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Article 17:

Validating Einstein’s principle of equivalence in the context of
thetheory of gravitational relativity

Akindele Oluwole Adekugbe Joseph
Center for The Fundamental Theory, P. O. Box 2575, Akure, CBtdie 340001, Nigeria.
E-mail: cfsib@yahoo.com OR adekugbe@alum.mit.edu

Having validated local Lorentz invariance (LLI) on flat spacetime in avigmtional
field of arbitrary strength in the context of the theory of gravitational natst{ TGR)
and having shown that the weak equivalence principle (WEP) is valid inahtext of
TGR in so far as it is valid at the classical (or Newtonian) gravitation limit irvioues
articles, the invariance with position on flat spacetime in every gravitatioslal f
the non-gravitational and gravitational laws, (in their usual instantandiigsential
forms), are demonstrated, thereby validating the strong equivalemmégbe (SEP) in
every gravitational field and consequently in the entire universe, in thexioof TGR.
Einstein’s equivalence principle (EEP) that embodies LLI, WEP andl&ERhus been
validated theoretically in the context of TGR in this and previous articles.

1 Transformations of physical parametersand physical constantsin the con-
text of thetheory of gravitational relativity

The flat relativistic spacetim&(ct) and the relativistic parameters in it in a gravita-
tional field of arbitrary strength, in the context of the theof gravitational relativity
(TGR), is what has been postulated to be a curved spacetidtbaparameters in it
in the general theory of relativity (GR). Thus the spacetimerdinates and physical
parameters that appear in GR and TGR are the same. Howeueariséormations
of physical parameters in the context of TGR derived in thevious papers [1] -
[2] and more to be derived in this paper, are unknown (or araningless) in the
context of GR.

Gravitational time dilation and gravitational length c@ution formulae in ad-
dition to the transformations for mass, gravitational potentiatb, gravitational
acceleration (or fieldy, gravitational veIocitNg(r), force F, kinetic energyEyin.
gravitational potential enerdy, angular momenturty, torque?, linear momentum
p, inertial acceleratio@ and dynamical velocity, on the flat relativistic spacetime
in a gravitational field of arbitrary strength in the contekithe theory of gravita-
tional relativity (TGR), derived in [1] and [2] are the follong

dt = y,(r)dt = (1- —2?,'::"20"")-1/2&’ (1)
g

*Author’s surname had been Adekugbe or Adekugbe-Joseph2oritll.
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where the kinetic energi;EI’(in can be the kinetic energy in classical mechanics
myv?/2 or the kinetic energyrbcﬁ(y — 1) in special relativity in Eq. (7). We shall
infer more relations in addition to the eleven above in thigtion.

Now kinetic energyEi(in can be replaced by internal energy or enthalpy en-
countered in thermodynamics. This is so since each of tlsesenanifestation of
the microscopic kinetic energy of molecules of a gas (or ofret of a liquid or
solid material). Thus let us write the first law of thermodmies in terms of the
proper (or primed) parameters on the flat proper spacetihet() (in Fig. 3 of
Fig. 11 of [3] in the absence of relative gravity) at the firstge of evolutions of
spacetimg@ntrinsic spacetime and paramef@ginsic parameter in a gravitational
field.

As explained under Egs. (92) — (95) of the primed classioabth of relative
gravity (CG), in sub-section 4.1 of [2], although C®& impossible (or does not
exist) as a theory on its own, it can be applied as a theoryowitkignificant loss of
accuracy in very weak gravitational fields, as the Newtoftimait (2GMga/ r’cg =0)
to the gravitational-relativistic (or unprimed) classitteeory of gravity (CG) on flat
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relativistic spacetime, ct), with exact equations (85) — (91) of [2] in a gravitational
field of arbitrary strength. As also explained under Eqs) (995) of CG in [2],
the CG operates on the flat proper spacetirBg §t’) that evolves at the first stage
of evolutions of spacetinjmtrinsic spacetime and paramef@rginsic parameters
in very weak gravitational fields. The flat proper spaceti@fedt’) has thus been
referred to as the space of the primed classical theory eitgrgCG’), as shall be
done for convenience in this paper.

