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The Koide formula and its analogues
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The mathematics of analogues to the Koide formula is explored. In this context, a naturally
occurring alternative to the Koide formula is shown to fit not only the tau-electron mass ratio, but
also the muon-electron mass ratio.

I. THE KOIDE FORMULA

In the 1980s the empirical Koide formula [1] [2] estab-
lished that (√

a+
√
b+
√
c
)2

a+ b+ c
≈ 3

2
(1)

when a, b, and c are the experimental electron, muon, and
tau masses (see [3] for an historical overview, and [4] for a
precursor to this article). By imposing this constraint on
the charged lepton masses the Koide formula allows the
inference of the less well known tau mass from the better
known muon and electron masses. Here we examine an
alternative to the Koide formula that allows approximate
inference of both the tau and muon masses from the pre-
cisely known electron mass. This formula, which employs
powers of 4.1, is shown to occur naturally when exploring
the mathematics of analogues of the Koide formula. In
the next section we begin by introducing two instructive
identities that will help clarify the behavior of Koide’s
formula.

II. TWO IDENTITIES

Assume x > 1, so that(√
1
x +
√

1 +
√
x
)2

1
x + 1 + x

= 1 +
2√

1
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√
x

(2a)
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1
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= 1 +
2√

1
x +
√
x

. (2b)

The reader will notice that the left sides of these identities
follow the form of the Koide formula, while their right
sides both take the form

1 +
2

z
,

where z is an expression in terms of x. By assuming
values from infinity to one, z causes the expression 1+2/z
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to assume values from one to three. Conveniently, this
can accommodate the fact that

f(a, b, c) =

(√
a+
√
b+
√
c
)2

a+ b+ c
(3)

also produces values from one to three for positive a, b,
and c. It is logical to wonder whether there might exist
good approximations of Eq. (3) that follow Eqs. (2a) and
(2b) in employing an expression like 1 + 2/z.

III. THREE APPROXIMATIONS

In fact there at least three such approximations. These
all use simple powers of ∼4 to produce ∼1.5, a point that
will prove important later on.

Assume x ≥ 3, so that

q(x) =

(√
1
3 +
√
x3 +

√
x5
)2

1
3 + x3 + x5

≈ 1 +
2

x− 1
10

(4a)

r(x) =

(√
1 +
√
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√
x7
)2

1 + x5 + x7
≈ 1 +

2

x+ 1
11

(4b)

s(x) =

(√
3 +
√
x6 +

√
x8
)2

3 + x6 + x8
≈ 1 +

2

x+ 1
9

. (4c)

Then, for x = 4 + 1/10, 4− 1/11, and 4− 1/9 the above
functions give

q(4 + 1/10) ≈ 1.500 1087 (5a)

r(4− 1/11) ≈ 1.500 1294 (5b)

s(4− 1/9) ≈ 1.500 2214 , (5c)

where, as required by the right sides of Eqs. (4a)–(4c),
all approximate

1 +
2

4
= 1.5 . (6)

Note that the above equations are similar in that each
employs exponents differing by two, while their first
terms form a 1/3, 1, 3 progression. As will be shown
later, the above approximations maintain their accuracy
over a range of values for x. Equation (4a) will prove
especially accurate, where it is just this equation that is
linked to the charged lepton masses.
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IV. A FUNCTION USING POWERS OF
EXACTLY FOUR

Now define

t(n) =

(√
4−1 +

√
4n−1 +

√
4n+1

)2
4−1 + 4n−1 + 4n+1

, (7)

and let

k = 4 +
1

π
, (8)

so that

t(+k) ≈ 1.499 999 956 696 937 (9a)

t(−k) ≈ 1.499 999 293 883 009 . (9b)

Just as simple powers of ∼4 produce ∼1.5 for Eqs. (4a)–
(4c), so, above, simple powers of exactly 4 also produce
∼1.5.

A shift of exponents allows Eqs. (9a) and (9b) to be
rewritten

t(+k) =

(√
4−1− 1

π +
√

43 +
√

45
)2

4−1− 1
π + 43 + 45

≈ 1.499 999 956 696 937 (10a)

t(−k) =

(√
43 +

√
45 +

√
47+

1
π

)2
43 + 45 + 47+

1
π

≈ 1.499 999 293 883 009 , (10b)

where, for clarity, each equation’s terms are now arranged
in ascending order of size. Notice that Eqs. (10a) and
(10b) each employ the terms 43 and 45, but whereas Eq.

