Two Uncertain Things

Sari Haj Hussein1

APSIA Breakfast Talk

1Interdisciplinary Center for Security, Reliability and Trust
University of Luxembourg

2011-07-06
1 Build-up
 - Sample Space
 - Probability Measures
 - Belief and Plausibility Measures

2 The First Uncertain Thing
 - Assumptions
 - Progress

3 Build-up Again
 - Conditioning Belief Measures to Update Knowledge
 - Meaningful Measure of Uncertainty with Beliefs
 - Generalized Hartley’s Measure with Beliefs
 - Generalized Shannon’s Measure with Beliefs
 - Aggregate Uncertainty

4 The Second Uncertain Thing
 - Assumptions
 - Progress
1. **Build-up**
 - Sample Space
 - Probability Measures
 - Belief and Plausibility Measures

2. **The First Uncertain Thing**
 - Assumptions
 - Progress

3. **Build-up Again**
 - Conditioning Belief Measures to Update Knowledge
 - Meaningful Measure of Uncertainty with Beliefs
 - Generalized Hartley's Measure with Beliefs
 - Generalized Shannon's Measure with Beliefs
 - Aggregate Uncertainty

4. **The Second Uncertain Thing**
 - Assumptions
 - Progress
Sample Space (Frame of Discernment)

- A set of possible worlds/states/elementary outcomes
 \(\mathcal{W} = \{w_1, \ldots, w_n\} \)

- An agent considers some subset of \(\mathcal{W} \) possible and this subset qualitatively measures her uncertainty

- The more worlds an agent considers possible, the more uncertain she is, and the less she knows

- When throwing a dice, the sample space would be
 \(\mathcal{W} = \{w_1, w_2, w_3, w_4, w_5, w_6\} \), \(w_i \) means the dice lands \(i \)

- An agent can consider the dice landing on an even number possible, that is the subset \(\mathcal{W} = \{w_2, w_4, w_6\} \)
Sample Space

Sample Space (Frame of Discernment)

A set of possible worlds/states/elementary outcomes
\[W = \{ w_1, \ldots, w_n \} \]

An agent considers some subset of \(W \) possible and this subset qualitatively measures her uncertainty.

The more worlds an agent considers possible, the more uncertain she is, and the less she knows.

When throwing a dice, the sample space would be
\[W = \{ w_1, w_2, w_3, w_4, w_5, w_6 \}, \quad w_i \text{ means the dice lands } i \]

An agent can consider the dice landing on an even number possible, that is the subset \(W = \{ w_2, w_4, w_6 \} \)
A method for representing uncertainty

Given a sample space $W = \{w_1, \ldots, w_n\}$, a probability measure assigns to each world w_i a number (a probability)

This probability describes the likelihood that the world w_i is the actual world
Algebra

- An algebra over W is a set F of subsets of W that contains W and is closed under union and complementation.
- If A and B are in F, then so are $A \cup B$ and \overline{A}.

Probability Measure

- Given a sample space W, a probability measure is a function $\mu : F \rightarrow [0, 1]$ that satisfies the following two properties:
 - $\mu(W) = 1$
 - Finite additivity: $\mu(A \cup B) = \mu(A) + \mu(B)$ if A and B are disjoint sets in F.
Algebra

- An algebra over W is a set F of subsets of W that contains W and is closed under union and complementation.
- If A and B are in F, then so are $A \cup B$ and \overline{A}.

Probability Measure

- Given a sample space W, a probability measure is a function $\mu : F \rightarrow [0, 1]$ that satisfies the following two properties:
 - $\mu(W) = 1$
 - Finite additivity: $\mu(A \cup B) = \mu(A) + \mu(B)$ if A and B are disjoint sets in F
Probability Measures

- When flipping a coin, the sample space would be \(\mathcal{W} = \{ w_H, w_T \} \)
- An algebra: \(F = \{ \{ w_H \}, \{ w_T \}, \{ w_H, w_T \} \} \)
- A probability measure: \(\mu : F \to [0, 1] \)
 - \(\mu(\{ w_H \}) = 0.7, \mu(\{ w_T \}) = 0.3 \)
 - \(\mu(\{ w_H, w_T \}) = \mu(\{ w_H \}) + \mu(\{ w_T \}) = 1 \)
• Probability measures are not good at representing uncertainty because of the finite additivity property

