Do Heavy Gauge Bosons Exist?

Kenneth Dalton

email: kxdalton@yahoo.com

Abstract

Recently, it was shown that scalar and vector fields couple in a gauge invariant manner, such as to form massive vector fields. Transverse and longitudinal solutions were found for the W^{\pm} and Z^0 bosons. Here, new solutions are given which correspond to particles with mass $m_W' = \sqrt{2} \, m_W$ and $m_Z' = \sqrt{2} \, m_Z$. The work may shed light upon the discoveries at CERN and Fermilab.

Previously, it was shown that the gauge bosons $W_{\mu}^{\pm}=(W_{\mu}^{1}\mp W_{\mu}^{2})/\sqrt{2}$ and the scalar field Φ are coupled, according to the equations [1]

$$\partial_{\mu}\partial^{\mu}W^{\nu} + \frac{1}{4}g^2W^{\nu}\phi^2 = 0 \tag{1}$$

$$\partial_{\mu}\partial^{\mu}\phi - \frac{1}{4}g^{2}W_{\mu}W^{\mu}\phi = 0 \tag{2}$$

where W_{ν} is either W_{ν}^{1} or W_{ν}^{2} . These equations derive from the standard electroweak Lagrangian. The unitary gauge is chosen

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 \\ \phi/\sqrt{2} \end{pmatrix} \tag{3}$$

where $\phi(x)$ is real. Traveling solutions exist which are polarized, $W^{\mu}(u) = \epsilon^{\mu}\phi(u)$, where $u = -k_{\mu}x^{\mu}$ and ϵ^{μ} is a real polarization vector. Such vectors are space-like, $\epsilon_{\mu}\epsilon^{\mu} = -1$, so that both (1) and (2) will be satisfied if

$$\partial_{\mu}\partial^{\mu}\phi(u) + \frac{1}{4}g^{2}\phi^{3}(u) = k_{W}^{2}\frac{d^{2}\phi}{du^{2}} + \frac{1}{4}g^{2}\phi^{3}(u) = 0$$
 (4)

This cubic wave equation is solved by the elliptic function $\operatorname{cn}(u,\frac{1}{2})$

$$\phi(u) = \frac{2k_W}{q} \operatorname{cn}(-k_\mu x^\mu) \tag{5}$$

The amplitude of this traveling wave is not arbitrary, but is fixed by the value of $2k_W/g$. The coupling between Z^0 and Φ is described by similar equations

$$\partial_{\mu}\partial^{\mu}Z^{\nu} + \frac{1}{4}(g^2 + g'^2)Z^{\nu}\phi^2 = 0 \tag{6}$$

$$\partial_{\mu}\partial^{\mu}\phi - \frac{1}{4}(g^2 + g'^2)Z_{\mu}Z^{\mu}\phi = 0$$
 (7)

Once again, the solutions are polarized, $Z^{\mu}(u) = \epsilon^{\mu} \phi(u)$, where

$$\phi(u) = \frac{2k_Z}{\sqrt{g^2 + g'^2}} \operatorname{cn}(-k_\mu x^\mu)$$
 (8)

There is another solution to the cubic wave equation, which takes the form of the elliptic function dn(u, m). Its derivatives are [2]

$$\frac{d \operatorname{dn}(u, m)}{du} = -m \operatorname{sn}(u, m) \operatorname{cn}(u, m) \tag{9}$$

$$\frac{d \operatorname{dn}(u, m)}{du} = -m \operatorname{sn}(u, m) \operatorname{cn}(u, m)$$

$$\frac{d^2 \operatorname{dn}(u, m)}{du^2} = -m \operatorname{dn}(u, m) \{1 - 2 \operatorname{sn}^2(u, m)\}$$
(10)

Substitute $\phi(u) = a \operatorname{dn}(u, m)$ into (4) to find that the equation is satisfied, if the parameter m=2 and $a=2\sqrt{2} k_W/g$

$$\phi(u) = \frac{2\sqrt{2} k_W}{q} \operatorname{dn}(u, 2) \tag{11}$$

The period of an elliptic function is well-defined, if 0 < m < 1. The function dn(u, 2) may be converted by means of the reciprocal formula [2]

$$dn(u,2) = cn(v,\frac{1}{2}) \tag{12}$$

where $v = \sqrt{2} u$. It follows that

$$\phi(v) = \frac{2\sqrt{2} k_W}{q} \operatorname{cn}(-\sqrt{2} k_{\mu} x^{\mu})$$
 (13)

with $W^{\mu}(v) = \epsilon^{\mu}\phi(v)$. The period of this solution is identical to that of (5), i.e., since $m=\frac{1}{2}$, the quarter-period is $K \doteq 1.85$. However, the argument and amplitude are both greater than those in (5) by the factor $\sqrt{2}$. Since k_W is directly proportional to the mass m_W , the new solution represents a charged vector boson with mass $m'_W = \sqrt{2} m_W$. Similarly, the Z^0 equations (6) and (7) admit the new solution

$$\phi(v) = \frac{2\sqrt{2} k_Z}{\sqrt{g^2 + g'^2}} \operatorname{cn}(-\sqrt{2} k_\mu x^\mu)$$
 (14)

with $Z^{\mu}(v) = \epsilon^{\mu} \phi(v)$. This represents a neutral vector boson of mass $m_Z' =$ $\sqrt{2} m_Z$. Substitute the known values $m_W = 80.4 \text{ GeV}$ and $m_Z = 91.2 \text{ GeV}$ to find $m'_W = 114 \text{ GeV}$ and $m'_Z = 129 \text{ GeV}$. The data at Fermilab show activity in the range 115-130 GeV, while CERN is reporting 126 GeV. The suggestion here is that a search be conducted for two distinct masses, rather than one.

References

- 1. K. Dalton, "On the W^{\pm} and Z^0 Masses", http://www.vixra.org/abs/1208.0041
- 2. M. Abramowitz and I. Stegun, *Handbook of Mathematical Functions*, (Dover, New York, 1965) p. 569. Also, http://www.dlmf.nist.gov/22