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Abstract—In most of classical fusion problems modeled from
belief functions, the frame of discernment is considered as static.
This means that the set of elements in the frame and the
underlying integrity constraints of the frame are fixed forever
and they do not change with time. In some applications, like in
target tracking for example, the use of such invariant frame is
not very appropriate because it can truly change with time. So it
is necessary to adapt the Proportional Conflict Redistribution
fusion rules (PCR5 and PCR6) for working with dynamical
frames. In this paper, we propose an extension of PCR5 and
PCR6 rules for working in a frame having some non-existential
integrity constraints. Such constraints on the frame can arise in
tracking applications by the destruction of targets for example.
We show through very simple examples how these new rules can
be used for the belief revision process.
Keywords: Information fusion, DSmT, integrity con-
straints, belief functions.

I. INTRODUCTION

In most of classical fusion problems using belief functions,
the frame of discernment Θ = {θ1, θ2, . . . , θn} is considered
static. This means that the set of elements in the frame
(assumed to be non-empty and distinct) and the underlying
integrity constraints of the frame1 are fixed and they do not
change with time. In some applications however, like in target
tracking and battlefield surveillance for example, the use of
such invariant frame is not very appropriate because it can
truly change with time depending on the evolution of the
events. So it is necessary to adapt the Proportional Conflict
Redistribution fusion rules (PCR5 and PCR6) for working
with dynamical frames. In this paper, we study in details how
to work with PCR5 or PCR6 fusion rules in a dynamical
frame subject to non-existential integrity constraint, when one
or several elements of the frame disappear. This phenomena
can occur in some applications, specially in defense and
battlefield surveillance when foe targets (considered as element
of the frame) can be shot and entirely destroyed and the
initial belief one has on threat assessment must be revised
according to the knowledge one has on this new fact obtained
from intelligence services or observations systems. We show
through very simple examples how this problem can be solved
using PCR principle.
Example 1: Let’s consider the set of three targets at a given
time k to be Θk = {θ1, θ2, θ3} with θi 6= ∅, i = 1, 2, 3 and
assume that Θk satisfies Shafer’s model (i.e. the targets are all

1This is also called the model for Θ which can correspond to DSm free,
DSm hybrid or Shafer’s models in DSmT framework [4].

distinct and exhaustive) and we work with normalized bba’s.
Suppose one has two basic belief assignments (bba) m1(.) and
m2(.) defined with respect to the power-set of Θk given by
two distinct sources of evidence to characterize their beliefs
in the most threatening target. Let’s assume that one receives
at k + 1 a new information confirming that one target, say
target θ3, has been destroyed. The problem one needs to solve
is how to combine efficiently m1(.) and m2(.) taking into
account this new non-existential integrity constraint θ3 ≡ ∅ in
the new model of the frame to establish the most threatening
and surviving targets belonging to Θk+1 = {θ1, θ2}.

The contribution of this paper is to propose a solution
to such kind of belief revision problem involving dynamical
frames including non-existential constraints on some of its
elements. This paper is organized as follows. In section 1, we
briefly recall the basis of DSmT (Dezert-Smarandache Theory)
[4] and its main rule of combination (PCR5 and PCR6) for
the fusion of bba’s in a static frame. In section 2, we present
an improvement/adaptation of PCR rules to work on frames
with non-existential constraints (dynamical frames). In section
3, we apply our method on some examples. Conclusions are
then given in section 4.

II. BASICS OF DSMT

The purpose of the development of Dezert-Smarandache
Theory (DSmT) [4] is to overcome the limitations of
Dempster-Shafer Theory (DST) [3] mainly by proposing new
underlying models for the frames of discernment in order to
fit better with the nature of real problems, and by proposing
new efficient combination and conditioning rules. In DSmT
framework, the elements θi, i = 1, 2, . . . , n of a given
frame Θ are not necessarily exclusive, and there is no re-
striction on θi but their exhaustivity. The hyper-power set
DΘ in DSmT, the hyper-power set is defined as the set of
all composite propositions built from elements of Θ with
operators ∪ and ∩. For instance, if Θ = {θ1, θ2}, then
DΘ = {∅, θ1, θ2, θ1 ∩ θ2, θ1 ∪ θ2}. The hyper-power set DΘ

reduces to classical power-set 2Θ as soon as we assume
exclusivity between the elements of the frame (this is Shafer’s
model). A (generalized) basic belief assignment (bba for short)
is defined as the mapping m : DΘ → [0, 1]. The generalized
belief and plausibility functions are defined in almost the same
manner as in DST. More precisely, from a general frame Θ,
we define a map m(.) : DΘ → [0, 1] associated to a given



body of evidence B as

m(∅) = 0 and
∑
A∈DΘ

m(A) = 1 (1)

The quantity m(A) is called the generalized basic belief
assignment/mass (or just ”bba” for short) of A.
The generalized credibility and plausibility functions are de-
fined in almost the same manner as within DST, i.e.

