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Abstract

It is shown that contrary to this current belief that the electrostatic
potential difference between the two conductors of a capacitor is the same
potential difference between the two poles of the battery which has charged
it, the first is two times more than the second. We see the influence of
this in the experiments performed for determination of charge and mass
of the electron.

1 Two kinds of potential difference for a
capacitor

According to the current literature of Electricity and Magnetism [1-11],
when the two conductors of a capacitor are connected to a battery, elec-
trostatic potential difference between the conductors of the capacitor will
be equal to the potential difference between the two poles of the battery
which is charging it, and this is simply because of the closed circuit law
governing the closed circuit comprising of these battery and capacitor.
But, we now will prove that the electrostatic potential difference between
the two conductors of a capacitor is two times more than the potential
difference between the two poles of the battery which has charged it.
This does mean that in applying closed circuit law here, we must con-
sider circuital potential difference for the capacitor which is other than
the electrostatic potential difference related to it.

Suppose that the potential difference between the two poles of the
battery is ∆φ and the electrostatic potential difference between the two
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conductors of the capacitor is ∆φ′ . It is obvious that if the charge col-
lected on the capacitor is Q, the battery has transmitted it through itself
under the potential difference ∆φ and so has given it an energy equal to
Q∆φ. But, we know from the reasonings presented in many textbooks
of Electromagnetism [1-12] that the electrostatic potential energy of the
capacitor is 1/2Q∆φ′. According to the conservation law of energy then
we must have Q∆φ = 1/2Q∆φ′ or ∆φ′ = 2∆φ.

We also show this fact through a simple physical reasoning: Suppose
that all the capacitor charges are fixed and, under the influence of the
electrostatic force of the capacitor, a one-coulomb external point charge
starts to move from one of the two conductors until it reaches the other
conductor. When we say that the electrostatic potential energy between
the two conductors of the capacitor is ∆φ′, we indeed mean that the
work performed on the mentioned separate one-coulomb point charge by
the mentioned force will be ∆φ′. In this state, we have no change in
the charges on the conductors. But, now, suppose that the magnitude
of the charge on each conductor of the above-mentioned capacitor is one
coulomb and it is possible that charges separate from a conductor and
start to move in the space between the two conductors until they reach the
other conductor. Certainly, the total work performed on this one-coulomb
charge by the electrostatic force of the capacitor will not be equal to ∆φ′,
because with each transmission of some part of the charge, magnitude
of the charge on each conductor (and consequently the electrostatic field
between the two conductors) is decreased and does not remain unchanged
as before. The above argument shows that this work will be 1/2∆φ′. In
fact this work, ie the work conserved in the capacitor, which is now being
released is the same work done by the battery for charging the capacitor.

We show this matter in an analytical manner too: Suppose that our
capacitor is a parallel-plate one and its charge is Q. If a separate Q-
coulomb charge travels from a plate to the other one, the work performed
on it will be

QEd = Q
Q

εA
d =

d

εA
Q2, (1)

while for calculating the work performed on the charge of the capacitor
itself, being plucked bit by bit and travelling from a plate to the other
one, we should say that the work performed on a differential charge −dQ
(note that dQ is negative), similar to Eq. (1), is

(−dQ)Ed = −dQ
Q + dQ

εA
d = − d

εA
(Q + dQ)dQ.

Sum of these differential works is∫ 0

Q=Q

− d

εA
(Q + dQ)dQ =

1

2

d

εA
Q2

which is half of the previous work (shown in Eq. (1)).

Thus, we should expect to have 2∆φ = d/(ε0A)Q when a battery with
the potential difference ∆φ has charged a parallel-plate capacitor, while it
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has already been thought that ∆φ = d/(ε0A)Q. Since all the parameters
of both the recent relations are measurable (∆φ by voltmeter), the truth
or untruth of each can be tested practically.

