Effective Density Queries on Continuously Moving Objects

By Christian S. Jensen, Dan Lin, Beng Chin Ooi, Rui Zhang

Sari Haj Hussein1

1Department of Computer Science
Aalborg University

2012-04-19
1 Introduction

2 Problem

3 Problem Parameters

4 The MODQ Framework
 - Counter Maintenance
 - Filtering Phase of Query Processing
 - Refinement Phase of Query Processing
What & Why

- What? ⇔ The paper studies **density queries**
- Why? ⇔ In traffic management systems, they can be used to identify regions of **traffic jams**
Problem Description

Density

Density of R at t is the **number** of objects in R at t divided by the **area** of R.

Dense Region

R is **dense** at t if its density is higher than a threshold ρ.

Effective Density Query

Report all dense regions at t that satisfy:

1. **Answer meaningfulness**: any reported region is constrained to a certain shape and an area range (square, circle, etc).
2. **Non-redundancy**: reported regions do not overlap.
3. **No answer loss**: any dense region in the query input appears in the results (incorporating evidence).
Problem Description

Density

Density of \(R \) at \(t \) is the number of objects in \(R \) at \(t \) divided by the area of \(R \)

Dense Region

\(R \) is dense at \(t \) if its density is higher than a threshold \(\rho \)

Effective Density Query

Report all dense regions at \(t \) that satisfy:

1. Answer meaningfulness: any reported region is constrained to a certain shape and an area range (square, circle, etc)
2. Non-redundancy: reported regions do not overlap
3. No answer loss: any dense region in the query input appears in the results (incorporating evidence)
Problem Description

Density

Density of R at t is the number of objects in R at t divided by the area of R.

Dense Region

R is dense at t if its density is higher than a threshold ρ.

Effective Density Query

Report all dense regions at t that satisfy:

1. **Answer meaningfulness**: any reported region is constrained to a certain shape and an area range (square, circle, etc).
2. **Non-redundancy**: reported regions do not overlap.
3. **No answer loss**: any dense region in the query input appears in the results (incorporating evidence).
We want something like this...
But we do not want this!
Problem Parameters

- **Linear model** for the position of a moving object $\sim \Rightarrow$
 $$\bar{x}(t) = \bar{x} + \bar{v}(t - t_{upd})$$

 - $t \sim \Rightarrow$ current time
 - $t_{up} \sim \Rightarrow$ latest update time
 - $\bar{x}(t) \sim \Rightarrow$ object position at t
 - $\bar{x} \sim \Rightarrow$ object position at t_{upd}
 - $\bar{v} \sim \Rightarrow$ object velocity at t_{upd}

- **Object position at t** $\sim \Rightarrow (\bar{x}, \bar{v}, t_{upd})$
Problem Parameters Continued

- $U \rightsquigarrow$ maximum update time \rightsquigarrow maximum duration in-between 2 updates of a moving object position
- $t_q \rightsquigarrow$ query time (execution time)
- $t_{issue} \rightsquigarrow$ query issue time
- $W \rightsquigarrow$ query reach into the future starting from t_{issue}
- $H = U + W \rightsquigarrow$ query horizon \rightsquigarrow query reach into the future starting from t_{upd}
- $[t_q, t_q + H] \rightsquigarrow$ query time window
Problem Parameters Illustrated

\[H = U + W \]

- \(t_{\text{upd}} \)
- \(\text{iss}(Q) \)
- \(W \)
- \(U \)
- time
Summary

- Moving objects are maintained in some index structure.
- Data space is partitioned into small cells of equal sizes.
- Dense regions are squares of certain sizes.
- They can intersect with the cell partitioning.

Steps involved:

1. Counter maintenance
2. Filtering phase of query processing
3. Refinement phase of query processing
1 Introduction

2 Problem

3 Problem Parameters

4 The MODQ Framework
 - Counter Maintenance
 - Filtering Phase of Query Processing
 - Refinement Phase of Query Processing
Counter Maintenance

- A counter of the number of objects in each cell at all times in $[t_q, t_q + H]$
- Update counters as objects move between cells
 - An object is inserted into a cell \Rightarrow increase the corresponding counter & update the index
 - An object is deleted from a cell \Rightarrow decrease the corresponding counter & update the index
- Large number of cells \Rightarrow counter maintenance becomes a problem
Density Histogram

Number of objects

lifespan

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

```
t_0  t_1  t_2  t_3  t_4  t_0+H
```

time
Compressing the Histogram

- Compression is done using **Discrete Cosine Transform (DCT)**
- DCT is commonly used in **loosy compression** e.g., MP3, JPEG, etc.
Compressing the Histogram

Discrete Cosine Transform (DCT)

- $G(k) = c(k) \sum_{t=0}^{H-1} s(t) \cos \frac{\pi(2t+1)k}{2H}$
- $c(0) = \sqrt{1/H}$, $c(k) = \sqrt{2/H}$, $k = 0, 1, ..., (H - 1)$
- $s(t)$ is a signal and $G(k)$ is the transformed signal
- We store only $10 - 20\%$ of $G(k)$ and there lies the compression
- $s(t)$ is eventually a variable that changes over time
- In our scenario, $s(t)$ is the number of objects in each cell

Inverse Discrete Cosine Transform (IDCT)

- $s(t) = \sum_{k=0}^{H-1} c(k) G(k) \cos \frac{\pi(2t+1)k}{2H}$
- $t = 0, 1, ..., (H - 1)$
Compressing the Histogram