Bel(A) =
∑
B⊆A
B∈DΘ

m(B) and Pl(A) =
∑

B∩A6=∅
B∈DΘ

m(B) (2)

Two models2 (the free model and hybrid model) in DSmT can
be used to define the bba’s to combine. In the free DSm model,
the sources of evidence are combined without taking into
account integrity constraints. When the free DSm model does
not hold because the true nature of the fusion problem under
consideration, we take into account some known integrity
constraints3 and define bba’s to combine using the proper
hybrid DSm model. Aside offering the possibility to work with
different underlying models (not only Shafer’s model as within
DST), DSmT offers also new efficient combination rules based
on proportional conflict redistribution (PCR rules no 5 and no
6) for combining highly conflicting sources of evidence. PCR5
transfers the conflicting mass only to the elements involved in
the conflict and proportionally to their individual masses, so
that the specificity of the information is entirely preserved in
this fusion process. (see [4], Vol. 2 for full justification and
examples): mPCR5(∅) = 0 and ∀X ∈ DΘ \ {∅}

mPCR5(X) =
∑

X1,X2∈D
Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
X2∈DΘ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (3)

where all denominators in (3) are different from zero. If a
denominator is zero, that fraction is discarded. The prop-
erties of PCR5 can be found in [2]. Extension of PCR5
for combining qualitative bba’s can be found in [4], Vol.
2 & 3. All propositions/sets are in a canonical form. A
variant of PCR5, called PCR6 has been proposed by Martin
and Osswald in [4], Vol. 2, for combining s > 2 sources.
The general formulas for PCR5 and PCR6 rules are given
in [4], Vol. 2 also. PCR6 coincides with PCR5 when one
combines two sources. The difference between PCR5 and
PCR6 lies in the way the proportional conflict redistribution
is done as soon as three or more sources are involved in
the fusion. From the implementation point of view, PCR6 is
much more simple to implement than PCR5. For convenience,
very basic (not optimized) Matlab codes of PCR5 and PCR6
fusion rules can be found in [4], [5] and from the toolboxes
repository on the web [7]. In DSmT framework, the classical

2Actually, Shafer’s model, considering all elements of the frame as truly
exclusive, can be viewed as a special case of hybrid model.

3but non-existential integrity constraints as shown in Example 2.

pignistic transformation BetP (.) is replaced by the more
effective DSmP (.) transformation to estimate the subjective
probabilities of hypotheses for decision-making support once
the combination of bba’s has been done if compromise attitude
is chosen. The max of credibility (pessimistic decision attitude)
or max of plausibility (optimistic decision attitude) are also
possible depending on the preference of decision maker. This
topic is out of the scope of this paper and readers interested
in decision-making based on DSmP must refer to [4], Vol.3
freely available on the web.

III. WORKING WITH NON-EXISTENTIAL CONSTRAINTS

In this section we show how this problem can be solved
from the classical Shafer’s approach and then we show how
it can be solved with PCR rules to get more specific results.

A. Shafer’s approach

Let’s consider a finite and discrete frame Θk =
{θ1, θ2, . . . , θn} satisfying Shafer’s model with all θi 6= ∅ at
a given time k, and two bba’s m1,k(.) and m2,k(.) provided
by two distinct sources of evidences. Each bba is defined in
the power set 2Θk . Let’s assume now that at time k+ 1 extra
knowledge is given about the non-existence of some elements
of Θk. We denote such non-existential constraint as NE (the
set of Non Existing elemnts). For example, if NEk+1 = {θ1}
means that actually θ1 = ∅, NEk+1 = {θ1, θ2} means that both
θ1 = ∅ and θ2 = ∅, and so on. The new frame of discernment
we have to work with is then given by Θk+1 = Θk \NEk+1.
The question is how to combine at time k+1 the two original
bba’s m1,k(.) and m2,k(.) one had in taking into account our
knowledge on the revised frame Θk+1 obtained from Θk and
NEk+1 ?

Dempster-Shafer Theory (DST) [3] offers a mathematical
tool for answering to this question: Dempster-Shafer belief
conditioning rule (DSCR) which consists in combining with
Dempster-Shafer’s rule the prior bba m(.) with the condition-
ing bba mc(.) which is only focused on the conditioning event
X , i.e. for which mc(X) = 1. Mathematically, mDS(.|X) is
then defined4 by

mDS(.|X) = [m⊕mc](.) (4)

where ⊕ corresponds here to Dempster-Shafer’s rule of com-
bination and mc(X) = 1.

For solving this fusion problem under non-existential in-
tegrity constraints, three methods are a priori possible based
on DSCR:
• The Fusion-Conditioning approach (FC): It consists to
combine the sources at first and then apply Dempster-Shafer
conditioning rule. This corresponds to the following formula:

mDS-FC(.|Θk+1) = [[m1,k ⊕m2,k]⊕mc,k](.) (5)

where ⊕ corresponds here to Dempster-Shafer’s rule of com-
bination and mc,k(Θk+1) = 1. Note that mc,k(.) refers to the
conditioning bba defined in 2Θk .

4if m(.) and mc(.) are not in total contradiction of course.



• The Conditioning-Fusion approach (CF): It consists to
apply the DS conditioning to the sources at first and then
combine the conditioned bba’s with Dempster-Shafer rule.
This corresponds to the following formula:

mDS-CF (.|Θk+1) = [m1,k ⊕mc,k]⊕ [m2,k ⊕mc,k](.) (6)

• The Global Conditioning approach (GC): It consists to
combine all the bba’s altogether in a single step of fusion.
This corresponds to the following formula:

mDS-GC(.|Θk+1) = [m1,k ⊕m2,k ⊕mc,k](.) (7)

Because of the commutativity and associativity of DS rule
and since [mc ⊕ mc](.) = mc(.) for any conditioning bba
focused on only one specific element X , the three previous
methods provide exactly the same results. This makes Shafer’s
approach very appealing since there is no ambiguity in the
choice of the method to apply.