The analysis given in this subject in many textbooks leads us to de-
termine forcefully a resistance R for our closed circuit through which half
of the charge’s energy given by the battery must dissipate. But evidently
we are practically able to have circuits with negligible resistance. A true
analysis must stand with deleting R. So, there exists a difficulty some-
where. As follows, we point to this difficulty the reasoning presented in
(the part of RC circuits of) these textbooks (eg see [12]) has: When a
differential charge dq passes through the battery having emf V , it gains
energy V dq. A part of this energy will dissipate in the R of the circuit
(this part is i2Rdt (during the time dt)). Other part of this energy will
be stored in the capacitor. But what is the amount of this other part?
We know that the energy of the charge q in the capacitor C is q2/(2C).
But, as reasoned in a paragraph at the end of this article, this other part
of energy is not d(q2/(2C)) = (q/C)dq, because the differential change
d(q2/(2C)) in the capacitor’s energy is due to pass of the charge 2dq not
dq. (Indeed, in simpler and rough words, half of the role of gathering
charge on the capacitor is undertaken by the attraction force between the
opposite charges on the plates of the capacitor which are close to each
other, and the other half is undertaken by the battery.)

We should notice a point. When connecting a voltmeter to the two
conductors of a charged capacitor, it measures ∆φ not ∆φ′, because its
operation is based on passing a weak electric current through a circuit in
the instrument and measuring the potential difference between the two
ends of the circuit; and passing of a current means in fact the same story
of the capacitor charge being plucked bit by bit from the conductors, and
then the voltmeter measures ∆φ.

We should also say that there is no need that, in the existent calcu-
lations of electrical circuits, the potential difference of each capacitor to
be made double, because in these calculations the same ∆φ has been in
fact intended not ∆φ′, because the electric current passing through the
circuit including the capacitor is the same process of gradual loading and
unloading of the capacitor, not passing of charge through the space be-
tween the two conductors of the capacitor retaining the capacitor charge
unchanged. Therefore, it is proper to give ∆φ a name other than the
electrostatic potential difference which is the name of ∆φ′. Let’s call it
(ie ∆φ) as circuital potential difference of the capacitor. In this man-
ner, when it is necessary to apply closed circuit law, we must consider
just this circuital potential difference, when passing the capacitor, not its
electrostatic potential difference.

Now, again, consider a closed circuit of a battery, with the potential
difference ∆φ, and a capacitor, with the capacitance C. Let’s investigate
the usual method of analysis of RC (or generally RLC) circuits and see
what the difficulty is in it. Without missing anything we suppose that
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the circuit has no resistance (ie R = 0). When a differential electric
charge dQ passes through the battery causes a differential change in the
electrostatic energy of the capacitor. In the first instance, it seems that
when the differential charge dQ passes through the battery and gains the
differential energy ∆φdQ, as a rule, according to the conservation law of
energy, this same energy must be conserved in the capacitor in the form
of d(Q2/(2C)), and so

∆φdQ = d(
Q2

2C
)⇒ ∆φdQ =

Q

C
dQ⇒ ∆φ =

Q

C
⇒ ∆φ− Q

C
= 0

which is just the same result which we could obtain from the closed cir-
cuit law by travelling one time round the circuit if the potential difference
between the two conductors of the capacitor was taken electrostatic poten-
tial difference, ie ∆φ′ = Q/C, not circuital potential difference, ie Q/(2C)!
The difficulty is that the relation ∆φdQ = d(Q2/(2C)) is not necessarily
true, for this reason: If we had a mathematical relation, in the form of
an equality, between the energy given by the battery and the electrostatic
energy stored in the capacitor (ie Q2/(2C)), we could differentiate from
each side of the equality relation and understand that the change of energy
in the capacitor in the form of d(Q2/(2C))(= Q/CdQ) is exactly arising
from what the differential change in the battery. But, since there is no
such a relation, we cannot necessarily infer that change of energy in the
capacitor in the form of Q/CdQ is arising from passing of the charge dQ
through the battery and consequently from differential change of ∆φdQ
in the energy given by the battery, because eg by writing Q/(2C)(2dQ)
instead of Q/CdQ we can claim that this change of energy in the capac-
itor is arising from passing of the charge 2dQ through the battery and
consequently from differential change of ∆φ(2dQ) in the energy given by
the battery (ie ∆φ(2dQ) = Q/(2C)(2dQ)), and the previous reasonings
show that incidentally this is the case.