• Ignorance is difficult to express - an agent has to assign a probability to \(\{w_H\} \)

• An agent may not have the computational power to compute all the probabilities
Belief Measure

Given a sample space \(\mathcal{W} \), a belief measure is a function \(Bel : 2^\mathcal{W} \to [0, 1] \) that satisfies the following three properties:

- \(Bel(\emptyset) = 0 \)
- \(Bel(\mathcal{W}) = 1 \)
- Inclusion-exclusion rule:
 \[
 Bel(A_1 \cup A_2 \cup \ldots \cup A_n) \geq \sum_{j} Bel(A_j) - \sum_{j<k} Bel(A_j \cap A_k) + \ldots + (-1)^{n+1} Bel(A_1 \cap A_2 \cap \ldots \cap A_n) \Omega_1
 \]

In \(\Omega_1 \), let \(A_1 = A \) and \(A_2 = \overline{A} \) for \(n = 2 \). Then

\[
Bel(A \cup \overline{A}) \geq Bel(A) + Bel(\overline{A}) - Bel(A \cap \overline{A}) \]

which gives

\[
Bel(A) + Bel(\overline{A}) \leq 1
\]
Belief and Plausibility Measures

Belief Measure

Given a sample space W, a belief measure is a function $Bel : 2^W \rightarrow [0, 1]$ that satisfies the following three properties:

- $Bel(\emptyset) = 0$
- $Bel(W) = 1$
- Inclusion-exclusion rule:
 $$Bel(A_1 \cup A_2 \cup \ldots \cup A_n) \geq \sum_{j} Bel(A_j) - \sum_{j<k} Bel(A_j \cap A_k) + \ldots + (-1)^{n+1} Bel(A_1 \cap A_2 \cap \ldots \cap A_n) \quad (\Omega_1)$$

In (Ω_1), let $A_1 = A$ and $A_2 = \overline{A}$ for $n = 2$. Then
$$Bel(A \cup \overline{A}) \geq Bel(A) + Bel(\overline{A}) - Bel(A \cap \overline{A})$$
which gives
$$Bel(A) + Bel(\overline{A}) \leq 1$$
Plausibility Measure

Given a sample space W, a plausibility measure is a function $Pl : 2^W \rightarrow [0, 1]$ that satisfies the following three properties:

- $Pl(\emptyset) = 0$
- $Pl(W) = 1$
- Inclusion-exclusion rule: $Pl(A_1 \cap A_2 \cap \ldots \cap A_n) \leq \sum_j Pl(A_j) - \sum_{j<k} Pl(A_j \cup A_k) + \ldots + (-1)^{n+1} Bel(A_1 \cup A_2 \cup \ldots \cup A_n) (\Omega_2)$

In (Ω_2), let $A_1 = A$ and $A_2 = \overline{A}$ for $n = 2$. Then $Pl(A \cap \overline{A}) \leq Pl(A) + Pl(\overline{A}) - Pl(A \cup \overline{A})$ which gives $Pl(A) + Pl(\overline{A}) \geq 1$
Belief and Plausibility Measures

Plausibility Measure

Given a sample space W, a plausibility measure is a function $PI : 2^W \rightarrow [0, 1]$ that satisfies the following three properties:

- $PI(\emptyset) = 0$
- $PI(W) = 1$
- Inclusion-exclusion rule: $PI(A_1 \cap A_2 \cap ... \cap A_n) \leq \sum_{j} PI(A_j) - \sum_{j<k} PI(A_j \cup A_k) + ... + (-1)^{n+1} Bel(A_1 \cup A_2 \cup ... \cup A_n) \ (\Omega_2)$

In (Ω_2), let $A_1 = A$ and $A_2 = \overline{A}$ for $n = 2$. Then $PI(A \cap \overline{A}) \leq PI(A) + PI(\overline{A}) - PI(A \cup \overline{A})$ which gives $PI(A) + PI(\overline{A}) \geq 1$
Given a sample space W, a basic belief assignment is a function $m : 2^W \rightarrow [0, 1]$ that satisfies the following two properties:

- $m(\emptyset) = 0$
- $\sum_{A \in 2^W} m(A) = 1$

$m(A) \geq 0$

If $m(A) > 0$ then A is a focal set

Let \mathcal{F} be the set of all focal sets induced by m, then $\langle \mathcal{F}, m \rangle$ is a body of evidence

It is clear that a bba resembles a probability distribution function
Basic Belief Assignment (Mass Function) (Möbius Representation)

- Given a sample space W, a basic belief assignment is a function $m : 2^W \rightarrow [0, 1]$ that satisfies the following two properties:
 - $m(\emptyset) = 0$
 - $\sum_{A \in 2^W} m(A) = 1$

- $m(A) \geq 0$
- If $m(A) > 0$ then A is a focal set
- Let \mathcal{F} be the set of all focal sets induced by m, then $\langle \mathcal{F}, m \rangle$ is a body of evidence
- It is clear that a bba resembles a probability distribution function
Belief and Plausibility Measures

Some Formulas

- $Pl(A) = 1 - Bel(\bar{A})$
- $Bel(A) \leq Pl(A)$
- $Bel(A) = \sum_{B | B \subseteq A} m(B)$
- $Pl(A) = \sum_{B | A \cap B \neq \emptyset} m(B)$
- $Q(A) = \sum_{B | A \subseteq B} m(B)$
- $m(A) = \sum_{B | B \subseteq A} (-1)^{|A - B|} Bel(B)$
- $m(A) = \sum_{B | B \subseteq A} (-1)^{|A - B|} [1 - Pl(\bar{B})]$
Belief and Plausibility Measures

- \(Bel(A) \) is the **total belief** that the actual world is in the set \(A \) which is obtained by adding degrees of evidence for the set itself, as well as for any of its **subsets**

- \(Pl(A) \) is the **total belief** that the actual world is in the set \(A \), and also the **partial evidence** for the set that is associated with any set that overlaps with \(A \)

- \(m(A) \) is the **degree of belief** that the actual world is in the set \(A \), but it **does not** take into account any additional evidence for the various subsets of \(A \)
Belief and Plausibility Measures

- $Q(A)$ is the **total belief** that can move freely to every point of A.
- The interval $[Bel(A), Pl(A)]$ describes the range of possible values of the likelihood of A.
- If W is finite, then there is **one-to-one** correspondence between belief measures and bbas.
Belief and Plausibility Measures

Total Ignorance

- When no evidence is available about the actual world
- Capture it using a vacuous bba $m_{vac} : 2^W \rightarrow [0, 1]$ where $m_{vac}(W) = 1$ and $m_{vac}(A) = 0$ for all $A \in 2^W \setminus W$
- Capture it using a vacuous belief measure $Bel_{vac} : 2^W \rightarrow [0, 1]$ where $Bel_{vac}(W) = 1$ and $Bel_{vac}(A) = 0$ for all $A \in 2^W \setminus W$
- Capture it using a vacuous plausibility measure $Pl_{vac} : 2^W \rightarrow [0, 1]$ where $Pl_{vac}(\emptyset) = 0$ and $Pl_{vac}(A) = 1$ for all $A \neq \emptyset$
A bag contains 100 balls; 25 are known to be red, 25 are known to be either red or blue, and 50 are known to be either blue or yellow.

The sample space \(W = \{ \text{red}, \text{blue}, \text{yellow} \} \)

The bba \(m : 2^W \rightarrow [0, 1] \) where \(m(\{\text{red}\}) = 0.25 \), \(m(\{\text{red}, \text{blue}\}) = 0.25 \), \(m(\{\text{blue}, \text{yellow}\}) = 0.5 \), and \(m(\{\text{blue}\}) = m(\{\text{yellow}\}) = m(\{\text{red}, \text{yellow}\}) = m(W) = 0 \).
The belief measure $Bel : 2^W \rightarrow [0, 1]$ where
$Bel(\{red\}) = 0.25, \quad Bel(\{red, blue\}) = 0.5, \quad Bel(\{blue, yellow\}) = 0.5, \quad Bel(\{blue\}) = Bel(\{yellow\}) = 0, \quad Bel(\{red, yellow\}) = 0.25, \text{ and } Bel(W) = 1$