B. Example 1 (continued)

Let’s take back the Example 1 and consider the two arbitrary
prior bba’s given in Table I.

bba’s\focal elem. θ1 θ2 θ3 θ1 ∪ θ2
Prior: m1,k(.) 0.2 0.4 0.3 0.1
Prior: m2,k(.) 0.3 0.1 0.4 0.2
Conditioning: mc,k(.) 0 0 0 1
DS-FC: mDS-FC(.) 0.4643 0.4643 0 0.0714
DS-CF: mDS-CF (.) 0.4643 0.4643 0 0.0714
DS-GC: mDS-GC(.) 0.4643 0.4643 0 0.0714

Table I
EXAMPLE 1: RESULTS WITH DS-BASED CONDITIONING.

Because in this example Θk = {θ1, θ2, θ3} and
NEk+1 = {θ3} then Θk+1 = {θ1, θ2} (only targets θ1

and θ2 survive) and therefore the conditioning bba mc,k(.)
is defined by mc,k(θ1 ∪ θ2) = 1. In applying DSCR,
one gets with three methods the same following result:
mDS-GC(.|Θk+1) = mDS-CF (.|Θk+1) = mDS-FC(.|Θk+1)
as shown in the last three rows of Table I). This symmetrical
result in θ1 and θ2 is very surprising since clearly the
input bba’s are asymmetrical in θ1 and θ2 and we don’t
see any intuitive nor rational justification to consider such
DSCR-based behavior as efficient for applications.

• Direct approach: Note that this result can be also simply
obtained in a direct manner using DS rule for combining
m1,k(.) with m2,k(.) and in taking into account the constraint
θ3 = ∅ in the DS formula. In this example 1, one gets:

m12(θ1) = m1,k(θ1)m2,k(θ1) +m1,k(θ1)m2,k(θ1 ∪ θ2)

+m2,k(θ1)m1,k(θ1 ∪ θ2) = 0.13

m12(θ2) = m1,k(θ2)m2,k(θ2) +m1,k(θ2)m2,k(θ1 ∪ θ2)

+m2,k(θ2)m1,k(θ1 ∪ θ2) = 0.13

m12(θ1 ∪ θ2) = m1,k(θ1 ∪ θ2)m1,k(θ1 ∪ θ2) = 0.02

For θ3, one has m12(θ3) = m1,k(θ3)m1,k(θ3) = 0.12. Since
actually θ3 = ∅, then m12(θ3 = ∅) = 0.12 must be added to
mass already committed to the empty set coming from other

possible conflicting conjunctions so that finally one will get
the total conflicting mass m12(∅) = 0.72. After normalization
step, we finally get

mDS(θ1) =
m12(θ1)

1−m12(∅)
= 0.13/0.28 = 0.4643

mDS(θ2) =
m12(θ2)

1−m12(∅)
= 0.13/0.28 = 0.4643

mDS(θ1 ∪ θ2) =
m12(θ1 ∪ θ2)

1−m12(∅)
= 0.02/0.28 = 0.0714

• Advantages of DS approach: The main interest of this
DSCR-based methods lies in the fact that DSCR can be
interpreted as a generalization of Bayesian conditioning and
that the conditioning and the DS fusion commute, so that
the three methods FC, CF or GC based all on DSCR coincide.

• Drawbacks of DS approach: Although attractive, DSCR ap-
proach cannot however circumvent the problem inherent to DS
rule itself when the sources to combine are highly conflicting
or are in worst case in total conflict. Even if the sources are
not too conflicting, DSCR can yield to questionable results as
pointed out in Example 1 (i.e. symmetrical results based on
asymmetrical inputs) – see Table I.

C. Example 2

This example is an extension of Zadeh’s example including
non-existential constraint. Let’s take Θ = {θ1, θ2, θ3, θ4}
satisfying Shafer’s model and the following prior bba’s given
in Table II, and let’s assume at time k + 1 that we learn
θ4 = ∅, so that Θk+1 = {θ1, θ2, θ3}. Applying all previous
methods, provide same counter-intuitive result mDS(θ3) = 1
as in classical Zadeh’s example.

bba’s\focal elem. θ1 θ2 θ3 θ4 θ1 ∪ θ2 ∪ θ3
Prior: m1,k(.) 0.98 0 0.01 0.01 0
Prior: m2,k(.) 0 0.98 0.01 0.01 0
Conditioning: mc,k(.) 0 0 0 0 1
DS-FC: mDS-FC(.) 0 0 1 0 0
DS-CF: mDS-CF (.) 0 0 1 0 0
DS-GC: mDS-GC(.) 0 0 1 0 0

Table II
EXAMPLE 2–A: RESULTS WITH DS-BASED CONDITIONING.

This example can be generalized as in Table III where all
bba’s are normalized and the non-existential constraint is A4∪
. . . ∪ An = ∅. The result of DSCR approach is given in the
right column of Table III.
for n ≥ 1, where ε1, ε2, and δij are very tiny positive numbers
in [0,1], a1 and a2 are positive numbers closer to 1, but smaller
than 1, and the sum on each column is 1; all intersections
Ai ∩ Aj are empty, where Ai can be singletons or unions of
singletons. So, this is a Bayesian and non-Bayesian example.

D. Example 3

Here we give two very simple classes of examples with
Bayesian or non-Bayesian bba’s where DSCR cannot be
applied to solve the problem. We assume Shafer’s model for



Focal elem.\ bba’s m1,k(.) m2,k(.) mc,k(.) mDS(.)
A1 a1 0 0 0
A2 0 a2 0 0
A3 ε1 ε2 0 1
A4 δ11 δ21 0 0
...

...
...

...
...