(10a) uses the small term 4−1− 1
π , Eq. (10b) instead uses

the large term 47+
1
π (making it clear that they are achiev-

ing a similar result by different means). Equations (10a)
and (10b) match Eq. (4a) in using the integer exponents
three and five, but Eqs. (10a) and (10b) differ critically in
approximating 1.5 by employing powers of 4 unadjusted
by a constant such as 1/10; hence, Eqs. (10a) and (10b)
appear to be more fundamental.

Somehow, with the aid of the reciprocal of π, but with-
out the need of a small constant, both manage to ap-
proximate 1.5 much more closely than do Eqs. (4a)–(4c).
Leaving aside the issue of whether the reciprocal of π
appears coincidentally in Eqs. (10a) and (10b), the key
point remains that each produce ∼1.5 while using powers
of precisely 4. Moreover, letting

j = 10

facilitates the redefinition of k to

k = log2

(
j ±

√
j2 − 1

)
= ±(4 + 1/3.141 613 674 030 . . .)

= ±4.318 307 756 382 . . . , (11a)

so that

t(k) = t(±4.318 307 756 382 . . .) = 1.5 , (11b)

an exact result that establishes a firm connection between
the simple powers of 4 used in Eq. (7) and the constant
1.5. Finally, note that if j ≥ 1, then(

j +
√
j2 − 1

)(
j −

√
j2 − 1

)
= 1 ,

so that necessarily

log2

(
j +

√
j2 − 1

)
= − log2

(
j −

√
j2 − 1

)
,

as in Eq. (11a).

V. APPROXIMATION ACCURACY

As noted earlier, the approximations appearing on the
right sides of Eqs. (4a)–(4c) are accurate for various x.
For example, using Eq. (4a) we get

q(4 + 1/10) ≈ 1.500 1087 (12a)

q(5 + 1/10) ≈ 1.400 2429 (12b)

q(6 + 1/10) ≈ 1.333 5168 (12c)

q(7 + 1/10) ≈ 1.285 8222 (12d)

q(8 + 1/10) ≈ 1.250 0473 (12e)

q(9 + 1/10) ≈ 1.222 2258 (12f)

q(10 + 1/10) ≈ 1.199 9733 (12g)

q(11 + 1/10) ≈ 1.181 7709 (12h)

q(12 + 1/10) ≈ 1.166 6058 , (12i)

values consistently fit by its approximation

q(x) ≈ 1 +
2

x− 1/10
. (12j)

Moreover, inspection suggests that using the “adjustment
constant” −1/10 in Eq. (12j) always proves more accu-
rate across the above range than using its “neighboring
values” of either −1/9 or −1/11. The equivalent results
for Eq. (4b) give

r(4− 1/11) ≈ 1.500 1294 (13a)

r(5− 1/11) ≈ 1.399 9883 (13b)

r(6− 1/11) ≈ 1.333 5695 (13c)

r(7− 1/11) ≈ 1.286 1204 (13d)

r(8− 1/11) ≈ 1.250 4882 (13e)

r(9− 1/11) ≈ 1.222 7374 (13f)

r(10− 1/11) ≈ 1.200 5117 (13g)

r(11− 1/11) ≈ 1.182 3106 (13h)

r(12− 1/11) ≈ 1.167 1324 , (13i)

values also consistently fit by its approximation

r(x) ≈ 1 +
2

x+ 1/11
. (13j)
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And Eq. (4c) gives

s(4− 1/9) ≈ 1.500 2214 (14a)

s(5− 1/9) ≈ 1.399 6697 (14b)

s(6− 1/9) ≈ 1.333 3783 (14c)

s(7− 1/9) ≈ 1.286 0561 (14d)

s(8− 1/9) ≈ 1.250 5037 (14e)

s(9− 1/9) ≈ 1.222 7975 (14f)

s(10− 1/9) ≈ 1.200 5948 (14g)

s(11− 1/9) ≈ 1.182 4041 (14h)

s(12− 1/9) ≈ 1.167 2292 , (14i)

values consistently fit by its approximation

s(x) ≈ 1 +
2

x+ 1/9
. (14j)

Note, however, that the adjustment constants of +1/11
(used in Eq. (13j)) and +1/9 (used in Eq. (14j)) are more
accurate than their equivalent neighboring values over
a smaller range than is covered by +1/10 (used in Eq.
(12j)). And, finally,

q(4 + 1/ 9.913 467 . . .) = 1.5 (15a)

r(4− 1/11.125 754 . . .) = 1.5 (15b)

s(4− 1/ 9.143 166 . . .) = 1.5 (15c)

show more precisely just what adjustments must be made
to 4 for the above functions to produce exactly 1.5.

