
Storing XML documents and XML policies in
Relational Databases

A. A. Abd EL-Aziz
Research Scholar

Dep. of Information Science & Technology
Anna University

Email: zizoah2003@gmail.com

A.kannan
Professor

Dep. of Information Science & Technology
Anna University

Email: kannan@annauniv.edu

Abstract—In this paper, We explore how to support security
models for XML documents by using relational databases. Our
model based on the model in [6], but we use our algorithm to
store the XML documents in relational databases.

I. I NTRODUCTION

There are a lot of researches about XML databases, but
the proposed approaches are not yet practical. However, these
researches do not consider the fact that the great amount data
and access control information for XML documents is still
stored into relational databases. The problem in native XML
databases is that most native XML databases can only return
the data as XML. (A few support the binding of elements
or attributes to application variables.) If an application needs
the data in another format (which is likely), it must parse the
XML before it can use the data. This is clearly a disadvantage
for local applications that use a native XML database instead
of a relational database, as it incurs overhead not found in
(for example) an ODBC application. The limitations of native
XML security models are summarized as follows[6]:

• Poor Practicality: The great amount of data is still stored
into relational databases and there are few commercial
XML databases.

• Lack Stability : Native XML security policy is poor
in stability. However, RDB-based security models are
proved to be stable by many researches and practical uses.

• Simple User-based Security Policy: Native XML se-
curity models only provide simple user-based security
policy.

Therefore, our goal in this paper is to study how to support
XML security models more effectively than conventional
RDB-based XML security models by utilizing security support
of relational security models.

II. RELATED WORK

To solve limitations of native XML security models men-
tioned above, many researches about XML security model
using relational database have been executed. [5] presents
a XENA (XML sEcurity eNforcement Architecture) which
stores XML documents as relational tables with pre-processing
method. [4] suggests XML access control method with XACT
(XML Access Control Tree). XACT is a tree which stores

access control information for each node. However, because
XACT must be created for each node in XML documents, if
the size of XML documents is increased, the creating costs
of XACT can be exorbitant. [2], [3] suggests QFilter which
provides XML access control by shared NFA and comparison
evaluation between pre-processing and post-processing.

III. T RANSFORMINGDTD TO RELATIONAL SCHEMA

In this section, we describe our technique to map a given
XML DTD to a relational schema. Our technique consists
of eight steps: (1) transform the DTD to Xschema, (2) Sim-
plify the Xschema constraints, (3) inlining of elements and
attributes, (4) handling key constraints, (5) mapping collection
types, (6) mapping IDREF and IDREFS attributes, (IDREFS
attributes are treated similar to child elements), (7) handling
the union type(or), (8) capturing the order specified in the
XML model.

A. Transforming DTD to Xschema

First we define XSchema, a language independent
formalism to specify XML schemas[7]. To define XSchema,
we first assume the existence of a setÊ of element names, a
setÂ of attribute names and a setτ̂ of atomic data types (e.g.,
ID, IDREF, IDREFS, string, integer, date, etc). Xschema is a
structural specification of an XML schema with specification
of data types, attribute definitions, and inclusion dependency
constraints. Further attributes of types IDREF and IDREFS
identify the target types referred to by the values.
Definition 1. An XSchema is denoted by 5-tuple
X =(E, A, M, P, r), where:

• E is a finite set of element names in̂E,
• A is a function from an element name e∈ E to a set of

attribute names a∈Â,
• M is a function from an element name e∈ E to its

element type definition: i.e., M(e) =α, where α is a
regular expression:α::= ε | τ | α + α | α,α | α∗, where
ε denotes the empty element,τ ∈ τ̂ , ”+” for the union,
”,” for the concatenation,α∗ for the Kleene star,α? for
(α + ε) and α+ for (α,α∗),

• P is a function from an attribute name a to its attribute
type definition: i.e., P(a) =β, whereβ is a 4-tuple (τ ,
n, d, f), whereτ ∈ τ̂ , n is either ”?” (nullable) or ”¬?”