An δ1n δ2n 0 0
A1 ∪A2 ∪A3 0 0 1 0

Table III
GENERALIZATION OF EXAMPLE 2–A.

the frames. In example 3–A, the non-existential constraint is
θ1 = ∅ and the parameters a and b belong to [0, 1].

bba’s\focal elem. θ1 θ2 θ3 θ2 ∪ θ3
Prior: m1,k(.) a 0 1-a 0
Prior: m2,k(.) b 1-b 0 0
Conditioning: mc,k(.) 0 0 0 1

Table IV
BBA’S FOR EXAMPLE 3–A. (BAYESIAN CASE WITH θ1 = ∅ )

Example 3–A gives 0/0 when using Dempster-Shafer’s
conditioning rule.

In example 3–B, we consider non-Bayesian bba’s. The pa-
rameters a and b belong to [0; 1]. The non-existential constraint
is θ1 = θ2 = ∅.

bba’s\focal elem. θ1 ∪ θ2 θ3 θ4
Prior: m1,k(.) a 0 1-a
Prior: m2,k(.) b 1-b 0
Conditioning: mc,k(.) 0 0 1

Table V
BBA’S FOR EXAMPLE 3–B. (NON-BAYESIAN CASE WITH θ1 ∪ θ2 = ∅ )

An infinity of Bayesian or Non Bayesian classes with
total conflicting sources can be constructed where DSCR rule
cannot be applied.

E. DSmT approach

Since the PCR5 or PCR6 circumvent the problem of DS
rule for combining potentially highly conflicting sources
of evidence, it is natural to try at first to use the same
methodology for solving the problem just in replacing the
DS fusion operator ⊕ by PCR5 (or PCR6) fusion operators.
This is called PCR5CR (PCR5-based conditioning rule) or
PCR6CR if one prefers to use PCR6. Unfortunately, the
solution based on these PCR rules is not so simple because
PCR rules are not associative and thus the result one gets
highly depends on the conditioning method we adopt: FC,
CF or Global. Moreover, the direct approach based on
classical/original PCR5 rule under non-existential constraint
cannot be applied as it will be shown from Example 1.
That’s why we propose a new solution to solve this important
problem in the sequel.

Example 1 (continued): Let’s take back example 1 and exam-
ine the results given by PCR5-FC, PCR5-CF and PCR5-GC
methods5. The results are given in Table VI.

bba’s\focal elem. θ1 θ2 θ3 θ1 ∪ θ2
Prior: m1,k(.) 0.2 0.4 0.3 0.1
Prior: m2,k(.) 0.3 0.1 0.4 0.2
Conditioning: mc,k(.) 0 0 0 1
PCR5-FC: mPCR5-FC(.) 0.2664 0.2927 0.3320 0.1089
PCR5-CF: mPCR5-CF (.) 0.3526 0.3822 0.0470 0.2182
PCR5-GC: mPCR5-GC(.) 0.1811 0.1975 0.1597 0.4617

Table VI
EXAMPLE 1: RESULTS WITH PCR5-BASED CONDITIONING.

From Table VI, one sees clearly that the original PCR5
rule used for solving this example generates different results
depending the method (PCR5-FC, PCR5-CF or PCR5-GC)
which is not very satisfactory, and that all methods commit
a positive mass to θ3 = ∅ which is not acceptable since we
assume to work within Shafer’s model in this example.

Direct approach: If we now use a direct PCR5-based ap-
proach for trying to solve the problem, we need to replace
θ3 by ∅ in the bba’s inputs and apply the PCR5∅ fusion rule
proposed in [5]. PCR5∅ fusion formula is same as PCR5
fusion formula (3) except that X ∈ DΘ where DΘ includes
the empty set as well. In clear, PCR5∅ fusion rule allows ∅
as focal element (as in Smets’ TBM). If we apply this PCR5∅
direct fusion, one will get results in Table VII consistent with
the result of the last row of Table VI which is normal.

bba’s\focal elem. θ1 θ2 ∅ θ1 ∪ θ2
Prior: m1,k(.) 0.2 0.4 0.3 0.1
Prior: m2,k(.) 0.3 0.1 0.4 0.2
Conditioning: mc,k(.) 0 0 0 1
mPCR5∅-Direct(.) 0.1811 0.1975 0.1597 0.4617

Table VII
BBA’S FOR EXAMPLE 1 AND PCR5∅-DIRECT RESULTS.

Example 2 (continued): Let’s take back example 2 and exam-
ine the results given by PCR5-FC, PCR5-CF and PCR5-GC
methods. The results are given in Table VIII (rounded when
possible at the fourth decimal).

bba’s\focal elem. θ1 θ2 θ3 θ4 ≡ ∅ θ1 ∪ θ2 ∪ θ3
Prior: m1,k(.) 0.98 0 0.01 0.01 0
Prior: m2,k(.) 0 0.98 0.01 0.01 0
Conditioning: mc,k(.) 0 0 0 0 1
mPCR5-FC (.) 0.49960202 0.49960202 0.00039798 0.00000016 0.00039782
mPCR5-CF (.) 0.49970100 0.49970100 0.00049796 0.00000007 0.00009997
mPCR5-GC (.) 0.32762253 0.32762253 0.00020045 0.00010047 0.34445402

Table VIII
EXAMPLE 2–A: RESULTS WITH PCR5-FC, PCR5-CF & PCR5-GC.

Example 3 (continued): Let’s take back example 3–A with
a = b = 0.9 and 1 − a = 1 − b = 0.1. The results given by
PCR5-FC, PCR5-CF and PCR5-GC are given in Table IX.

