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Abstract – Adaptive Filtering is an important concept in the field of signal processing and has numerous applications in fields 
such as speech processing and communications. An Adaptive filter is a filter that self-adjusts its transfer function according to 
an optimizing algorithm. Because of the complexity of the optimizing algorithms, most adaptive filters are digital filters that 
perform digital signal processing and adapt their performance based on the input signal. An adaptive filter is often employed in 
an environment of unknown Statistics for various purposes such as system identification, inverse modeling for channel 
equalization, adaptive prediction, and interference canceling. Knowing nothing about the environment, the filter is initially set 
to an arbitrary condition and updated in a step-by-step manner toward an optimum filter setting. For updating, the least mean-
square algorithm is often used for its simplicity and robust performance. However, the LMS algorithm exhibits slow 
convergence when used with an ill-conditioned input such as speech and requires a high computational cost, especially when 
the system to be identified has a long impulse response. To overcome the limitations of a conventional full band adaptive 
filtering, various sub band adaptive filtering (SAF) structures have been proposed. Properly designed, an SAF will converge 
faster at a lower computational cost than a full band structure. However, its design should consider the following two facts: the 
inter band aliasing introduced by the down sampling process degrades its performance, and the filter bank in the SAF 
introduces additional computational overhead and system delay. In this project, a critically sampled SAF structure that is 
almost Alias-free is proposed to reap all the benefits of using an SAF. Since the proposed SAF is performed using subbands 
that is almost alias-free, there is little inter band aliasing error at the output. In each sub band, the inter band aliasing is 
obtained  using a bandwidth-increased linear-phase FIR analysis filter, whose pass band has almost-unit magnitude response in 
the subband interval, and is then subtracted from the sub band signal. This aliasing cancellation procedure, however, causes the 
spectral dips of the sub band signals. These spectral dips can be reduced by using a simple FIR filter. Simulations show that the 
proposed structure converges faster than both an equivalent full band structure at lower computational complexity and recently 
proposed SAF structures for a colored input. The analysis is done using MATLAB, a language of technical computing, widely 
used in Research, Engineering and scientific computations. 
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1.     Introduction 
A critically sampled subband adaptive filtering (SAF) 

structure that is almost alias-free is proposed to reap all the 
benefits of using an SAF [1]. Since the proposed SAF is 
performed using subbands that are almost alias-free, there is 
little interband aliasing error at the output. The interband 
aliasing is removed from the subband signal by isolating the 
aliasing using a bandwidth-increased analysis filter. 
Computer simulations show that the proposed structure 
converges faster than both an equivalent full band structure at 
lower computational complexity and recently proposed SAF 
structures for a colored input. In the previous we have 
considered a variety of different problems including signal 
modeling, Wiener filtering, and spectrum estimation. In each 
case we made an important assumption that the signals that 
were being analyzed were stationary, since the signals that 
arise in almost every application will be non-stationary, the 
approaches and techniques that we have been considering 
thus far would not be appropriate. In order to motivate the 
approach that we consider the above case, we go for an 
adaptive filter approach. 

Signal processing has become indispensable in 
communications and control algorithms, geo- physical and 
medical analysis, and entertainment and home appliances. 
This is mainly due to its immense growth in the last two and 

half decades and availability of fast and cost effective digital 
signal processors in the last few years. The field of signal 
processing was, initially, dominated by Fourier Transform 
(FT), as Fast Fourier Transform algorithm was available for 
its efficient implementation, and provides alternate 
representation of signals in the frequency domain, when the 
signals are stationary. In power spectral estimation problem, 
data length limits the frequency resolution of the techniques 
based on FT. Parametric methods employ system 
representation of the signals to enhance the frequency 
resolution. Signal models are increasingly being used in data 
compression, transmission and storage. Both FT and 
parametric methods are valid only for stationary signals in 
the strict sense. However, real world signals, like speech, 
provide information only because of their non-stationary 
nature and it has to be preserved while processing. In speech 
coding, the parameters of the under- lying model have to be 
time varying to capture the non stationary features of the 
speech signal. In applications like noise cancellation and 
equalization, the unknown physical system, which is possibly 
time varying or non-linear or both, has to be identified. 
Linear models are preferred to represent the physical systems 
because of convenience and mathematical tractability. 
Usually, in all these applications, input and output signals are 
used along with an appropriately chosen cost function, to find 
optimal parameters. Because of inbuilt time variations of the 
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physical system, estimation of model parameters only once 
will not sufficient. Time dependent parameters, due to non 
stationary and time variations, can be estimated by block 
processing, over short segments of data.  