Thus, we should bear in mind that in the analysis of RLC circuits we
must attribute only the circuital potential difference, ie Q/(2C), not the
electrostatic potential difference, ie Q/C, to the capacitor of the circuit.
Also it is notable that since current instruments indeed measure capaci-
tance of a capacitor using the formula C = Q/∆φ′ while taking ∆φ instead
of ∆φ′, they give us in fact Q/∆φ = Q/(∆φ′/2) = 2(Q/∆φ′) = 2C as the
capacitance; in other words what they measure as capacitance is in fact
double the capacitance.

It is necessary to note the influence that inattention to the above-
mentioned problem (ie difference between ∆φ and ∆φ′) has on the results
of the experiments of Millikan and Thomson for determining charge and
mass of the electron (and similarly positive ions).

In the experiment of Millikan the electric charge of each charged oil
droplet is proportional to k/E in which k is the coefficient of proportion
of Stokes and E is the electrostatic field between the two plates of the
parallel-plate capacitor used in the experiment. As we know E between
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the two plates of a parallel-plate capacitor is equal to the electrostatic
potential difference ∆φ′ divided by the distance d between the two plates.
So the charge of each droplet is proportional to k/∆φ′. But for practical
determination of ∆φ′ the potential difference read by the voltmeter con-
nected to the plates of the capacitor is considered erroneously, while as we
said this potential difference, ∆φ, which we called it as circuital potential
difference, is half of ∆φ′. In other words as a rule the quantity so far
recognized as the charge of a droplet should be two times larger than the
real charge of the droplet and then the electron’s charge obtained from
the numerous repetitions of the experiment of Millikan should be really
half of what is at present accepted as the charge of electron.

But this is not the case because the experiment of Millikan plainly lacks
sufficient accuracy (and a tolerance up to half of the real amount seems
natural for it because certainly it is unlikely that the electrons are added
or deducted only one by one). In fact it seems that the results of this
experiment have been adapted in some manner for being in conformity
with the results of the exact experiment of determination of electric charge
of electron by X-ray. (As we know in this experiment the wavelength of
X-ray can be determined by its diffraction via a diffraction grating with
quite known specifications, and then having this wavelength and Bragg’s
equation and analyzing the diffraction of the ray via a crystal lattice the
lattice spacing, d, of the crystal can be determined; thereupon considering
the molecular mass and crystal density Avogadro’s number N0 can be
calculated with sufficient accuracy and using it in the formula F = N0e,
in which F is the Faraday constant and e is the charge of electron, e can
be obtained which is the same that has been accepted at present as the
charge of the electron.)

In the experiment of Thomson too, for evaluation of q/m related to
the charge and mass of the electron in the cathodic ray, this quantity,
ie q/m, is obtained proportional to the electrostatic field E between the
two plates of the parallel-plate capacitor through which the cathodic ray
passes. But again for practical determination of E the above-mentioned
error is repeated and while E is really equal to ∆φ′/d the amount read
on the voltmeter, ∆φ, (which is in fact equal to 1/2∆φ′) is set instead of
∆φ′. In other words as a rule the quantity hitherto considered as q/m
of the electron (in the experiment of Thomson) should be half of its real
amount. Then, to obtain the real value of q/m we must multiply the value
accepted presently as q/m by 2.

But here we should say that it seems that this experiment (or any other
similar one) is not accurate in determining q/m of electron or positive
ions since in it a shooting motion has been assumed for the electron in
the cathodic ray (or for the positive ion in the positive ray), while as
explained in detail in the paper “Classical justification of the wave-like
behavior of electron beams” in the book [13] we must consider for it a
longitudinal wave motion in the gas medium existent in the tube without
any charge transferring, and it seems that such a wave motion, although
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has many similarities with the shooting motion, is not exactly the same
shooting motion and has difference with it. Thus, it is necessary to doubt
what has been accepted as the mass of electron.
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