VI. THE MUON– AND TAU–ELECTRON MASS
RATIOS

Although the use of 1/3, x3, and x5 in Eq. (4a) is
empirically inspired by [5] (and to a lesser degree by [6]
and [7]), the simplicity and accuracy with which Eq. (4a)
can be approximated by the expression 1+ 2

x−1/10 , as well

as its similarity to the more fundamental Eq. (7), make it
mathematically interesting in its own right. Hence, Eq.
(4a) is non-empirical.

This point is important, as with the aid of 4 + 1/10 we
find that Eq. (4a) gives

q(4.1) = 1.500 1087. . . ≈ 1 +
2

4.1− 0.1
= 1.5 , (16)

nearly producing the 1.5 required by the Koide formula,
while employing terms giving the proportion

me : mµ : mτ ≈ 1 : 3x3 : 3x5

≈ 1 : 3× 4.13 : 3× 4.15

≈ 1 : 206.763 : 3475.686 03 . (17)

The value 206.763 is calculated in [5] to fit the muon-
electron mass ratio to roughly 1 part in 40,000, whereas
3475.686 03 is calculated to fit the tau-electron mass

ratio to roughly 1 part in 2000.

VII. ANALYSIS AND CONCLUSION

The Koide formula by itself only imposes a single con-
straint on the charged lepton masses, and so only facili-
tates the inference of the less well known tau mass from
the better known muon and electron masses. Although
this is nontrivial, Eq. (17) gives good approximations for
both the tau-electron mass ratio and the muon-electron
mass ratio while nearly fitting Koide’s relation. This ad-
dition of the more precisely known muon-electron mass
ratio to the list of “mass ratios fit” potentially greatly
enhances the Koide formula’s credibility.

But how much weight should be given to Eq. (17) and
its mass ratios, or, more specifically, Eq. (4a) from which
it derives?

That Eq. (4a) is of general mathematical importance
is supported by the other approximations and identities
that bracket it. Thus, Eqs. (4a)–(4c) are fit by a similar
approximation while all possessing a related form (e.g.,
Eqs. (4a)–(4c) each use exponents differing by two, while
their first terms form a 1/3, 1, 3 progression, as noted
earlier). More importantly, Eqs. (4a)–(4c), (7), (11a),
and especially (11b), establish a firm connection between
simple powers of ∼4 and the constant 1.5, a key point,
as it is just when Eq. (4a) uses integer powers of 4.1 to
produce ∼1.5 that it generates the mass ratios of Eq.
(17). In this way these mass ratios appear as a natural
part of the fabric of mathematics.

Moreover, Koide’s formula prefigured the mass propor-
tion me : mµ : mτ ≈ 1 : 3 × 4.13 : 3 × 4.15 by decades
(see [1] and [5], respectively). If the relationship that the
formula and the proportion each have to mass is purely
a matter of accident, then why should combining them
help produce interesting mathematics? It is only if both
the proportion and the formula are at least partially valid
physically that one would expect combining them to pro-
duce interesting mathematical offshoots: e.g., Eqs. (4a)
and (7).

All of this lends credence to the general conclusion
that the Koide formula is related to the muon- and tau-
electron mass ratios non-accidentally. Koide could not
have known in advance that such additional mathematics
would be forthcoming to support his original conception;
that it does suggests that he correctly foresaw the right
general direction with his formula, notwithstanding the
many uncertainties surrounding the issue of mass.

Of course, it must be conceded that Eq. (4a) is arrived
at purely numerically and, moreover, is one of several
equations introduced here that have the opportunity to
fit the charged lepton mass ratios by chance. But the
terms of Eq. (4a) fit the muon- and tau-electron mass ra-
tios to about 1 part in 40,000, and 1 part in 2000, respec-
tively. This is a remarkably precise fit to achieve solely
by accident, even given that this article’s key equations
provide several opportunities to do so.
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