The high computational complexity and excessive 
processing delays may prohibit block processing methods in 
real time applications. Sequential estimation of the 
parameters, are most suitable to the real time applications and 
are being done by adaptive algorithms. An adaptive filter is a 
computational device that attempts to model the relationship 
between two signals in real time in an iterative manner. 
Adaptive filters are often realized either as a set of program 
instructions running on an arithmetical processing device 
such as a microprocessor or DSP chip, or as a set of logic 
operations implemented in a field-programmable gate array 
(FPGA) or in a semi custom or custom VLSI integrated 
circuit. However, ignoring any errors introduced by 
numerical precision effects in these implementations, the 
fundamental operation of an adaptive filter can be 
characterized independently of the specific physical 
realization that it takes. For this reason, we shall focus on the 
mathematical forms of adaptive filters as opposed to their 
specific realizations in software or hardware.  

 
1.1 Definition of Adaptive filter 
 

An adaptive filter is defined by four aspects 
 

• The signals being processed by the filter. 
• The structure that defines how the output signal of the 

filter is computed from its input Signal. 
• The parameters within this structure that can be 

iteratively changed to alter the filters Input- output 
relationship. 

• The adaptive algorithm that describes how the 
parameters are adjusted from one time to the next by 
choosing a particular adaptive filter structure, one 
specifies the number and type of parameters that can 
be adjusted [1]. The adaptive algorithm used to 
update the parameter values of the system can take on 
a myriad of forms and is often derived as a form of 
optimization procedure that minimizes an error 
criterion that is useful for the task at hand. 

 
1.2 Algorithms Used 

Most of the algorithms are designed with squared error 
based cost function, achieving best tradeoff among various 
performance criteria. Computationally attractive Least Mean 
Square (LMS), and fast converging Recursive Least Squares 
(RLS) adaptive algorithms are most popular representative 
algorithms commonly used, in practice. A unified view of 
various existing algorithms has been provided.  In 
applications like acoustic echo cancellation, where the 
number of coefficients to be adapted is very high, LMS 
algorithm implementation is computationally expensive. The 
Eigen spread of the input speech signal is very high, and the 
convergence rate is also poor. Other fast algorithms which 
provide better convergence rates are too costly to implement. 
The least-mean-square (LMS) algorithm is similar to the 
method of steepest-descent in that it adapts the weights by 
iteratively approaching the MSE minimum. Wiener and Hoff 
invented this technique in 1960 for use in training neural 

networks. The key is that instead of calculating the gradient 
at every time step, the LMS algorithm uses a rough 
approximation to the gradient [2].       

The limitations of a conventional full band adaptive 
filtering (converge slowly at a high computational cost) 
overcome by using various subband adaptive filtering (SAF) 
structures.  Properly designed, an SAF will converge faster at 
a lower computational cost than a full band structure.  

However, its design should consider the following two 
facts: the inter band aliasing introduced by the down 
sampling process it degrades its performance, and the filter 
bank in the SAF introduces additional computational 
overhead and system delay. In this project, to fully exploit the 
benefits of using an SAF, an almost alias-free SAF structure 
with critical sampling is proposed. The inter band aliasing is 
removed from the sub band signal by isolating the aliasing 
using a bandwidth-increased analysis filter. 

 
2. Problem Definition 

The LMS algorithm exhibits slow convergence when 
used with an ill-conditioned input such as speech and 
requires a high computational cost, especially when the 
system to be identified has a long impulse response. The 
limitations of a conventional full band adaptive filtering 
(converge slowly at a high computational cost) overcome by 
using various subband adaptive filtering (SAF) structures.  
Properly designed, an SAF will converge faster at a lower 
computational cost than a full band structure.  

However, its design should consider the following two 
facts:  

• The interband aliasing introduced by the down 
sampling process it degrades its performance, and 

• The filter bank in the SAF introduces additional 
computational overhead and system delay.  