(not nullable), d is a finite set of valid domain values of
a or ε if not known, and f is a default value of a orε if
not known. Further more, ifτ is IDREF or IDREFS, then
τ also specifies the target type or types that the attribute
value should refer to using the symbol ”−→”

• r ⊆ E is a finite set of root elements,

Example 1. The following is the DTD for a Conference:

〈!DOCTYPE Conference [
〈!ELEMENT conf (title,date,editor?,papers∗)〉
〈!ATTLIST conf id ID # REQUIRED〉
〈!ELEMENT title (# PCDATA)〉
〈!ELEMENT date EMPTY〉
〈!ATTLIST date year CDATA # REQUIRED

mon CDATA # REQUIRED
day CDATA # IMPLIED

〈!ELEMENT editor (person∗)〉
〈!ATTLIST editor eids IDREFS # IMPLIED〉
〈!ELEMENT paper(title,contact?,author,cite?)〉
〈!ATTLIST paper id ID # REQUIRED〉
〈!ELEMENT contact EMPTY〉
〈!ATTLIST contact aid IDERF# REQUIRED〉
〈!ELEMENT author (person+)〉
〈!ELEMENT person (name,(email|phone)?)〉
〈!ATTLIST person id ID # REQUIRED〉
〈!ELEMENT name EMPTY〉
〈!ATTLIST name fn CDATA # IMPLIED〉

ln CDATA # REQUIRED〉
〈!ELEMENT email (# PCDATA)〉
〈!ELEMENT phone (# PCDATA)〉
〈!ELEMENT cite (papers∗) 〉
〈!ATTLIST cite id ID #REQUIRED〉

format (ACM|IEEE) #IMPLIED〉
]〉

The Xschema for DTD conference is as follows:
E = {conf, title, date, editor, paper, contact, author,
person, name, email, phone, cite}, A(conf)={id},
M(conf)=(title, date, editor? paper∗), P(conf.id)=(ID,
¬?, ε, ε), M(title)=(string), A(date)={year, mon, day},
M(date)=ε, A(editor)={eids}, M(editor)=(person∗),
P(editor.eids)=(IDREFS−→person∗, ?, ε, ε), A(paper)={id},
M(paper)=(title, contact?, author, cite?), P(paper.id)=(ID,¬?,
ε, ε), A(contact)={aid}, M(contact)=ε, P(contact.aid)=(IDREF
−→ person,¬?, ε, ε), M(author)=(person∗), A(person)={id},
M(person)=(name,(email + phone)?), P(person:id)=(ID,¬?, ε,
ε), A(name)={fn, ln}, M(name)=ε, P(fn)=(string,¬?, ε, ε),
P(ln)=(string,¬?, ε, ε), M(email)=(string), M(phone)=(string),
A(cite)={id, format}, M(cite)=(paper∗), P(cite:id)=(ID,¬?, ε,
ε), P(format)=(string,¬?, (ACM|IEEE), ε), r={conf}

B. Simplify the Xschema constraints

Since the relational model cannot capture all the constraints
specified in the XSchema, then we try to simplify the Xschema
to transform it to relational schema. Our schema simplification
step is based on the following principles[10], [1]:

(e1,e2)∗ −→ e1∗, e2∗

(e1,e2)? −→ e1?, e2?

(e1|e2)−→ e1?, e2?

e1∗∗ −→ e1∗

e1∗? −→ e1∗

Where e1, e2 and a are subelements.
Example 2.In the above Xschema M(person) = (name, (email
+ phone)?) is simplified to be M(person) = (name, email?,
phone?).

C. Inlining

Our inlining technique creates one relation for an ele-
ment instead of creating more relations corresponding to
one element which is performed in [7]. Inlining is used to
generate more meaningful and efficient relational schemas. In
inlining, we consider attributes of descendants of an element
as attributes in the relation corresponding to that element.
Inlining for an element (e) is done recursively using the inline
technique described below. Inline technique returns a relation
that should be generated for an input element currEl. The
inlining technique also takes as input attSet which is used
to maintain the list of attributes of (e) that should be present
in the relation generated for (e). To inline the element (e), we
call inline, where the initialization is: currEl= e, attSet =φ.
inline : currEl, attSet−→ ResultSet
1. Assign the set of attributes in A(currEl) except IDREF and
IDREFS attributes to attSet.
2. Set ResultSet =φ.
3. Let the elements which occurs in M(currEl) with occurrence
constraints (1,1) or (1,0) after simplification be{e1,e2,...en}.

3.1. For each ei, do the following.
3.1.1. if M(ei) ∈ τ̂ , then attSet = attSet∪ {ei}.
3.1.2. else attSet = attSet∪ inline{ei, φ}.

3.2. if attSet =φ, attSet ={currEl}.
4. ResultSet = ResultSet∪ attSet.
5. Return ResultSet.
The inlining technique is applied to the top elements which
are determined by the following rules[8]:
Rule1:An element which does not appear in any other element
type definition (such asconf).
Rule2: A non#PCDATA element which appears in more than
one other element type definition.
Rule3: A non#PCDATA element B which appears in another
element type definition A with ”*” or ”+” operators (such as
paper, person).
Rule4: If recursion occurs, one of the elements in the recursion
is selected as a top element.
Example 3. According to the above rules we find that the
element nodes areconf (according to rule 1),paper (ac-
cording to rule 3, 4) andperson (according to rule 3), so
by performing inlining onconf , paper , and person , we
obtain the following relation definitions
conf (id, title, year, mon, day, editor),paper (id, title, con-
tact, author, citeid, cite format), person (id, fn, ln, email,
phone).