The plausibility measure $Pl : 2^W \rightarrow [0, 1]$ where
$Pl(\{red\}) = 0.5, \quad Pl(\{blue\}) = 0.75, \quad Pl(\{yellow\}) = 0.5, \quad Pl(\{red, blue\}) = 1, \quad Pl(\{blue, yellow\}) = 0.75, \quad Pl(\{red, yellow\}) = 1, \text{ and } Pl(W) = 1$
Belief and Plausibility Measures

Rule of Combination

- Used to *combine* evidence obtained from two independent sources
- Assume that the degrees of evidence 1 and 2 are captured using the bbas m_1 and m_2 respectively

$$m_{1,2}(A) = \frac{\sum_{B \cap C = A} m_1(B)m_2(C)}{1-c}$$

where $A \neq \emptyset$, $m_{1,2}(\emptyset) = 0$, and $c = \sum_{B \cap C = \emptyset} m_1(B)m_2(C)$

- c is the *degree of conflict* between the two evidence
- The rule is *commutative* $m_{1,2} = m_{2,1}$
- The rule is *associative* $m_{1,(2,3)} = m_{(1,2),3}$
- The *neutral* element is m_{vac}, that is $m_{1,vac} = m_{vac,1} = m_1$
1. **Build-up**
 - Sample Space
 - Probability Measures
 - Belief and Plausibility Measures

2. **The First Uncertain Thing**
 - Assumptions
 - Progress

3. **Build-up Again**
 - Conditioning Belief Measures to Update Knowledge
 - Meaningful Measure of Uncertainty with Beliefs
 - Generalized Hartley’s Measure with Beliefs
 - Generalized Shannon’s Measure with Beliefs
 - Aggregate Uncertainty

4. **The Second Uncertain Thing**
 - Assumptions
 - Progress
• A computing system has a number of possible states represented by the space W
• Over a time period t, the actual state of the system is in the set $A \in 2^W$
• Over the same time period t, an attacker is trying to discover this actual state
Initially, the attacker has no evidence about the actual state

$m_{vac} : 2^W \rightarrow [0, 1]$ where $m(W) = 1$ and $m(A) = 0$ for all $A \in 2^W \setminus W$

The attacker obtains evidence from source src_1 that the actual state is in the set $A \in 2^W$

$m_1 : 2^W \rightarrow [0, 1]$ where $m(A) = \alpha_1 > 0$ and $m(W) = 1 - \alpha_1$

...

The attacker obtains the last evidence from source src_n that the actual state is in the set $A \in 2^W$

$m_n : 2^W \rightarrow [0, 1]$ where $m(A) = \alpha_n > 0$ and $m(W) = 1 - \alpha_n$
- Assuming that the sources $src_1, ..., src_n$ are independent
- The attacker will combine to get
 $$m_{1,\ldots,n}(W) = (1 - \alpha_1) \times \ldots \times (1 - \alpha_n) \quad \text{and} \quad m_{1,\ldots,n}(A) = 1 - (1 - \alpha_1) \times \ldots \times (1 - \alpha_n)$$
- The Law of Large Numbers says that $m_{1,\ldots,n}(A)$ will eventually reach 1
- When this happens, the attacker will have full belief that the actual state is in the set $A \in 2^W$, which means that the system is compromised.
- Poisoning the values of $\alpha_1, ..., \alpha_n$ by minimizing them would delay the satisfaction of the Law of Large Numbers, possibly until a next time period t' by the start of which the system becomes in a different actual state
1. **Build-up**
 - Sample Space
 - Probability Measures
 - Belief and Plausibility Measures

2. **The First Uncertain Thing**
 - Assumptions
 - Progress

3. **Build-up Again**
 - Conditioning Belief Measures to Update Knowledge
 - Meaningful Measure of Uncertainty with Beliefs
 - Generalized Hartley's Measure with Beliefs
 - Generalized Shannon’s Measure with Beliefs
 - Aggregate Uncertainty

4. **The Second Uncertain Thing**
 - Assumptions
 - Progress
An agent has an evidence that the actual world is in the set $A \in 2^W$

Later she obtains another evidence that the actual world is in the set $B \in 2^W$

How can she update her knowledge?