 
3. Proposed System Methodology 
3.1 Scope of the Proposed System.  

An adaptive filter is often employed in an environment of 
unknown statistics for various purposes such as system 
identification, inverse modeling for channel equalization, 
adaptive prediction, and interference canceling. Knowing 
nothing about the environment, the filter is initially set to an 
arbitrary condition and updated in a step-by-step manner 
toward an optimum filter setting.  

For updating, the least mean square (LMS) algorithm is 
often used for its simplicity and robust performance. 
However, the LMS algorithm exhibits slow convergence 
when used with an ill-conditioned input such as speech and 
requires a high computational cost, especially when the 
system to be identified has a long impulse response. One 
promising method that improves the performance and 
reduces the computational cost is sub band adaptive filtering 
(SAF), in which the input is decomposed into a number of 
sub band signals, and the adaptive filtering is performed on 
each sub band. It has the potential for a faster convergence 
and a lower computational complexity than a full band 
structure.  

However, a sub band structure suffers from two 
deficiencies. First, the interband aliasing that is introduced by 
the down sampling process required in reducing the data rate 
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is unavoidable and degrades the performance. Second, the 
filter bank introduces additional computation and system 
delay. For these reasons, various SAF structures were 
proposed. In this project, a critically sampled SAF structure 
that is almost alias-free is proposed to reap all the benefits of 
using an SAF.  

Since the proposed SAF is performed using sub bands 
that is almost alias-free, there is little inter band aliasing error 
at the output. In each sub band, the inter band aliasing is 
obtained using a bandwidth-increased linear-phase FIR 
analysis filter, whose pass band has almost-unit magnitude 
response in the sub band interval, and is then subtracted from 
the sub band signal. This aliasing cancellation procedure, 
however, causes the spectral dips of the sub band signals. 
These spectral dips can be reduced by using a simple FIR 
filter. 
3.2 Adaptive Filter Problem 

An adaptive filter is a computational device that attempts 
to model the relationship between two signals in real time in 
an iterative manner. Adaptive filters are often realized either 
as a set of program instructions running on an arithmetical 
processing device such as a microprocessor or DSP chips. 
We shall focus on the mathematical forms of adaptive filters. 
An Adaptive filter is a filter that self-adjusts its transfer 
function according to an optimizing algorithm. Because of 
the complexity of the optimizing algorithms, most adaptive 
filters are digital filters that perform digital signal processing 
and adapt their performance based on the input signal. 

 
 Figure1. The general adaptive filtering problem 

Figure 1 shows a block diagram in which a sample from a 
digital input signal x(n) is fed into a device, called an 
adaptive filter, that computes a corresponding output signal 
sample y(n) at time n.For the moment, the structure of the 
adaptive filter is not important, except for the fact that it 
contains adjustable parameters whose values affect how y(n) 
is computed. The output signal is compared to a second 
signal d(n), called the desired response signal, by subtracting 
the two samples at time n. This difference signal, given by 

                          e(n)=d(n) − y(n)                                   (1) 
is known as the error signal. The error signal is fed into a 
procedure which alters or adapts the parameters of the filter 
from time n to time (n+1) in a well-defined manner. This 
process of adaptation is represented by the oblique arrow that 
pierces the adaptive filter block in the figure. As the time 
index n is incremented, it is hoped that the output of the 
adaptive filter becomes a better and better match to the 
desired response signal through this adaptation process, such 
that the magnitude of e(n) decreases over time. In the 
adaptive filtering task, adaptation refers to the method by 
which the parameters of the system are changed from time 
index n to time index (n+1). The number and types of 
parameters within this system depend on the computational 
structure chosen for the system. We now discuss different 
filter structures that have been proven useful for adaptive 

filtering tasks. We could define a general input-output 
relationship for the adaptive filter as 
y(n)=f(W(n), y(n-1),y(n-2)..,y(n-N), x(n), x(n-1), .., x(n-M+1))                                                                                   

(2) 

                                   (3) 
 

                 (4) 
It denotes the input signal vector and T denotes vector 

transpose 
3.3 LMS Algorithm 

The cost function (error function) J(n) chosen for the 
steepest descent algorithm determines the coefficient solution 
obtained by the adaptive filter. If the MSE cost function is 
chosen, the resulting algorithm depends on the statistics of 
x(n) and d(n) because of the expectation operation that 
defines this cost function. Since we typically only have 
measurements of d(n) and of x(n) available to us, we 
substitute an alternative cost function that depends only on 
these measurements. One such cost function is the least-
squares cost function given by  