D. Handling key constraint

In each relation that is created from the previous step, add
an attribute (code), its values are 1,2,3...,etc., as a primary key

for each relation.
Example 4. The relation definitions will beconf (code, id,
title, year, mon, day, editor),paper (code, id, title, contact,
author, citeid, cite format), person (code, id, fn, ln, email,
phone).

E. Mapping collection types

1. If there is a table corresponding to the collection type,
then adds a foreign key refers to the table that represents or
contains its parent.
2. Else create a new table corresponding to the collection type,
and add a foreign key refers to the table that represents or
contains its parent.
3. If the parent of the collection type say (e) is an attribute in
a table and A(e)=Φ, then remove it form that table.
Example 5.
1. Since M(conf)=(title, date, editor? paper∗), and there is
a table corresponding topaper element, then we add a
foreign key to theconf table inpaper table. So thepaper
table will be paper (code, id, title, contact, author, citeid,
cite format, conf).
2. Since M(editor)=(person∗), and there is a table correspond-
ing to person element, then we add a foreign key to the
conf table inperson table . So theperson table will be
person (code, id, fn, ln, email, phone, conf).
3. Since M(cite)=(paper∗), and there is a table corresponding to
paper element, then we add a foreign key to thepaper table
in paper table. So thepaper table will bepaper (code, id,
title, contact, author, citeid, cite format, conf, paper).
4. Since M(author)=(person∗), and there is a table corre-
sponding toperson element, then we add a foreign key to
the paper table in person table and remove theauthor
attribute form paper table. So theperson table will be
person (code, id, fn, ln, email, phone, conf, paper) and
paper table will be paper (code, id, title, contact, citeid,
cite format, conf, paper).

F. Mapping IDREF and IDREFS attributes

1. An IDREF attribute is mapped by replacing it by a foreign
key.
Example 6. We have an IDREF attribute defined for contact,
which refers toperson . So the result of our mapping is
defining the contact attribute inpaper table as a foreign key
refers toperson table.
2. IDREFS attributes are mapped by creating a new table
contains a foreign key to the referenced table and a foreign
key for the table that represent the element which contains the
IDREFS attribute, then removing the IDREFS attribute form
that table.
Example 7. We haveconf (code, id, title, year, mon, day,
editor), A(editor)={eids}, p(eids)=(IDREFS−→ person∗, ¬?,
ε, ε), andperson (code, id, fn, ln, email, phone, conf, paper).
So we create a new tableeditor (conf, person) and remove
the editor attribute formconf table, soconf table will be
conf (code, id, title, year, mon, day).

G. Handling the union type

In this step, if we find more than one attribute that may be
NULL in a table say a1 and a2, do the following step:

1. Replace them with two attributes, one of them as
a flag attribute and the second for values its name
is a1 a2

2. Add the flag attribute to the key of the table.
Example 8. We have person (code, id, fn, ln, email,
phone, conf, paper), since email and phone attributes may
be NULL, so we replace them with a flag attribute that
added to the key and emailphone attribute, then we will have
person (code, flag, id, fn, ln, email phone, conf, paper).

H. Capturing order specified in the XML model

To capture document order in relational database system,
we encode each element’s position in an XML document as
a data value by using Dewey order method[11]. With Dewey
order, each element is assigned a vector that represents the
path from the document’s root to the element. We store the
order of elements in XML DTD in two tables, these tables are
meta data that will be used in mapping relational query result
to XML documents.
Example 9. For DTD conference, We create the following
tables:

pathId ele name parentId
1 conf

1.1 title 1
1.2 date 1
1.3 editor 1

1.3.1 person 1.3
1.4 paper 1

1.4.1 title 1.4
1.4.2 contact 1.4
1.4.3 author 1.4
1.4.4 cite 1.4

1.4.3.1 person 1.4.3
1.4.4.1 paper 1.4.4

parent sub ele order
person name 1
person email 2
person phone 3

IV. STORAGE SCHEMA OF ACCESSCONTROL

The storing of XML access control rules is done as the
following in table 1 [6]:

TABLE I
STORAGE SCHEMA OF ACCESSCONTROL RULES DEFINED BY THE

SECURITY ADMINISTRATOR

R Subj Role Type Path Att Value Lev
ID el
1 Bob R+ R Order/Order City Cairo .

