Function of a Matrix

Pierre-Yves Gaillard

Abstract. Let \(a \) be a square matrix with complex entries and \(f \) a function holomorphic on an open subset \(U \) of the complex plane. It is well known that \(f \) can be evaluated on \(a \) if the spectrum of \(a \) is contained in \(U \). We show that, for a fixed \(f \), the resulting matrix depends holomorphically on \(a \).

The following was explained to me by Jean-Pierre Ferrier.

For any matrix \(a \) in \(A := M_n(\mathbb{C}) \), write \(\Lambda(a) \) for the set of eigenvalues of \(a \), and \(\mathcal{O}(\Lambda(a)) \) for the algebra of those functions which are holomorphic on [some open neighborhood of] \(\Lambda(a) \).

Let \(U \) be an open subset of \(\mathbb{C} \), and let \(U' \) be the subset of \(A \) defined by the condition \(\Lambda(a) \subset U \). In view of the Rouché’s Theorem \(U' \) is open. Let \(a \) be in \(A \) and \(X \) be an indeterminate.

Theorem.

(i) There is a unique \(\mathbb{C}[X] \)-algebra morphism from \(\mathcal{O}(\Lambda(a)) \) to \(\mathbb{C}[a] \). We denote this morphism by \(f \mapsto f(a) \).

(ii) There is an \(r > 0 \) and a neighborhood \(N \) of \(a \) in \(A \) such that

\[
 f(b) = \frac{1}{2\pi i} \sum_{\lambda \in \Lambda(a)} \int_{|z-\lambda|=r} \frac{f(z)}{z-b} \, dz
\]

for all \(f \) in \(\mathcal{O}(U) \) and all \(b \) in \(N \). In particular the map \(b \mapsto f(b) \) from \(U' \) to \(A \) is holomorphic.

Proof. By the Chinese Remainder Theorem, \(\mathbb{C}[a] \) is isomorphic to the product of \(\mathbb{C}[X] \)-algebras of the form \(\mathbb{C}[X]/(X-\lambda)^m \), with \(\lambda \in \mathbb{C} \). So we can assume that \(\mathbb{C}[a] \) is of this form, and (i) is clear. In view of the above argument, we can assume that \(a \) is nilpotent. Then (ii) results from the Lemma and the following form of Cauchy’s Integral Formula:

\[
 \frac{f^{(k)}(0)}{k!} = \frac{1}{2\pi i} \int_{|z|=r} f(z) \frac{1}{z^{k+1}} \, dz,
\]

where \(f \) is holomorphic around 0 and \(r \) is a small enough positive number.