                 (5) 
where α(n) is a suitable weighting sequence for the terms 

within the summation. This cost function, is complicated by 
the fact that it requires numerous computations to calculate 
its value as well as its derivatives with respect to each wi(n), 
although efficient recursive methods for its minimization can 
be developed. Alternatively, we can propose the simplified 
cost function JLMS(n) given by 

                                                     (6) 
This cost function can be thought of as an instantaneous 

estimate of the MSE cost function, as JLMS(n) =E{JLMS(n)}. 
Although it might not appear to be useful, the resulting 
algorithm obtained when JLMS(n) is used for J(n) is extremely 
useful for practical applications. Taking derivatives of 
JLMS(n) with respect to the elements of W(n) and substituting 
the result , we obtain the LMS adaptive algorithm given by 

                    (7) 
It also requires only multiplications and additions to 

implement. In fact, the number and type of operations needed 
for the LMS algorithm is nearly the same as that of the FIR 
filter structure with fixed coefficient values, which is one of 
the reasons for the algorithm’s popularity. 

The average behavior of the LMS algorithm is quite 
similar to that of the steepest descent algorithm that depends 
explicitly on the statistics of the input and desired response 
signals. The iterative nature of the LMS coefficient updates is 
a form of time-averaging that smooth’s the errors in the 
instantaneous gradient calculations to obtain a more 
reasonable estimate of the true gradient. The task of the LMS 
algorithm is to find a set of filter coefficients c that 
minimizes the expected value of the quadratic error signal, 
i.e., to achieve the least mean squared error.The squared error 
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and its expected value is the dependence of all variables on 
time n  

      (8) 
 
3.4 Summary of the LMS algorithm 

1)   Filter operation:    

y[n] = cH[n]x[n]                                   (9) 

2) Error calculation:  

                          e[n] = d[n] − y[n],                                  (10) 

       where d[n] is the desired output 

3) Coefficient adaptation:   

c[n + 1] = c[n] + µ e*[n] x[n]                    (11) 

 

4. Subband Adaptive Filtering 
To overcome the limitations of a conventional full band 

adaptive filtering, various sub band adaptive filtering (SAF), 
structures have been proposed. Properly designed, an SAF 
will converge faster at a lower computational cost than a full 
band structure.   

Subband adaptive filtering was thought as an effective 
method to reduce the complexity of the adaptive algorithms. 
Subband approach was intuitively found suitable to introduce 
parallelism in realizing filtering and adaptation with 
minimum overhead. Significant reduction in complexity was 
envisaged by using decimated versions of sub band signals 
[4]. Insightful considerations predicted sub band signals to 
have more flat spectrum than the full band signals from 
which they were derived. LMS type adaptive algorithms were 
known to converge faster when the input signal 
autocorrelation matrix has less Eigen value spread.  

 
Figure2. Block diagram of subband adaptive filtering algorithm 

 
Early efforts to reduce the processing requirement of an 

adaptive algorithm in acoustic echo cancellation yield 
encouraging results. The complexity of the filtering and the 
adaptation was reduced by a factor of M, when an M channel 
filter bank is used to derive the sub band signals and to 
recombine them. The initial convergence rate in every band 
was reported to be more in comparison with the full band 
convergence rate. But very soon, some problems associated 
with the sub band approach came to the fore. The 
maladjustment in the steady state performance used to be 

high. There was a delay due to the insertion of the perfect 
reconstruction filter bank in the signal path [5].  