Thus the first law of thermodynamics in terms of the propep(oned) parame-
ters on the flat proper spacetime of the primed classicaltgtan is the following

AQ =AU’ + W (12)

The mechanical work dond” in moving a load over a distance is clearly mass-
proportional. It is equal to change in kinetic energy. Samj for the change in
internal energy. Henc® and AU’ should transform like kinetic energy in the
context of the gravitational theory of gravity (TGR) as &wlis

2GMoa

AU = y,(r')2AU" = (1 - = YAU’ (13)
g
and SGM
N\— 4 a 4
W = y,(r")2W = (1- r,czo )W (14)
g

The form of Eq. (12) on the flat relativistic spacetin¥® d) of the theory of
gravitational relativity (TGR), at radial distancefrom the center of the inertial
massM of a gravitational field source in the relativistic Euclidez:space is the
following

AQ=AU+W (15)
Then by applying Egs. (13) and (14) in Eqg. (15) we have,
AQ=(1- 2?,'\;0a)(AU’ +W) (16)
g

As follows from Equations (12) and (16), change in quantitheat (or a quantity
of heat), transforms in the context of TGR as follows

2GMoa
r’cg

AQ = y,(r')°AQ = (1~ JAQ (17)

Thus although the gravitational-relativistic quantityhaatAQ that can be mea-
sured inX in the context of TGR (or a fixed proper quantity of ha&y’), injected
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into a thermodynamical system in the proper Euclidean 8espaof the flat proper
spacetime Y/, ct’) of the primed classical gravitation, as well as the comesp
ing change in the gravitational-relativistic internal emeAU and gravitational-
relativistic mechanical work doné/ by the system on the environment in a grav-
itational field of arbitrary strength in the context of TGRyry with position in a
gravitational field, as expressed by equations (13), (1d)(am) in the context of
TGR, the first law of thermodynamics (12) is invariant withsftion in the gravita-
tional field in the context of TGR.

Similarly the change in the proper (or primed) entré/ of a thermodynami-
cal system maintained at constant temperattirevhile a proper (or primed) quan-
tity of heatAQ’ is added to the system, is given on the flat proper spacelmet’()
of classical gravitation by the usual expression,

AS = AQ/T’ (18)

The form of Eq. (18) on the flat relativistic spacetin ) in a gravitational field
in the context of TGR is the following

AS = AQ/T (19)
Then by applying Eq. (17) in Eqg. (19) we have the following

2GMoa

AS =(1-
( r’cg

JAQ/T (20)

The temperature is invariant with position in a gravitatibfield (or is an invariant
with transformation in the context of TGR). This is exprakas follows

T=T (21)

Abundant evidence in support of relation (21) shall evolgafurther development
of the present theory. As follows from Egs. (21) and (20),

2GMoa
r’cg

AS=(1- )AQ' /T (22)

The transformation of the change in entropy in the conteXi@R that follows from
equations (21) and (22) is the following

2GMoa

702
ng

AS = y,(r')?AS" = (1 - )AS’ (23)
Relation (23) is equally valid for absolute entropy.
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The average translational kinetic energyof a monatomic molecule in an en-
semble maintained at temperat(re on the flat proper spacetimg’(ct’) of classi-
cal gravitation is given by the usual expression,

3
"= KT’ 24
=3 (24)
wherek’ is the proper (or primed) Boltzmann constant on the flat prgpacetime
(2, ct’) of classical gravitation. The form of Eq. (24) on flat relédtic spacetime

(%, ct) in a gravitational field of arbitrary strength in the coritek TGR is the fol-
lowing

3
&= SkT (25)

Now, ¢ = (1 - 2GMoa/r’c§)s’, sinceg’ is kinetic energy, and = T’ (Eq. (21)).
Using these in Eq. (25) we have the following

B 2GMgpa 3

1 ' = KT/ 2
-5 =3 (26)

The transformation of the Boltzmann constant in the condéxtGR that follows
from Eqgs. (23) and (26) is the following

2GMopa

— =2 _
kK=y,(r)K =(1- e

K (27)

The proper (or primed) quantity of heat) stored in a solid body of primed
specific heat capacity and rest massy, which is heated through temperature
differenceAT’ is given on the flat proper spacetin®,(ct’) of classical gravitation
by the usual expression,

AQ = moG AT’ (28)

The form of Eq. (28) on flat relativistic spacetin® €t) in a gravitational field of
arbitrary strength in the context of TGR is the following

AQ = mg, AT (29)
Then by applying Egs. (4), (17) and (21) in Eq. (29) we obthafbllowing
2GM 2GM
1- Z22AQ = (1- Z 22 meg AT (30)
r'cg r'cg

The transformation of the specific heat capacity in the cardeETGR that follows
from Egs. (28) and (30) is the following