info /Ad
//dr

2 Bob W+ R Order/Custom . . 2
er info

3 Jane R- L Order/Custom Name Not .
er info Jane
/Credit card Jane

The table for access control rules consists of 8 attributes. The
RuleID attribute is an identifier of each access control rule
and thesubj attribute is a subject of access control rule. The
Role attribute is a positive/negative role of the subject and
can have R(read) or W(write) or U(update)values. Besides, +
or - represent positive or negative roles. TheTypeattribute is
an access control scope and can have R(recursive) or L(local)
value. The recursive node includes indicated node and all child
nodes of that node. However, the local node only includes
indicated node. ThePath attribute is a path information of
node that the access control is applied to. TheAtt attribute
is attribute information and the Value attribute include values
related to the attribute. TheLevelattribute represents that the
described rule is applied to the indicated node and child node
represented as the level value. That is, level value 1 means
that this access control rule is applied to the only indicated
node, same as local mode. As the table 1, level value 2 means
that this access control rule is applied to the indicated node
and child nodes, not descendant. The above storage schema is
a beginning schema defined by the security administrator and
changed recursive form into local form automatically as Table
2.

TABLE II
AUTOMATICALLY TRANSLATED STORAGE SCHEMA OF ACCESSCONTROL

RULES

RuleID Subj Role Type Path Att Value
1 Bob R+ L Order/Order City Cairo

info /Ad
//dr

2 Bob R+ L Order/Order City Cairo
info /Ad
//dr/city

3 Bob R+ L Order/Order City Cairo
info /Ad
//dr/Zip

4 Bob W+ R Order/Custom . .
er info//

5 Bob W+ R Order/Custom . .
er info//name

6 Bob W+ R Order/Custom . .
er info//phone

7 Bob W+ R Order/Custom . .
er info/Add/

8 Bob W+ R Order/Custom . .
er info//

Credit card
9 Jane R- L Order/Custom Name Jane

er info
/Credit card

V. CONCLUSION

In this paper, we suggested the RDB-based XML access
control model . We envisage an XML data management system
in which:

1) access control rules for XML data are specified in a
relational database.

2) XML data are stored into a relational database.

The technique suggested in this paper can have the following
contribution:

1) Practicality : The technique can support more practical
access control processing by using relational database.

2) Stability : The storing of the access control techniques
guarantees better stability than conventional XML access
control models.

3) Performance: because we store XML data into the
relational database, when user queries are give, we do
not need to load all of XML documents. [9].

REFERENCES

[1] A. Deutsch, M. F. Fernandez, and D. Suciu. Storing Semistructured
Data with Stored.In proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 431–442, 1999.

[2] B. Luo et al. Pragmatic xml access control using offthe- shelf rdbms.
Computers & Security, 23, 2004.

[3] B. Luo et al. Qfilter: fine-grained run-time xml access control via
nfa-based query rewriting.In Proceedings of International Conference
on Information and Knowledge Management (CIKM), Washington, DC,
USA, November 2004.

[4] J. Jeon et al. Filter xpath expressions for xml access control.Computer
Security (ESORICS), Dresden, Germany, September 2007.

[5] K.L. Tan et al. Access control of xml documents in relational database
systems. In Proceedings of International Conference on Internet
Computing (ICIC 01), Las Vegas, NV, June 2001.

[6] Jinhyung Kim, Dongwon Jeong, and Doo-Kwon Baik. A vision: Rdb-
based xml security models considering data levels.In Proceedings of
2nd International Conference on Future Generation Communication and
Networking, pages 356 – 361, 13-15 Dec. 2008.

[7] M. Mani and D. Lee. XML to Relational Conversion using Theory of
Regular Tree Grammars.In Proceedings of the 28th VLDB Confer-
ence,Hong Kong, China, 2000.

[8] Y. Men-hin and A. Wai chee Fu. From XML to Relational Database.
In Proceedings of the 8th International Workshop on Knowledge Rep-
resentation meets Databases (KRDB), September 15, 2001.

[9] Yuanbo Qu, XiaoGuang Hong, and Ji Feng. An approach to construct
secure view for xml.In Proceedings of the International Conference on
Management and Service Science. MASS ’09, pages 1–4, 2009.

[10] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and
J. Naughton. Relational Databases for Querying XML Documents:
Limitations and Opportunities. In Proceedings of the 25th VLDB
Conference, Edinburgh, Scotland, pages 302–314, 1999.

[11] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita,
and c. Zhang. Storing and Querying Ordered XML Using a Relational
Database System.In proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 204–215, 2002.