 It was found that the non ideal analysis filter bank 
created aliasing and the aliased signals were responsible for 
the increased maladjustment. Many attempts were initialized 
simultaneously to overcome these difficulties.  The sub band 
adaptive filtering literature can broadly be divided into 
algorithms reducing complexity, improving convergence rate 
and delay less algorithms. The full band performance with 
normalized LMS adaptation is taken as reference for 
convergence improvement and complexity comparisons. 
Whenever, the maladjustment is reduced, either additional 
adaptive filters are introduced or more number of 
taps/adaptive filter is used at an increased sampling rate, 
reducing the margin of complexity.  Complexity reduction is 
normally found to go along with higher maladjustments or 
decreased convergence rate or both. Algorithms that enhance 
the convergence rate are available, but at a cost comparable 
to that of the full band LMS algorithm. Delays less SAF 
algorithms generally do not reduce the filtering complexity 
but, the adaptation will be done in the sub band domain. 
Algorithms which combine two or more of these features are 
always sought and is an active area of research. A few 
algorithms achieve superior performance in terms of 
convergence rate and complexity requirements. But, till now 
no single structure which could provide both complexity 
reduction and convergence improvement over the full band 
solution using LMS algorithm, without introducing 
processing delay, has been proposed. The requirements of an 
ideal subband adaptive filtering algorithm have been 
summarized, in the following, as the statement of the 
subband adaptive filtering problem. 
4.1 Multirate signal processing 

Multirate Signal Processing techniques are used in 
designing phase shifts, in interfacing digital systems with 
different sampling rates, in implementation of narrowband 
low pass filters. Filter Banks (FB) with Perfect 
Reconstruction (PR) property can be realized using the 
multirate fundamentals. These FBs are extensively used in 
the subband coding of speech signals [6], [7]. 

 

Figure3. Multirate building blocks 

1) Down sampling and Decimation 
The sampling rate of band limited signal xb(n) can be 

reduced by decimation operation [12] 

          (9) 

This is represented in z-domain as 
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                         (10)  

With M
M eW π2−= .  The decimated version of a signal 

x(n) using band limiting filter h(n), with decimation factor 
M, is given by 

                   (11) 

2)   Up sampling and Interpolation                 
The over sampling operation, called interpolation is 

carried out by a cascade of an expander 

                  (12) 

and a suitable interpolating filter. Expansion in the z-domain 
is represented as 

                                   (13) 

The interpolation of a signal x(n), with an expansion 
factor is given by M and interpolating filter f(n) is given by 

                       (14) 

4.2 Digital Filter Banks 
A digital filter bank is typically a set of filters operating 

in parallel. It can take the form of an analysis filter bank 
where in the filters are driven by a single input or as a 
synthesis filter bank in which a set of input signals are 
filtered through different filters and their outputs are 
combined to generate a single output [12]. The output of the 
analysis filter bank is usually sub sampled and the input of 
the synthesis filters is expanded by suitable factors [7]. The 
output of a filter hk(n), of an AFB, sub sampled by a factor of 
D, is given in time domain by 

                     (15) 

and is represented in z-domain as 

                    (16) 

 

Figure4. (a) Analysis Filter Bank 

 

Figure4. (b) Synthesis Filter Bank 

4.3 Analysis Filter bank Design 

 

Figure5. Analysis section 

The practical virtue of the analysis section of the 
multirate digital filter in Figure 5 is that it permits the 

processing of each decimated signal ( )nu Dk .  in such a way 

that the special properties of the kth decimated subband 
signal. The signals that result from this processing are then 
applied to the synthesis section of the multirate digital filter 
for further processing. 

 
4.4 Synthesis Filter bank Design 

The synthesis section consists of two functional blocks of 
its own, as illustrated in Figure 6. The bank of expanders, 
which up-sample their respective inputs.  The kth L-fold 

expander takes the input signal ( )nvk  to produce an output 

signal. 

 
Figure6. Synthesis section 

 

     
(17) 

 
In Figure 6, the L-fold expanders are represented by 

upward arrows, followed by the expansion factor L. Each 
expander is essential to performing the process of 
interpolation; however, a filter is needed to convert the zero-
valued samples of the expander into interpolated samples and 
thereby completed the interpolation.  To explain this need, 
we recognize, from the time-frequency duality, which is an 
inherent property of Fourier transformation, that the spectrum 
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( )ωj
Ek eV .  of the kth expander output is an L-fold 

compressed version of the spectrum  ( )ωj
k eV  of the 

expander input [8]. The synthesis filter bank, which consists 
of the parallel connection of a set of L digital filters with a 
common output.  The transfer functions of the synthesis 
filters are denoted by F1(z),F2(z)…..FL(z), and the resulting 

output of the synthesis section is denoted by ( ).ˆ nu The output 

signal ( )nû  differs from the input signal u(n) due to  

• The external processing performed on the decimated 
signals in the analysis section  

• Aliasing errors.  