6=¢ (31)
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The Planck constant is an invariant with transformatiorhim ¢context of TGR.
That is, it does not vary with position in a gravitational dielThis is expressed as
follows

A=W (32)

Conclusive evidences for relation (32) shall emerge witthier development.
The local frequency relation in the context of TGR, whichldwals from the
gravitational time dilation formula (1) is the following

2GM

) (33)

V=3 = (1

Relation (33) states that a light ray or any periodic phernmmnef proper frequency
vo, on the flat proper spacetimg’(ct’) of classical gravitation, which is momentar-
ily passing through radial distancérom the center of the inertial mas of a grav-
itational field source in the Euclidean 3-spa&ef TGR, possesses gravitational-
relativistic (or unprimed) frequenoyin the context of TGR, which can be observed
and measured at that moment. The local frequency relat@nri3TGR is diferent
from the frequency shift relation due to propagation offigatween two positions
of different gravitational potentials known in general relayivit

It follows from Egs. (32) and (33) that electromagnetic wamergy (or electro-
magnetic radiation energy) transforms in the context of TaSRollows

hv = y,(r") " hvo = hvo(1 - %)W (34)
r'cs

We find from Eq. (34) that electromagnetic wave energy (oratazh energy) with
zero rest mass, does not transform according to the ruléhéotransformation of
mass-proportional energy, such as kinetic energy (Eq. ifv)pe context of TGR.

For the transformations of volume and mass-density, letrasemt the trans-
formation of local spacetime coordinate intervals in thategt of TGR at radial
distancer from the center of the inertial ma$g of the gravitational field source,
referred to as gravitational local Lorentz transforma(GhLT) derived graphically
in [1] and analytically [2] as follows

dt? =y (r)(dt - (Ve(r')/c5)ar)
(w.r.t. 1 — observer irct);
. : (35)
dr’ = y,(r')(dr =V (r')dt); r'dé’ =rde; r’sing’dy’ = r sinédg

(w.r.t. 3— observer irx)

The inverse of system (35) exists and has been written [1][2hcbut it is not
required here.
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Thus an elementary volume ddf the proper Euclidean 3-spagé, of dimen-
sionsdr’,r’d¢” andr’ sin@’dy’, at radial distance’ from the center of the assumed
spherical rest madg, of the gravitational field source i, in the flat proper space-
time (', ct’) of classical gravitation, is related to the correspondihgmentary
volumedV of space of dimensiondr,rdd andr sinddy at radial distance from
the center of the inertial madd of the gravitational field source in the relativistic
Euclidean 3-spack of the flat relativistic spacetime(ct) of TGR, from the last
three equations of system (35) as follows

dv’ = dr'r'dd’r’ sind’dy’
= y,(r")(dr =V, (r")dt)rdér sinody
¥,(r")r?drde sindde — ,(r)V;(r")r?dtde sinody (36)

However the ternyg(r’)V;(r')errde sinddy cannot be measured (with laboratory
rod) as a volume of 3-space because of the gravitationatisfige’) that cannot be
measured. Hence Eq. (35) simplifies as follows from the pafintew of what man
can measure as volume of space by a laboratory rod,

r'2dr'd¢’ sing’'dg’ = v,(r’)r’drdé sindde

or
dVv’ =y, (r')dv

Hence

2GMpa
r'ea

Equation (37) gives the transformation of an elementarywa of 3-space in

every gravitational field in the context of TGR. If the restssay of a test particle

is contained in the proper elementary voluth¢ of the proper Euclidean 3-space

3, then its inertial massnin the context of TGR will be contained in the elementary

volumedV of the relativistic Euclidean 3-spageof TGR. Then sincenis related

to mp by Eg. (3), the mass-densityof the test particle transforms as follows in the

context of TGR

aV =y, () tdv’ = (1 - Y2y (37)

m _ y,(r)?mo 1Mo
0=y = gy = v
dV ~ y,(r)tdv dv
o 2GM
N— / a- U
0=y, e = (1= = 57) % (38)
9

Equation (38) gives the transformation of the mass-derdity test particle
located at radial distanaerom the center of the inertial madé of the gravitational
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field source in the relativistic Euclidean 3-spatef TGR. It can be applied to a
test particle of any shape with arbitrary orientation widspect to the spherical
coordinate system originating from the centeibf

