preloaded polynomial to establish a pairwise key, 

Kuv = Kvu. 

d. Backbone Tree Formation – Within each region, starting from the 

regional head (p for parent) as the root, KG is used to broadcast an 

encrypted, {p.id, KG(p.id, p.region, p.message)}, find children (i.e., the 

cluster heads within d communication range of the regional head).  Each 

cluster head has a field u.parent initially set to null.  This prevents a 

cluster head that is already a parent from becoming a child of another 

parent. If a cluster head (c for child) within d communication range 

receives the message and u.parent = null, it decrypts the message with 

KG, sets u.parent = p.id, and sends an reply encrypted with KG, {(c.id, 

p.id), KG(c.id, p.id, c.region, v.message)}.  If p receives a reply from c, p 

decrypts the message using KG, then c is added to p’s child list 

(p.childlist).   Once a cluster head has found a parent, it broadcasts an 

encrypted message using KG, {p.id, KG(p.id, p.region, p.message)}, to 

find its children.  This continues until all cluster heads have found a 

parent in the regional backbone tree. 

Once the backbone tree is complete, each regional head needs to obtain the public 

keys of all L-nodes in its region for the future secure communication. 

 Case 1 (corresponding to choice 1 in 3.2.2.1) – regional heads (h) broadcast 

“cluster member list request”, {h.id, KG(h.id, h.region, h.message)}, 

encrypted using KG, to the cluster heads (u) in its region.  When cluster heads 

receive the request, it decrypts the message using KG, and sends a list of 

cluster members (u.cmlist) to its regional head using KG, {(u.id, h.id), 

KG(u.id, h.id, u.region, u.cmlist, u.message)}.  After the regional heads 

receive u.cmlist from all cluster heads within its region, via the regional 

backbone tree, the message is decrypted using KG.  KG is removed from all 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

63 
 

remaining nodes and is no longer needed for future communications.  

Regional heads then send a message with a list of L-nodes in its region to the 

base station (B) encrypted with the regional head’s private ECC key, 

(h.id,B.id),hpri(h.id, h.regionlist, h.message)}, to request the public keys of 

each L-node in its region.  In this scenario, the base station acts as a key 

distribution center (KDC), which knows the public/private ECC pair for 

every node in the network. 

 Case 2 (corresponding to choice 2 in 3.2.2.1) – Regional heads broadcast an 

encrypted “cluster member list and key request” message to cluster heads (u) 

in its region using KG, {h.id, KG(h.id, h.region, h.message)}.  When the 

cluster heads receive the requests, it is decrypted using KG and each cluster 

head requests the public key from each cluster member (v) using the pairwise 

key, Kuv, it shares with each cluster member, {u.id, v.id, Kuv(u.id, v.id, 

u.region, v.message)}.  Each cluster member that receives the request, 

decrypts the message using Kvu, and sends a reply including its public key, 

encrypted with Kvu, {v.id, u.id, Kvu(v.id, u.id, v.region, vpb, v.message)}.  

When the cluster head receives replies from all cluster members, it then 

sends a cluster member list with keys to its regional head via the backbone 

tree using KG, {(u.id, h.id), KG(u.id, h.id, u.region, u.cmlist, u.keylist, 

u.message)}.  After a regional head receives messages from all cluster heads 

in its region, KG is removed from all remaining nodes.  Each L-node also 

discards its public key as a security precaution. 

Even though the key storage is the same for both cases, case 1 requires H-nodes to 

communicate with a KDC during setup and each time a new node is added to the 

network.  Case 2 preloads more keys, but no communication with a KDC is needed, 

allowing the network to self-organize during key setup and when a new node joins the 

network.  For any new node joining the network, they are preloaded with the keys 

according to the cases mention in Section A.  The number of keys stored by a new 

node depends on its role once it joins the network.  If any L-node has to leave the 

network due to depleted resources, node failure or node compromise, all keys shared 

with that node is removed from its communicating neighbors.  If that node is a ch and 

has remaining cms, then head rotation is performed to select a new ch among the 

remaining cms according to Section III.  New keys are established as previously 

shown in each phase and according to preloaded keys for case 1 or case 2. 