 
 

Figure7. Subband adaptive filters for two subbands 
 

5. Alias-Free Subband Adaptive Filtering with 
Critical Sampling 

5.1 Critical sampling 
Critical Sampling means M = K, where M = decimation 

factor, K = number of subbands as shown in figure 8 
 
 
 

 

Figure8. Block diagram of critical sampling 

5.2 SAF with Critical Sampling         

                                  

           

 

Figure9. Block diagram of the Adaptive filtering in the k th sub band 

X(z),H(z),Hk(z),Gk(z) and Ek(z) Represent the z-
transforms of input, unknown system, the kth analysis filter, 
the kth adaptive filter, and the kth error signal For k = 0, 1… 
M-1, respectively. 

In SAF, signals are decomposed into a number of 
subband signals using an analysis filter bank, and the 
adaptive filtering is performed on each subband [9], [10]. The 
result in each sub band is combined into an output using a 
synthesis filter bank.  For a critically sampled SAF with M 
sub bands, the kth sub band error Ek(z), shown in Figure 9, is 
given as 

                                                               
(18) 

Note:  ,/2 Miji
m eW π−= and the kth analysis filter Hk(z) is a 

band pass filter, whose pass band is 

( ) ./1/ MkMk πωπ +≤≤  The above equation can be 
rewritten as 

 

                                                 
(19) 

Where 

               (20) 
When the filter bank is real-valued, the terms 

( )k
M

M
k WzH /1  and ( )1/1 +k

M
M

k WzH  are adjacent to 

( )M
k zH /1  as shown by their magnitude responses in Figure 

10, and when ( )zH k  is designed with high enough stop 

band attenuation, ( )zkξ  is approximately zero 

 
 

 
 
 
 
 
 

Figure10. Magnitude responses of ( )M
k zH /1

 and its adjacent terms 

( )k
M

M
k WzH /1

 and ( )1/1 +k
M

M
k WzH . 

 
5.3 Alias-Free SAF with Critical Sampling 

 

 
 

Figure11. Alias-Free SAF structure with critical sampling in the Kth sub 
band. 

    Where  W(z) = Transfer function of minimum phase filter 
                  Hk(z) = Transfer function of Kth subband filter 
 
The interband aliasing is a major bottleneck in using SAF, 

and several methods for reducing the inter band aliasing have 
been proposed in SAF. It can be reduced by critically 
sampled SAF that is almost alias-free is proposed. The 
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interband aliasing components are caused by down sampling 
the signal which has passed through a non ideal analysis 
filter. The down sampling process is essential in almost all 
multirate signals processing for making the overall data rate 
nearly equivalent to that of the input. Figure 7.5 shows the 
magnitude responses Xk(e

jω) of the signal that has passed 
through the kth analysis filter, whose transition bandwidth is 

,/ Mδω and its down sampled version  
ωjd

k eX  for k=0,1,. . .  M-1.                                              (21) 

Henceforth, only the frequency interval of 

( )πωπ 1+≤≤ kk  will be considered, since the frequency 
responses in the other intervals are just the frequency-shifted 
and the frequency-flipped versions of the response. As shown 
in Figure 12(b), the frequency interval of kπ≤ω≤(k+1)π is 
divided into three subintervals 

{ },/1 δωπωπω +≤≤=Ω kk  where the first and 

second terms coexist is given by, 

( ){ },1/2 δδ ωπωωπω −+≤≤+=Ω kk  

where only the first term exists, and 

( ) ( ){ },11/3 πωωπω δ +≤≤−+=Ω kk  where the first 

and third terms coexist.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure12. Magnitude responses of the signals in the kth sub band. (a) Output 
of the kth analysis filter.  (b) Its down sampled version. 

 

As shown in Figure 12(b), the error signal ( )ωj
k eE  of 

the kth sub band is analyzed according to the subintervals as 
follows. The error can be approximated as 

 
                                                                                                                                     
 
 

                                                                                                 
(22) 

For ,2Ω∈ω it can be approximated as 
 

( ) ( ) ( )[ ] ( ) ( )MjMj
k

j
k

Mjj
k eXeHeGeHeEM /// ωωωωω −≈⋅

(23)
 

 

Finally, for ,3Ω∈ω it can be approximated as  

( ) ( )[ ] ( ) ( )
( )( ) ( )[ ] ( )( ) ( )( ).
)(.