$$Bel(B \mid A) = \frac{Bel(B \cup \overline{A}) - Bel(\overline{A})}{1 - Bel(\overline{A})}$$

$$Pl(B \mid A) = \frac{Pl(B \cap A)}{Pl(A)}$$
Meaningful Measure of Uncertainty with Beliefs

A measure \mathcal{M} of the uncertainty of Bel is **meaningful** if it satisfies the following properties:

1. **Probability Consistency:** If all focal sets are singletons, \mathcal{M} should assume Shannon’s entropy:
 \[
 \mathcal{M}(\text{Bel}) = - \sum_{x \in \mathcal{W}} \text{Bel}(\{x\}) \log_2 \text{Bel}(\{x\})
 \]

2. **Set Consistency:** If Bel focuses on a single set $A \subseteq \mathcal{W}$, \mathcal{M} should assume Hartley’s entropy: $\mathcal{M}(\text{Bel}) = \log_2 |A|$

3. **Expansibility:** The range of \mathcal{M} is $[0, \log_2 |\mathcal{W}|]$ and \mathcal{M} is measured in bits

4. **Subadditivity:** Let Bel_1, Bel_2, and Bel be bbas on \mathcal{W}_1, \mathcal{W}_2, and $\mathcal{W}_1 \times \mathcal{W}_2$, then $\mathcal{M}(\text{Bel}) \leq \mathcal{M}(\text{Bel}_1) + \mathcal{M}(\text{Bel}_2)$

5. **Additivity:** Let Bel_1, Bel_2, and Bel be bbas on \mathcal{W}_1, \mathcal{W}_2, and $\mathcal{W}_1 \times \mathcal{W}_2$, and assume that Bel_1 and Bel_2 are **noninteractive**, then $\mathcal{M}(\text{Bel}) = \mathcal{M}(\text{Bel}_1) + \mathcal{M}(\text{Bel}_2)$
The First Uncertain Thing
Build-up Again
The Second Uncertain Thing
Thank You

Generalized Hartley’s Measure with Beliefs

Generalized Hartley’s Measure (U-uncertainty)

- Given a sample space W and a body of evidence $\langle F, m \rangle$ on this space, the generalized Hartley’s measure is given by the formula:
 $$GH(m) = \sum_{A \in F} m(A) \log_2 |A|$$
- It has the Expansibility Property $GH(m) \in [0, \log_2 |W|]$ and is measured in bits
 - lower bound when all focal sets are singletons
 - upper bound in total ignorance
- It has the Subadditivity Property:
 $$GH(m) \leq GH(m_1) + GH(m_2)$$
- It has the Additivity Property:
 $$GH(m) = GH(m_1) + GH(m_2)$$
A number of unsuccessful attempts to generalize Shannon’s measure with beliefs.

1. Measure of Dissonance: \(E(m) = - \sum_{A \in \mathcal{F}} m(A) \log_2 P_l(A) \)
2. Measure of Confusion: \(C(m) = - \sum_{A \in \mathcal{F}} m(A) \log_2 B_{el}(A) \)
3. Measure of Discord:
 \[
 D(m) = - \sum_{A \in \mathcal{F}} m(A) \log_2 \left(1 - \sum_{B \in \mathcal{F}} m(B) \frac{|B - A|}{|A|} \right)
 \]
4. Measure of Strife:
 \[
 ST(m) = - \sum_{A \in \mathcal{F}} m(A) \log_2 \left(1 - \sum_{B \in \mathcal{F}} m(B) \frac{|A - B|}{|A|} \right)
 \]

All of these measures do not have the Subadditivity Property, and are thus meaningless.

This frustrated search was replaced with Aggregate Uncertainty.
Aggregate Uncertainty

- $AU(\text{Bel}) = \max_{\mathcal{P}_{\text{Bel}}} \left\{ - \sum_{x \in W} p_x \log_2 p_x \right\}$

- \mathcal{P}_{Bel} is a set of probability distributions that satisfies:
 - $p_x \in [0, 1]$ for all $x \in W$ and $\sum_{x \in W} p_x = 1$
 - $\text{Bel}(A) \leq \sum_{x \in A} p_x$ for all $A \subseteq W$