 

4.5 Secure Routing 

 

Figure 2 shows a routing hierarchy and what type of key is used in 

communication between each type of node.  Secure communication occurs from child 

to parent as follows: 

 H-node to H-node – h is child, w is parent.  Information is encrypted with an H-

nodes private key and decrypted by the parent H-node with the public key. 

o {(h.id, w.id),hpr(h.id, w.id, h.messege)} 

 ch to H-node – u is child, h is parent. Information is encrypted with a ch’s private 

key and decrypted by H-node with ch’s public key. 

o  {(u.id, h.id),upr(u.id, h.id, u.messege/u.request)} 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

64 
 

 cm to ch – u is child, v is parent.  Information is encrypted and decrpyted with 

pairwise key between cm and ch. 

o {(u.id, h.id),Kuv(u.id, h.id, u.messege/u.request)} 

 

 

 

 

 
 

 

 
Figure 3 - Secure routing hierarchy for CHNetArch. 

 

 

 

 

5 Performance Evaluation 

 
The testing scenario features 1000 L-nodes and 20 H-nodes.  The hierarchical 

network architecture was constructed by computer simulation with the 

communication range of d = 60m for L-nodes and D = 250 m for H-nodes.  When 

forming clusters, the transmission range of L-nodes are adjusted to a range d/4 to 

form the clusters with diameter of d/2, where each cluster is a complete graph, i.e., 

each node in the cluster is communication range with every other node.  The nodes 

were randomly deployed over a 500m × 500m area.  These parameters where chosen 

to achieve connectivity over the deployment area so that each node would be in 

communication range with one or more nodes.  Substituting the simulation parameters 

in the equations for the number of preloaded keys in case 1 and case 2, yields 2060 

and 3060 keys respectively.  Comparing this value to the centralized Du-scheme [8], 

we reduce the amount of preloaded keys by approximately 90% for case 1 and 86% 

for case 2.  We also can estimate the number of stored keys. As we showed in Section 

IV (C), the total number of keys is           , but the precise number of keys 

     depends on the number of cluster cN . We conducted 20 simulation runs where 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

65 
 

1020 nodes were randomly deployed.  The simulation results show that the network 

stored on an average               keys.   

 

6 Conclusion 

 
In this paper, we presented a security system for heterogeneous wireless sensor 

networks that couples robust network architecture with a hybrid key management 

scheme.  The robust network architecture features a hierarchical cluster-based 

network architecture that defines the role of H-nodes and L-nodes to establish a 

measure of security through the communication protocol.  This network architecture 

has a direct effect on the key management scheme which uses both ECC and 

symmetric bi-variate polynomial-based key distribution to provide secure 

communication via the backbone tree.  The network architecture can be self-

reconfigured without localization information and it provides an efficient key 

management scheme for heterogeneous wireless sensor networks.  With the storage 

being a limitation for sensor nodes, only a small amount keys need to preloaded and 

stored over the entire network.  

 

Acknowledgements.  This research is supported by the Defense Threat Reduction 

Agency (DTRA) 

 

References 

 
1. Kaplantzis, S., Mani, N., Palaniswanmi, M., and Egan, G., “Security models for 

wireless sensor networks,” Conversion Report, Monash University, 20
th

, March 

2006. 

2. Long, K.J., Haupt, S., Young, G.S., Rodriguez, L.M., McNeal III, M., “Source 

term estimation using genetic algorithm and scipuff,” 7
th

 Conference on Artificial 

Intelligence and its Applications to the Environmental Sciences, January 2009. 

3. Mhatre, V. and Rosenberg, C., “Homogeneous vs heterogeneous clustered sensor 

networks: A comparative study,” 2004 International Conference on 

Communications, Vol. 6: pages 3646-3651, June 2004. 