5i.e. FC, CF and GC approaches when using PCR5 rule of combination
instead of DS rule.



bba’s\focal elem. θ1 ≡ ∅ θ2 θ3 θ2 ∪ θ3
Prior: m1,k(.) 0.9 0 0.1 0
Prior: m2,k(.) 0.9 0.1 0 0
Conditioning: mc,k(.) 0 0 0 1
mPCR5-FC(.) 0.4791 0.0140 0.0140 0.4929
mPCR5-CF (.) 0.4421 0.0605 0.0605 0.4369
mPCR5-GC(.) 0.4435 0.0053 0.0053 0.5458

Table IX
EXAMPLE 3–A: RESULTS WITH PCR5-FC, PCR5-CF & PCR5-GC.

In summary, one has shown from very simple examples
that original PCR5-based approaches cannot be used directly
to solve the problem because they generate a non normalized
bba (i.e. a bba with a positive value committed to ∅) and
moreover the result depends the choice of the methods because
of non associativity of PCR5 (or PCR6 as well). It is worth
to note however that the results provided by the PCR5-
based approaches commit different masses on non-empty focal
lements contrariwise to DS-based approaches. In the next
section we present new approaches for trying to solve the
problem.

IV. EXTENDED PCR RULES

In this section we propose several ways to deal with the
fusion of sources under non-existential integrity constraints
since original PCR5 (or PCR6) cannot be applied directly.
This is the main reason why new solutions have to be found
and this is the main contribution of this paper.

A. Simple solution based on normalization

A simple solution would consist to use original PCR5
or direct PCR5∅ rules with a normalization final step (not
included in original formulas) consisting in dividing all the
mass of non-empty focal elements by (1−m(∅)). This method
can be applied only when m(∅) < 1 of course. In example 1,
one will get results given in Table X.

bba’s \ focal elem. θ1 θ2 θ3 θ1 ∪ θ2
Prior: m1,k(.) 0.2 0.4 0.3 0.1
Prior: m2,k(.) 0.3 0.1 0.4 0.2
Conditioning: mc,k(.) 0 0 0 1
Normalized PCR5-FC bba 0.3988 0.4382 0 0.1630
Normalized PCR5-CF bba 0.3700 0.4010 0 0.2290
Normalized PCR5-GC bba 0.2155 0.2350 0 0.5495
Normalized PCR5∅ bba 0.2155 0.2350 0 0.5495
Normalized PCR6-GC bba 0.2133 0.2326 0 0.5541
Normalized PCR6∅ bba 0.2133 0.2326 0 0.5541

Table X
BBA’S FOR EXAMPLE 1 AND PCR5CR-BASED RESULTS AFTER

NORMALIZATION.

Note that another result can be obtained from PCR5 and CF
approach if one first normalizes the bba’s mPCR5

1 (.|θ1∪θ2) =
m1,k ⊕mc,k(.), and mPCR5

2 (.|θ1 ∪ θ2) = m2,k ⊕mc,k(.) and
then if we apply original PCR5 formula to combine them. We
denote this method as PCR5-CnF (n standing for the position
where the normalization step is done). In this case, one will
get: mPCR5-CnF (θ1) = 0.391, mPCR5-CnF (θ2) = 0.414 and

mPCR5-CnF (θ1 ∪ θ2) = 0.195 which is still different from
previous results.

As one sees, all methods including a normalization step
provide now different results and all agree that θ2 corresponds
to the hypothesis that has highest belief or plausibility. There
is no ambiguity in the choice between θ1 and θ2 contrariwise
to DS approach. The least uncertainty level is obtained with
PCR5− FCn approach in this example.

B. A more efficient solution

Here we propose another way to solve the problem us-
ing new extended PCR5 fusion formulas denoted PCR5a,
PCR5b and PCR5c.
• The PCR5a fusion rule: mPCR5a(∅) = 0 and ∀A ∈ GΘ\∅

mPCR5a(A) = m12(A)+∑
X∈GΘ\∅
X∩A=∅

[
m1(A)2m2(X)

m1(A) +m2(X)
+

m2(A)2m1(X)

m2(A) +m1(X)
]

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+m12(A) ·
∑
X,Y ∈∅m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)

(8)

In PCR5a rule, one transfers the remaining conflicting
masses proportionally with respect to the non-null masses
resulted from the conjunctive rule.
• The PCR5b fusion rule: mPCR5b(∅) = 0 and∀A ∈ GΘ\∅

mPCR5b(A) = m12(A)+∑
X∈GΘ\∅
X∩A=∅

[
m1(A)2m2(X)

m1(A) +m2(X)
+

m2(A)2m1(X)

m2(A) +m1(X)
]

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+

∑
X,Y ∈∅m1(X)m2(Y )

Card({Z|Z ∈ GΘ \ ∅,m12(Z) 6= 0})
(9)

In PCR5b rule, one uniformly transfers the remaining conflict-
ing masses to all non-null masses resulted from the conjunctive
rule.
• The PCR5c fusion rule: mPCR5c(∅) = 0 and∀A ∈ GΘ\∅

mPCR5c(A) = m12(A)+∑
X∈GΘ\∅
X∩A=∅

[
m1(A)2m2(X)

m1(A) +m2(X)
+

m2(A)2m1(X)

m2(A) +m1(X)
]

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+
∑

X,Y ∈∅,A=It

m1(X)m2(Y ) (10)

In PCR5c rule, one transfers all remaining conflicting masses
to the total ignorance It.