For the transformations of the density of the active graiaiteal mass (or gravi-
tational charge) in the context of TGR, on the other hand, wstmecall the fact that
the immaterial active gravitational mass (or gravitatioctaarge)—Mog is wholly
embedded the rest malk, such that botliMy and—Mgg have the same shape and
occupy the same volumé of the proper Euclidean 3-spakg as discussed in sec-
tion 4 of [2], as well as the fact that the absolute-absoluteaterial gravitational
charge (like electric charge) is invariant with transfotimain the context of TGR,
written as Eq. (113) of [2]. The transformation of the densit the active gravi-
tational mass (or gravitational charge density) that fetidrom this facts and the
transformation of elementary volume of space in the cond&tGR above is the
following

__~Ma__ -Moa
ATV T 3, AV
or
: 2GMoa,
~0a=7,(")(~00a) = (1= = 5) *(~00a) (39)
9

where—pg is the density of active gravitational mass3rmand —pgg is the corre-
sponding density ix’.

The rest mas#ly of a non-spherical gravitational field source will give rise
non-spherically symmetric Newtonian gravitational poed’(r’, ¢, ¢’) and New-
tonian gravitational fieldj’(r’, 6, ¢’), where®’(r’,¢’,¢’) andg’(r’, ¢, ¢’) are con-
nected by the known relation,

g)l(r/’ 9/, (pl) — _V/(Dl(rl’ 9/, ()0,)

or
g, 0.¢) = _W;
%l0:¢) = _%; (40)
AN —%

The transformations of the componeptsg;, andg,, of the proper gravitational
field g'(r’, ¢, ¢’) into the components;, gy andg, of the relativistic-gravitational
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(or unprimed) fieldj(r, 9, ¢) in the relativistic Euclidean 3-spageof TGR, will take
the following general forms

gr = Te(gr. 94 9,); 90 = Tolar. 9. 9,); 94 = To(ar- 95 97,) (41)

The actual forms of the transformations of system (41), dsagethe form which
the dfective gravitational force on a test particle towards theteeof a gravita-
tional field source of Eq. (88) or (89) of [2] in the context dBR in a spherically
symmetric gravitational field will take in a non-spherigadymmetric gravitational
field, cannot be derived at the present level of developmetiteopresent theory.
They will be derived in the context of the Maxwellian theorfy gravity (MTG)
elsewhere with further development. Until then, we shatisider spherically sym-
metric gravitational field sources only.

Having derived the transformations of volume of 3-spacg, (B7mass-density
(38) and of active gravitational mass (or active gravitadioccharge) in the context
of TGR (39), we shall now write the transformations in the teah of TGR of
electric field, magnetic field and other parameters that apipeelectromagnetism
without deriving them here. The transformations of eledigld, magnetic field and
other parameters of electromagnetism in the context of Maf;h shall be derived
formally in a paper with further development are the follogi

g = ( (electric charge) (42a)
I = 1’ (electric current) (42b)
E = () = - e (42¢)
B = ()8 =01- ZGMO"“‘)WB‘ (42d)
b - yg(r')-2¢g=(1—2f“f2°a)¢g (a2e)
R = 7_4(r’)‘25\’=(1—2GM0a)A’ (42f)
J = yg(r')f'=(1—2?ﬂ‘) 2y (429)
0e = Wk = (1- By Voot (@2h)
o = wl)es=- 2Ry, (42)
po = ) = (- RN, (42)

where¢g in Eq. (42e) is the electrostatic potential (or electricgmbial), og in
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Eq. (42h) is electric charge density, and the other notatiave their usual usage in
electromagnetism.

Table 1 on page 813 gives a summary of the relativistic vatuethe flat rela-
tivistic spacetime in every gravitational field in the codtef TGR, (or the trans-
formations in the context of TGR), of some physical quagsgitind constants. All
observers who are at rest relative to the physical systeatddat radial distanae
from the center of the assumed spherical nidssf the gravitational field source in
the Euclidean 3-spacg (in the context of TGR), including even those located at
the radial distancefrom the center oM, observe identical gravitational-relativistic
value in the context of TGR of a physical quantity or constaithin the physical
system. However in a situation where there is relative nndbietween the observer
and the physical system, then the values in the context of TGRable | must
be further modified for special-relativistidfect, in the case of quantities that are
non-Lorentz invariant.

Tablel: Transformations of some physical quantities and constarite context
of the theory of gravitational relativity.