Discrete Cosine Transform (DCT)

- \(G(k) = c(k) \sum_{t=0}^{H-1} s(t) \cos \frac{\pi(2t+1)k}{2H} \)
- \(c(0) = \sqrt{1/H}, c(k) = \sqrt{2/H}, k = 0, 1, ..., (H - 1) \)
- \(s(t) \) is a signal and \(G(k) \) is the transformed signal
- We store only 10 – 20% of \(G(k) \) and there lies the compression
- \(s(t) \) is eventually a variable that changes over time
- In our scenario, \(s(t) \) is the number of objects in each cell

Inverse Discrete Cosine Transform (IDCT)

- \(s(t) = \sum_{k=0}^{H-1} c(k) G(k) \cos \frac{\pi(2t+1)k}{2H} \)
- \(t = 0, 1, ..., (H - 1) \)
Compressing the Histogram

Number of objects over time for two different scenarios:

- **Scenario 1:** The number of objects decreases over time, reaching zero at time $t_0 + H$.
- **Scenario 2:** The number of objects peaks at time t_3 and then decreases, with a DCT (Discrete Cosine Transform) applied at $t_0 + H$.
Compressing the Histogram

- Storing only 10 – 20% of $G(k) \Rightarrow$ information loss \Rightarrow restored $s'(t)$ differ from original $s(t)$

- $s'(t)$ overestimates $s(t) \Rightarrow$ false positive query results suggesting that a cell is dense when it is not \Rightarrow increase query processing cost!

- $s'(t)$ underestimates $s(t) \Rightarrow$ false negative query results suggesting that a cell is not dense when it is \Rightarrow answer loss!
Compressing the Histogram

- Storing only $10 - 20\%$ of $G(k) \Rightarrow$ information loss \Rightarrow restored $s'(t)$ differ from original $s(t)$

- $s'(t)$ overestimates $s(t) \leadsto$ false positive query results suggesting that a cell is dense when it is not \leadsto increase query processing cost!

- $s'(t)$ underestimates $s(t) \leadsto$ false negative query results suggesting that a cell is not dense when it is \leadsto answer loss!
Compressing the Histogram

- Storing only $10 - 20\%$ of $G(k) \Rightarrow$ information loss \Rightarrow restored $s'(t)$ differ from original $s(t)$

- $s'(t)$ overestimates $s(t) \leadsto$ false positive query results suggesting that a cell is dense when it is not \leadsto increase query processing cost!

- $s'(t)$ underestimates $s(t) \leadsto$ false negative query results suggesting that a cell is not dense when it is \leadsto answer loss!
Compressing the Histogram

- The error bound $E_b = s(t) - s'(t)$ (formula does not show)
- Before reducing $G(k)$, compute and store a term in E_b
- Adding this E_b to $s'(t)$ guarantees the absence of false negatives!
Maintaining the Histogram

(a) Original DCT

(b) Deletion

(c) Insertion
1) old trajectory intersects the cell at t_2 and t_3 → decrease the counters at t_2 and t_3 by 1

2) set the start time of the lifespan of the function to t_1
1) set the lifespan of the function to \([t_1, t_1+H]\)

2) initialize the number of moving objects to 0 in \(t_1+H\)

3) new trajectory intersects the cell at \(t_4\), \(t_0+H\), and \(t_1+H\) → increase the counters at \(t_4\), \(t_0+H\), and \(t_1+H\) by 1
1 Introduction

2 Problem

3 Problem Parameters

4 The MODQ Framework
 - Counter Maintenance
 - Filtering Phase of Query Processing
 - Refinement Phase of Query Processing
Aim, Input, and Output

- **Aim** \leadsto identify areas that *may* contain answers to the density query
- **Input** \leadsto query spatial window R, threshold ρ, query time t_q
 - the minimum number of objects that should occupy a dense square $N_{min} = R \rho$
- **Output** \leadsto dense regions of size $1 - 4$ times larger than R
Filtering Phase

- For each cell C, compute N_c
- If $N_c \geq N_{\text{min}}$, add C to the answer
- If $N_c < N_{\text{min}}$, look at the 4-cell square $4C$ having C at the top-left corner
 - If $N_{4c} \geq N_{\text{min}}$, look at each $1C$ area in $4C$
 - If $N_{1c} \geq N_{\text{min}}$, add $1C$ to the answer
- Look at each $2C$ and $3C$ areas in $4C$
 - If $N_{2c} \geq N_{\text{min}}$ or $N_{3c} \geq N_{\text{min}}$, pass $2C$ or $3C$ to the refinement phase
- If an answer is returned, modify the histogram
1 Introduction

2 Problem

3 Problem Parameters

4 The MODQ Framework
 - Counter Maintenance
 - Filtering Phase of Query Processing
 - Refinement Phase of Query Processing
Refinement Phase

- **Retrieve** objects in the candidate areas $2C$ or $3C$ by issuing a **spatial window query** on the index.

- If we have $2C$,
 - Sort object positions according to their x coordinates.
 - $N_{\sqrt{R}} \sim$ the number of objects every \sqrt{R}
 - If $N_{\sqrt{R}} \geq N_{min}$, report $2C$ as an answer to the filtering phase.

- The same applies if we have $3C$, although the sorting is done according to the y coordinates.
Thank You!