For PCR5a–PCR5c formulas (8)–(10) (and the next DSmHa–
DSmHc, DSa–DSc formulas too) if a denominator is equal
to zero, then its respective fraction is discarded, and∑
X,Y ∈∅m1(X)m2(Y ) is transferred to the total ignorance. In

this case all three PCR5a–c coincide. Similarly, all DSmHa–c
coincide, and all DSa–c coincide as well. In the above formu-
las, m12(A) is the mass obtained by the classical conjunctive
consensus obtained by

m12(A) =
∑

X1,X2∈GΘ

X1∩X2=A

m1(X1)m2(X2) (11)

GΘ is the fusion space (power-set, hyper-power set or super-
power set) depending on the underlying model chosen for the
frame Θ and ∅ is the set of all empty sets that occur in the
fusion due to the integrity constraints.
Remarks:

1) If no constraint occurs (i.e. no focal element becoming
empty), then all PCR5a–PCR5c formulas coincide with
classical PCR5 fusion rule. All these extended PCR5
rules can be extended for combining N > 2 sources of
evidences.

2) If all information about m1(.) and m2(.) and constraints
(the sets which become empty in the fusion space) come
simultaneously, we can use any of these three formulas.

3) PCR5a formula is the best. PCR5a and PCR5b for-
mulas keep the specificity resulted after applying the
conjunctive rule. PCR5c rule is less specific (and not
recommended).

4) These formulas can be modified easily into PCR6a–
PCR6c formulas by applying PCR6 redistribution prin-
ciple to m1(.) and m2(.) and transferring the remaining
mass committed to empty set as in PCR5a–PCR5c
formulas.

5) In the case when the information comes sequentially, we
combine it in that order.

PCR5a is better than PCR5b and PCR5c because PCR5a
is more specific than both of them. Its bigger specificity is
due to the fact that all masses of degenerated intersections
m12(A ∩ B), where A = B = ∅, are redistributed
proportionally to all non-empty elements resulted from the
conjunctive rule. While PCR5c redistributes this whole
degenerated mass to the total ignorance (hence the lowest
specificity among this group of three related formulas), and
PCR5b uniformly splits this whole degenerated mass to all
non-empty elements (but this means that PCR5b gives the
same amount to each non-empty element, while PCRa gives
more generated mass to the elements which have a bigger
mass from the conjunctive rule).

Except Smets’ fusion rule in TBM, we can adapt many
fusion rules which are based on the conjunctive rule, including
PCR6 too of course. We can adapt in three ways, correspond-
ing to the previous PCR5a–PCR5c improved rules, replacing
only the PCR5 first summation in all three formulas with

DSmH summation S2 [4], Vol.1. For example, the DSmHa,
DSmHa and DSmHc extended rules are given by:
• DSmHa fusion rule: mDSmHa(∅) = 0 and ∀A ∈ GΘ \ ∅

mDSmHa(A) = m12(A) +
∑

X∈GΘ\∅
X∩Y=∅
X∪Y=A

m1(X)m2(Y )

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+m12(A) ·
∑
X,Y ∈∅m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)

(12)

• DSmHb fusion rule: mDSmHb(∅) = 0 and ∀A ∈ GΘ \ ∅

mDSmHb(A) = m12(A) +
∑

X∈GΘ\∅
X∩Y=∅
X∪Y=A

m1(X)m2(Y )

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+

∑
X,Y ∈∅m1(X)m2(Y )

Card({Z|Z ∈ GΘ \ ∅,m12(Z) 6= 0})
(13)

• DSmHc fusion rule: mDSmHc(∅) = 0 and ∀A ∈ GΘ \ ∅

mDSmHc(A) = m12(A) +
∑

X∈GΘ\∅
X∩Y=∅
X∪Y=A

m1(X)m2(Y )

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+
∑

X,Y ∈∅,A=It

m1(X)m2(Y ) (14)

DSmH classic rule [4] (Vol.1) redistributes the whole
conflicting mass of the form m12(A ∩ B), with A = B = ∅,
resulted from the conjunctive rule, to the total ignorance;
DSmH classic is equivalent (gives the same result) as
DSmHc. But DSmHa and DSmHb are more specific than
DSmHc (=DSmH classic) from exactly the same reason as
explained before regarding the more specificity of PCR5a
with respect to PCR5 and PCR5b. DSmHa is the most
specific among all three DSmHa–DSmHc. That’s why
we need DSmHa. In addition, in the three formulas of
DSmHa–DSmHc we can condensed the first two summations
(m12(A) +

∑
. . .+

∑
. . .+ . . .) into one summation only, i.e

under the first summation we can write X,Y ∈ GΘ (so X , Y
can be empty as well) and the second summation disappears
(it is absorbed by the first).

Similarly for Dempster-Shafer’s extended rule in the DSm
way, we replace in all first three formulas the first PCR5
summation by

m12(A) ·

∑
X,Y ∈∅
X∩Y=∅

m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)



• DSa fusion rule: mDSa(∅) = 0 and ∀A ∈ GΘ \ ∅

mDSa(A) = m12(A) +m12(A) ·

∑
X,Y ∈∅
X∩Y=∅

m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+m12(A) ·
∑
X,Y ∈∅m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)

(15)

• DSb fusion rule: mDSb(∅) = 0 and ∀A ∈ GΘ \ ∅

mDSb(A) = m12(A) +m12(A) ·

∑
X,Y ∈∅
X∩Y=∅

m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+

∑
X,Y ∈∅m1(X)m2(Y )

Card({Z|Z ∈ GΘ \ ∅,m12(Z) 6= 0})
(16)

• DSc fusion rule: mDSc(∅) = 0 and ∀A ∈ GΘ \ ∅

mDSc(A) = m12(A) +m12(A) ·

∑
X,Y ∈∅
X∩Y=∅

m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+
∑

X,Y ∈∅,A=It

m1(X)m2(Y ) (17)

Note that all these extended fusion rules are however not
associative and therefore if one has several sources available
at a given time to combine, the combination must be applied
with all sources together to get optimal fusion result.