12()12(12 MkwjMkwj
k

j
k

Mkjw

MjwMjw
k

j
k

Mjw
k

eXeHeGeH

eeHeGeHejEM
+−+−+− ×−

+××−≈
ππωπ

ωω

                               (24) 
 

 

6. Results and Discussions 
6.1 Full band Adaptive Filtering 
 

Initialize the adaptive filter parameters: filter length m = 
41, step size = 0.01, max no of iterations, the constant pi = 
3.14, fsamp = 10000Hz. 

Generate the input noisy sinusoidal signal having multiple 
frequency components (fsig1 = 500Hz, fsig2 = 2300Hz, fsig3 
= 2700Hz, fsig4 = 3500Hz and the desired sinusoidal signal 
(fsig1 = 500Hz).  

The generated input and desired signals are applied to the 
adaptive filters and observe the error signal is equal to the 
difference of desired signal and the filtered signal. For every 
iteration observe the Mean Square error value for different 
number of iterations using the MATLAB simulation. 

 
Figure13. Representation of signals 

If the numbers of iterations are increased then the error 
value is decreased and if the input signal has longer length 
then the LMS algorithm converges slowly. This can be 
overcome by sub band adaptive filtering algorithm. 

 
 
 
 
 
 

( ) ( ) ( )[ ] ( ) ( )
( )( ) ( )[ ] ( )( ) ( )( )MkjMkj

k
j

k
Mkj

MjMj
k

j
k

Mjj
k

eXeHeGeH

eXeHeGeHeEM
/2/2/2

///

πωπωωπω

ωωωωω

−−− ×−+

×−≈⋅
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Table1. Full band adaptive filtering algorithm 

If the numbers of iterations are increased the error can be 
minimized (towards zero). That means the input signal closer 
to the desired signal. If the input signal length is increased the 
convergence rate will become slow. This can be improved by 
sub band adaptive filtering. 

 

6.2 Full band Adaptive Filtering (for system identification) 
Full band adaptive filtering for system identification 

applications, we implement as initialize the adaptive filter 
parameters: filter length m = 31, step size = 0.008, max no of 
iterations, the constant pi = 3.14. 

The input signal given to the filter is signal and the 
desired signal is the signal with some observation noise 
signal. The filter coefficients are updated by the adaptive 
filter using LMS adaptive algorithm. The adaptive filter array 
is initially set to zeros, and these are updated such that the 
estimated filter coefficients are almost equal to the unknown 
system, such a way that we select the maximum number of 
iterations. If we increasing the number of iterations, the mean 
square error is reduced (Mat lab simulations shows the 
estimated weights are almost equal to the actual weights).  

 

 
 

Figure14. Representation of input, desired and filtered signals 
 

 
 

Figure15. Representation of actual and estimated filter coefficients (for 300 
iterations) 

 

 
 

Figure16. Representation of actual and estimated filter coefficients (for 500 
iterations) 

 
6.3 Alias-Free Subband Adaptive Filtering (M=2) 

In full band adaptive filtering algorithm converges slowly 
for the sub band adaptive filtering algorithm [13], [14].    

Initialize the adaptive filter parameters: filter length        
m = 41, step size = 0.01, max no of iterations , the constant  
pi = 3.14, fsamp = 10000Hz. Generate the input noisy 
sinusoidal signal having multiple frequency components  
(fsig1 = 500Hz, fsig2 = 2300Hz, fsig3 = 2700Hz,             
fsig4 = 3500Hz and the desired sinusoidal signal            
(fsig1 = 500Hz).In sub band adaptive filtering algorithm the 
input noisy sinusoidal signal and the desired signal are 
decomposed and decimated into sub bands ( M = 2) by using 
the analysis filter bands. Each subband input signal and 
desired signals are applied to the subband adaptive filters, 
due to the down sampling interband aliasing will occur 
between two adjacent subbands. Before applying to the 
subband adaptive filters first minimize the interband aliasing 
error in each subband. The interband aliasing error will 
obtain by using a band width increased analysis filter and this 
can be subtracted from the each subband signal. The resultant 
alias free subband input signal applied to the adaptive filters. 
The subband error signals are recombined by using the 
synthesis filter banks.  Observe the total error for various no 
of iterations by using MATLAB simulation and calculate the 
Mean Square error. Each sub band adaptive filter error is 
combined by using the synthesis filter bank. These filter 
banks are designed by using windowing technique. Observe 
the total error signal for various no of iterations by using 
MATLAB simulations and also calculate the Mean Square 
error.  