4. Al-Fares, M.S., Sun, Z., and Cruickshank, H., “A hierarchical routing protocol 

for survivability in wireless sensor network (WSN),” Proceedings of the 

International MultiConference of Engineers and Computer Scientists IEEE 2009, 

Vol I. March 18-20, 2009. 

5. Khan, Z.H., Catalot, D.G., and Thiriet, J.M., “Hierarchical wireless network 

architecture for distributed applications,” 2009 Fifth International Conference on 

Wireless and Mobile Communications 2009 IEEE, 2009. 

6. Traynor, P., Kumar, R., Choi, H., Cao, G., Zhu, S., and La Porta, T., “Efficient 

hybrid security mechanisms for heterogeneous sensor networks,”  IEEE 

Transactions on mobile computing, Vol. 6, June 2007. 

7. Lu, K., Yi Qian, Guizani, M., and Chen, H., “A framework for a distributed key 

management scheme in heterogeneous wireless sensor networks,” In IEEE 

Transactions on Wireless Communications, Vol. 7, February 2008. 



IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, 
December 2011 

ISSN : 2250:3439  
https://sites.google.com/site/ijcesjournal 

http://www.ijces.com/ 

66 
 

8. Du, X., Xiao, Y., Ci, S., Guizani, M., and Chen, H., “A routing-driven key 

management scheme for heterogeneous sensor networks,” In The ICC 2007 

Proceedings, pp. 3407-3412. IEEE Communications Society, 2007. 

9. Du, X., Guizani, M., Xiao, Y., and Chen, H., “A routing-driven elliptic curve 

cryptography based key management scheme for heterogeneous sensor 

networks,” IEEE Transactions on Wireless Communications, Vol. 8, No. 3, 

March 2009. 

10. He, T., Huang, C., Blum, B., Stankovic, J., and Abdelzaher, T., “Range-free 

localization schemes for large scale sensor networks,” MobiCom ’03 Proceedings 

of the 9
th

 Annual International Conference of Mobile computing and networking, 

2003. 

11. Gura, N., Patel, A., Wander, A., Eberle, H., and Shantz, S.C., “Comparing elliptic 

curve cryptography and RSA on 8-bit CPUs,” Proceedings of the 6
th
 

International Workshop on Cryptographic Hardware and Embedded Systems, 

Boston, MA, August 2004. 

12. Liu, A. and Ning, P., “TinyECC: A configurable library for elliptic curve 

cryptography in wireless sensor networks,” 7
th

 International Conference on 

Information Processing in Sensor Networks (IPSN 2008), April 2008. 

13. Schmidt, S., Krahn, H., Fischer, S., and Wätjen, D., “A security architecture for 

mobile wireless sensor networks,” ESAS 2004, Springer-Verlag Berlin 

Heidelbierg, 2005. 

14. Liu, D., Ning, P., and Li, R., “Establishing pair-wise keys in distributed sensor 

networks,” ACM Transaction Information Systems Security, 8(1):41-77, 2005. 

15. Eschenauer, L. and Gligor, V.D., “A key management scheme for distributed 

sensor networks,” Proceedings of the 9
th

 ACM CCS, November 2002. 

16. Chen, W., Miao, H., and Hong, L., “Cross-layer Design for Cooperative Wireless 

Sensor Networks with Multiple Optimizations,” International Journal of 

Networking and Computing, (publication date). 

17. Uchida, J., Muzahidul Islam, A.K.M., Katayama, Y., Chen, W., and Koichi, W., 

“Construction and maintenance of a novel cluster-based architecture for ad hoc 

sensor networks,” Ad Hoc & Sensor Wireless Networks Vol. 00, pp. 1-31, 2008. 

18. Walters, J.P., Liang, Z., Shi, W., and Chaudhary, V., “Wireless sensor network 

security: A survey,” In Security in Distributed, Grid, and Pervasive Computing 

Chapter 17, Auerbach Publications, CRC Press 2006. 

 

 

 