C. Example 1 (continued)

Let’s examine in details the results obtained on Example
1 with all these extended fusion formulas. Because θ3 = ∅
and Shafer’s model is assumed for Θk, the set of elements
becoming empty is ∅ = {θ1 ∩ θ2, θ1 ∩ θ3, θ2 ∩ θ3, (θ1 ∪ θ2) ∩
θ3, θ3} and one has: m12(θ1∩θ2) = 0.14, m12(θ1∩θ3) = 0.17,
m12(θ2 ∩ θ3) = 0.19, m12((θ1 ∪ θ2)∩ θ3) = 0.10, m12(θ3) =
0.12. m12(θ1 ∩ θ2 ∈ ∅) = 0.14 is redistributed back to θ1 and
θ2 using PCR5 principle:
x1θ1

0.2
=
y1θ2

0.1
=

0.02

0.3
=

0.2

3
,

x2θ1

0.3
=
y2θ2

0.4
=

0.12

0.7
=

1.2

7

x1θ1 = 0.2
0.2

3
≈ 0.013 x2θ1 = 0.3

1.2

7
≈ 0.051

y1θ2 = 0.1
0.2

3
≈ 0.007 y2θ2 = 0.4

1.2

7
≈ 0.069

m12(θ1 ∩ θ3 ∈ ∅) = 0.17 is all redistributed back to θ1 since
θ3 = ∅ (non-existential constraint). m12(θ2 ∩ θ3 ∈ ∅) = 0.19
is all redistributed back to θ2 since θ3 = ∅ (non-existential
constraint). m12((θ1∪θ2)∩θ3) ∈ ∅) = 0.10 is all redistributed
back to θ1 ∪ θ2 since θ3 = ∅ (non-existential constraint).
While m12(θ3 = ∅) = 0.12 is redistributed differently in each
PCR5a, PCR5b and PCR5c formulas:

1) In PCR5a:

xθ1
0.13

=
yθ2
0.13

=
zθ1∪θ2
0.02

=
0.12

0.28
=

3

7

whence xθ1 = yθ2 = 0.13 · 3/7 ≈ 0.056 and zθ1∪θ2 =
0.02 · 3/7 ≈ 0.008.

2) In PCR5b: xθ1 = yθ2 = zθ1∪θ2 = 0.12/3 = 0.04.
3) In PCR5c: zθ1∪θ2 = 0.12.
Finally, one then gets results shown in the Table XI. From

these results, one sees that PCR5a rules provides the most
specific result since the mass committed to the uncertainty
is lowest with respect to what we get with PCR5b, PCR5c
and other PCR5-based normalized conditioning rules given in
the Table X. PCR5b is also a bit better (more specific) than
PCR5-based normalized conditioning rules also. As we see
and as expected from the theory PCR5c is less specific than
PCR5a and PCR5b. If we use DSmHa-DSmHc fusion rules
on this example, m12(θ1 ∩ θ2 ∈ ∅) = 0.14 is all redistributed
back to θ1 ∪ θ2 using DSmH principle [4], Vol.1. The other
conflicting masses are redistributed respectively in the same
way in PCR5a–PCR5c rules. The same example for Dempster-
Shafer’s rule extended in DSm style: m12(θ1∩θ2 ∈ ∅) = 0.14
is all redistributed back to θ1, θ2, and θ1 ∪ θ2 since they are
non-empty proportionally with respect to their conjunctive rule
masses 0.13, 0.13 and respectively 0.02:

xθ1
0.13

=
yθ2
0.13

=
zθ1∪θ2
0.02

=
0.14

0.28
= 0.5

whence xθ1 = yθ2 = 0.13(0.5) = 0.065 and zθ1∪θ2 =
0.02(0.5) = 0.010. The other conflicting masses are redis-
tributed respectively in the same way as in PCR5a–PCR5c
rules. The results obtained with DSmHa–DSmHc and DSa–
DSc rules are given in Table XI. In this example, one sees that
PCR5a is the most specific rule and in all cases, the rational
decision to take will be θ2 without ambiguity contrariwise to
DSCR approach.

bba’s \ focal elem. θ1 θ2 θ3 ≡ ∅ θ1 ∪ θ2
Prior: m1,k(.) 0.2 0.4 0.3 0.1
Prior: m2,k(.) 0.3 0.1 0.4 0.2
mPCR5a 0.420 0.452 0 0.128
mPCR5b 0.404 0.436 0 0.160
mPCR5c 0.364 0.396 0 0.240
mDSa 0.421 0.441 0 0.138
mDSb 0.405 0.425 0 0.170
mDSc 0.365 0.385 0 0.250
mDSmHa 0.356 0.376 0 0.268
mDSmHb 0.340 0.360 0 0.300
mDSmHc 0.300 0.320 0 0.380

Table XI
EXAMPLE 1: PCR5A–C & DSA–C & DSMHA–C RESULTS.

V. EXAMPLES

Here we present the solution of Examples 2–A, 3A–3B
obtained with our new extended PCR5a–PCR5c rules of com-
bination for solving the fusion of bba’s under non-existential
constraints in degenerate cases.