- AU is a meaningful measure of uncertainty with beliefs
Efficient Algorithm

1. Find a nonempty set $A \subseteq W$ such that $\frac{Bel(A)}{|A|}$ is maximal
2. For $x \in A$, let $p_x = \frac{Bel(A)}{|A|}$
3. For each $B \subseteq W - A$, let $Bel(B) = Bel(B \cup A) - Bel(A)$
4. Let $W = W - A$
5. If $W \neq \emptyset$ and $Bel(W) > 0$, go to 1
6. If $W \neq \emptyset$ and $Bel(W) = 0$, let $p_x = 0$ for all $x \in W$
7. Compute $AU(Bel) = -\sum_{x \in W} p_x \log_2 p_x$
Build-up
- Sample Space
- Probability Measures
- Belief and Plausibility Measures

The First Uncertain Thing
- Assumptions
- Progress

Build-up Again
- Conditioning Belief Measures to Update Knowledge
- Meaningful Measure of Uncertainty with Beliefs
- Generalized Hartley's Measure with Beliefs
- Generalized Shannon’s Measure with Beliefs
- Aggregate Uncertainty

The Second Uncertain Thing
- Assumptions
- Progress
A sample space $W = \{x_1, x_2, x_3\}$ of three confidential bank balances.

An attacker would like to learn the highest bank balance by monitoring the execution of the following program:

```c++
int i = 1;
bool f = true;
while (i <= 3) {
    if (x[i] > g) {
        f = false
    }
    i++;
}
cout << f << endl;
```

$g \in \{x_1, x_2, x_3\}$ is the attacker’s guess and f is a flag that tells whether this guess is correct or not.
- \(m : 2^W \rightarrow [0, 1] \) where \(m(\{x_1, x_2\}) = 0.8 \) and \(m(\{x_2, x_3\}) = 0.2 \)

| A | Bel(A) | \(\frac{Bel(A)}{|A|} \) |
|-----------------|--------|----------------------------|
| \(\{x_1, x_2\} \) | 0.8 | 0.4 |
| \(\{x_2, x_3\} \) | 0.2 | 0.1 |

- \(p_{x_1} = p_{x_2} = 0.4 \)
- \(W - A = \{x_1, x_2, x_3\} - \{x_1, x_2\} = \{x_3\} \)
- \(Bel(\{x_3\}) = Bel(\{x_1, x_2, x_3\}) - Bel(\{x_1, x_2\}) = 1 - 0.4 = 0.6 \)
- \(W = W - A = \{x_1, x_2, x_3\} - \{x_1, x_2\} = \{x_3\} \)
Since $W \neq \emptyset$ and $Bel(W) > 0$, we repeat the process

| A | $Bel(A)$ | $\frac{Bel(A)}{|A|}$ |
|--------|----------|-----------------------|
| $\{x_3\}$ | 0.6 | 0.6 |

- $p_{x_3} = 0.6$
- $W - A = \{x_3\} - \{x_3\} = \{\}$ we stop here!
- $AU(Bel) = -0.4 \log 0.4 - 0.4 \log 0.4 - 0.6 \log 0.6 = 0.528 + 0.528 + 0.442 = 1.498$ bits
The attacker has a **higher degree** of belief that the highest bank balance is in the set \{x_1, x_2\} \implies she feeds the program with \(x_1 \)

- Suppose she gets a *true* flag
- The attacker will **update** her beliefs and get:
 \[
 Bel(\{x_1, x_2\}\|\{x_1\}) = 1.0 \quad \text{and} \quad Bel(\{x_2, x_3\}\|\{x_1\}) = 0.0
 \]
- **AU**(Bel) would be 1.5 bits \(\implies 0.002 \) increase in uncertainty
The attacker has a **higher degree** of belief that the highest bank balance is in the set \(\{x_1, x_2\} \) ~ she feeds the program with \(x_1 \)

- Suppose she gets a **false** flag

- The attacker will **update** her beliefs and get:
 \[
 Bel(\{x_1, x_2\} \| \{x_2, x_3\}) = 0.8 \quad \text{and} \quad Bel(\{x_2, x_3\} \| \{x_2, x_3\}) = 1.0
 \]

- Again (!!!) \(AU(Bel) \) would be 1.5 bits ~ 0.002 increase in uncertainty
Thank You!