            

No of iterations Full Band Error 
100 0.0698 
150 0.0387 
200 0.0269 
250 0.0207 
300 0.0168 
350 0.0141 
400 0.0122 
450 0.0107 
500 0.0095 
550 0.0086 
600 0.0079 
650 0.0072 
700 0.0067 
750 0.0062 
800 0.0058 
850 0.0054 
900 0.0051 
950 0.0048 

1000 0.0046 
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Figure17. Representation of input, desired and filtered signals 
 

If the no of iterations are increased then the total error 
value is decreased and that value is less than the full band 
algorithm for the same no of iterations and convergence rate 
also is improved.   

 

 
 

Figure18.  Error in subbands 

 
Table2. Comparison between alias free Subbands (for 2&4)  

 
6.4 Alias-Free Sub band Adaptive Filtering (M=4) 

The convergence rate is improved by subband adaptive 
filtering algorithm for a lengthy input noisy signals compare 
to the full band adaptive filter algorithm with lower 
computational cost. For the same no of iterations the error is 
minimized in sub band algorithm (M=4) compared to two 

subband filtering and full band algorithm and the 
convergence rate is improved by sub band adaptive filtering. 

The inter band aliasing error is occurred while down 
sampling the input signal. Due to this, the convergence rate 
improvement is very small. The interband aliasing error is 
reduced by alias free subband adaptive filtering with critical 
sampling. 

For the same no of iterations the error is minimized in 
Alias free sub band algorithm with critical sampling (M=4) 
when compared to full band and sub band algorithm and the 
convergence rate is also improved. The interband aliasing 
error is minimized by using the band width increased analysis 
filter and also convergence rate is improved. If the number of 
subbands is increased then the convergence rate will be 
improved. In an alias free subband adaptive filtering 
algorithm, the convergence rate is improved compared to full 
band, subband adaptive filtering algorithms. For the same 
number of iterations the error is minimum in an alias free 
subband adaptive filtering algorithm compared to full band, 
sub band adaptive filtering algorithms. 

 

 

Figure19. Alias free sub band adaptive filtering with critical sampling (M=4) 
 

 
 

Figure20. Total error in alias free sub band adaptive filtering with critical 
sampling (m=4) 

No of 
iterations 

Sub band 
Error(M=2) 

Sub band 
Error(M=4) 

100 0.0175 0.0081 
150 0.0144 0.0058 
200 0.0109 0.0045 
250 0.0087 0.0036 
300 0.0073 0.0030 
350 0.0062 0.0026 
400 0.0054 0.0023 
450 0.0048 0.0020 
500 0.0043 0.0018 
550 0.0039 0.0016 
600 0.0036 0.0015 
650 0.0033 0.0014 
700 0.0031 0.0013 
750 0.0029 0.0012 
800 0.0027 0.0011 
850 0.0026 0.0011 
900 0.0024 0.0010 
950 0.0023 0.0009 

1000 0.0022 0.0008 
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Figure21.  Comparison of MSE in full band, two subbands and four 
Subbands  

 

7. Conclusions 
In this paper in order to exploit the benefits of SAF, a 

structure with critical sampling that is virtually alias–free is 
proposed. The interband aliasing is extracted in each subband 
using the bandwidth–increased FIR linear phase analysis 
filters and then subtracted from each subband signal. The use 
of the bandwidth increased analysis filters introduces an extra 
computational load. The almost alias free subband signals 
have the spectral flatness and then the outputs are used for 
adaptive filtering in each sub band.  

The computational complexity of the proposed SAF 
algorithm is approximately reduced by M compared to that of 
the full band algorithm. Simulations results show the that the 
proposed sub band structure achieves similar convergence 
rate to the full band structure for white noise input and better  
convergence rate than both the equivalent full band at lower 
computational complexity and the conventional SAF 
structures for colored input. 
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