A. Example 2 (continued)

Let’s consider the Example 2–A and apply PCR5a–PCR5c
formulas. Using the PCR5 principle, m12(θ1 ∩ θ2) = 0.98 ·
0.98 = 0.9604 is redistributed back to θ1 and θ2 with the same
proportions xθ1 = xθ2 = 0.4802; m12(θ1∩θ3) = 0.98·0.01 =
0.0098 is redistributed to θ1 and θ3 with xθ1 = 0.00970101
and xθ3 = 0.00009899; m12(θ2∩θ3) = 0.0098 is redistributed
to θ2 and θ3 with xθ2 = 0.00970101 and xθ3 = 0.00009899;
m12(θ1 ∩ θ4) = 0.0098 is transferred to θ1 only since
θ4 ≡ ∅; m12(θ2 ∩ θ4) = 0.0098 is transferred to θ2 only
since θ4 ≡ ∅; m12(θ3 ∩ θ4) = 0.0002 is transferred to θ3 only
since θ4 ≡ ∅; Since only m12(θ3) 6= 0 with θ3 6= ∅ the mass
m12(θ4) = 0.0001 is transferred to θ3 in both PCR5a and
PCR5b formulas. But in PCR5c rule, m12(θ4) is transferred
to the total ignorance It = θ1 ∪ θ2 ∪ θ3. The final results
obtained with PCR5a, PCR5b (same as with PCR5a for this
example) and PCR5c are given in Table XII below.

focal el.\bba’s m1,k m2,k mPCR5a,b(.) mPCR5c(.)
θ1 0.98 0 0.49970101 0.49970101
θ2 0 0.98 0.49970101 0.49970101
θ3 0.01 0.01 5.9798 · 10−4 4.9798 · 10−4

θ4 ≡ ∅ 0.01 0.01 0 0
θ1 ∪ θ2 ∪ θ3 0 0 0 0.0001

Table XII
EXAMPLE 2–A: RESULTS WITH PCR5A–C

B. Example 3 (continued)

In Example 3–A, θ1 becomes empty and therefore: m12(θ1∩
θ2) = a(1 − b) goes to θ2, m12(θ1 ∩ θ3) = b(1 − c) goes to
θ3 and m12(θ2 ∩ θ3) = 1− a− b+ ab is split between θ2 and
θ3 proportionally to 1− b and 1− a respectively:

xθ2
1− b

=
xθ3

1− a
=

1− a− b+ ab

2− a− b
Therefore, one gets finally

xθ2 =
1− a− 2b+ ab+ b2 − ab2

2− a− b

xθ3 =
1− 2a− b+ 2ab+ a2 − a2b

2− a− b
Since θ1 = ∅, m12(θ1) = ab is redistributed to θ2 ∪ θ3 in
PCR5a–PCR5c formulas because all m12(X) = 0 for X 6= ∅.
The final results are given in Table XIII depending on the
values of parameters a and b

Cases a 6= 1, b 6= 1 a = b = 1
focal elem. \ bba’s mPCR5a,b,c(.) mPCR5a,b,c(.)
θ1 0 0
θ2 a(1− b) +

(1−b)(1−a−b+ab
2−a−b

0

θ3 b(1− a) +
(1−a)(1−a−b+ab

2−a−b
0

θ2 ∪ θ3 ab 1

Table XIII
EXAMPLE 3–A: RESULTS WITH PCR5A–PCR5C

Extended PCR5 rules for Example 3–B give same results as
for Example 3–A, where we replace θ1 by θ1 ∪ θ2, θ2 by θ3,
and θ3 by θ4, and θ2 ∪ θ3 by θ3 ∪ θ4. If we take by example,
a = b = 0.9 and 1 − a = 1 − b = 0.1 in examples 3–A and
3–B then we will finally obtain for Examples 3–A & 3–B:

bba’s\focal elem. θ1 θ2 θ3 θ2 ∪ θ3
mPCR5a−c(.) 0 0.095 0.095 0.810
mDSmHa−c(.) 0 0.090 0.090 0.820
mDSa−c(.) 0 0.090 0.090 0.820

Table XIV
EXAMPLE 3–A: RESULTS WITH a = b = 0.9 AND 1− a = 1− b = 0.1

bba’s\focal elem. θ1 ∪ θ2 θ3 θ4 θ3 ∪ θ4
mPCR5a−c(.) 0 0.095 0.095 0.810
mDSmHa−c(.) 0 0.090 0.090 0.820
mDSa−c(.) 0 0.090 0.090 0.820

Table XV
EXAMPLE 3–B: RESULTS WITH a = b = 0.9 AND 1− a = 1− b = 0.1

Dempster-Shafer’s rule cannot be applied in these examples
since it gives 0/0.

VI. CONCLUSIONS

In this paper we extend the classical PCR5 and DSmH
combination fusion rules to two ensembles of new fusion rule
formulas, PCR5a–PCR5c and respectively DSmHa–DSmHc,
in order to be able to take into consideration the non-
existence constraints (i.e. when some sets become empty) that
may occur during a dynamic fusion. Further, we show that
the same DSmT extension procedure applied to PCR5 and
DSmH can be applied to Dempster’s rule and other rules as
well. We provide several examples with these PCR5a–PCR5c
and DSmHa–DSmHc rules, and also with Dempster-Shafer
conditioning rule (DSCR). We have presented some classes of
counter-examples to DSCR. If we have two sources, what to do
first Fusion and then Conditioning, or Conditioning and then
Fusion? A simple answer would be to do them in the order we
receive the information. But in the case we receive all of them
simultaneously, it is better to use these new extended rules
depending on the specificity quality we want to get, PCR5a
being the most specific rule.
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