Quantity Proper quantity | Relativistic value
in the classical | of quantity in the
gravitational field| context of TGR
74(r') = (1 - 2GMoa/r’c}) /2

Mass Mo m = y,(r')*my
Mass density
Energy (mass- o 0=y,
Active grav. mass
(or grav. charge) —Moa Ma = —Moa
Grav. charge density —oo0a —0a = —Y4(")ooa
Energy (mass-
proportional) g g =7,()%
Electromagnetic ei-A-¢r) | e A-gg) =
pot. energy Yo(r) 26t A - ¢p)
Frequency Yo v =v,(r") " vo
Planck constant h h=h
Radiation energy hvo hv = v,(r")~*hvg
Entropy s S=v,(r') 28
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Table 1 continued.

Quantity Proper quantity | Relativistic value
in the classical | of quantity in the
gravitational field | context of TGR

7(r") = (1 - 2GMoa/r’c)) /2

Dynamical speed v v
Speed of light c c
Acceleration a a
Grav. speed V(1) Vy(r) = V(1)
Grav. potential Q'(r') = -GMoa/r" | @(r') = y,(r")*
X(-GMoa/r’)
Grav. acceleration g’ g=g’
Force (inertial
and gravitational) F F = y,(r)2F
Heat, enthalpy Q Q=17,(r")?Q
Temperature T T=T
Boltzmann const. K k=y,(r) K
Thermal conductivity K k=y,(r) K
Fluid viscosity W =yy(r')
Specific heat cap. Cp Cp=Cp
Electric charge Q Q
Charge density ok 0e = ¥4(1")og
Current density Jt Je = 7,(r")JE
Electric field E' E = ,(r)1E’
Magnetic field B B =y,() '8
Electric permittivity €5 €0 =y,4(r")eg
Magnetic permeability A fo = ¥(r')  ug

The gravitational-relativistic values (or the transfotioas in the context of
TGR) of other physical quantities and constants that do ppear in Table | must
be derived by following the method used in this section. &llshe noted however
that the transformations in the context of TGR of electritdfienagnetic field and
other parameters of electromagnetism require furtherldpreent of the present
theory to accomplish. Hence they have just been includealieTl without deriv-
ing them in this section. The gravitational-relativistalwes of physical quantities
and constants in the context of TGR must be substituted lirtaisual classical and
special-relativistic forms of natural laws in order to gerthe forms of the laws on
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the flat relativistic spacetime in every gravitational fiegidhe context of TGR, (or
their transformations in the context of TGR), as shall beediorthe next section.

2 Transformationsof natural lawsin the context of thetheory of gravitational
relativity

As has been explained in the previous papers, (see sulois&ct of [4] and sub-
section 1.1 of [1]), the flat relativistic four-dimensiosplacetimeX, ct) that evolves
in the context of the theory of gravitational relativity (R} serves as the flat space-
time for special relativity and supports the classical grecsal-relativistic forms of
the non-gravitational laws in a gravitational field. Thusvé prescribe a proper (or
particle’s) dfine frame K 7,2, c,f) and the observer'sfine frame §, , z, c,{)
within a local Lorentz frame at radial distancé&om the center of the inertial mass
M of a gravitational field source in the relativistic Euclide3-spacee (of TGR),
then there is local Lorentz transformation (LLT) and itsdrse in terms of these
affine coordinates within the local Lorentz frame, which haverberitten as Equa-
tions (71) and (72) of [2], and which shall be re-written hexgpectively as follows

T=y(- 550 R=y&-v); y=; 2= (43)
Y
and . v . . .
Ty @+ 50 k= y R+ ol G =77 =2 (44)

wherey = (1-v%/c2) V2.

The local Lorentz transformation (43) or its inverse (44)aguntees local
Lorentz invariance (LLI) within the local Lorentz frame at arbitrary radial dis-
tancer from the center of the gravitational field source. Hence llbcaentz in-
variance obtains on the flat relativistic spacetirBiect) of TGR in a gravitational
field of arbitrary strength, as already confirmed in [1] and [2 the absence of the
special theory of relativity, we must letc, = 0 andy = 1 in systems (43) and (44)
yielding the Galileo transformation (GT) and its inverseclafssical mechanics,

1

NI

=y 2= (45)

xt
Xl
i~

:i

—

-0
and . . . .

t=fx=x+uly=7;,2=2 (46)
The validity of local Lorentz invariance implied by systed3} or (44) and lo-
cal Galileo invariance implied by system (45) or (46) in avifetional field imply

that non-gravitational natural laws take on their usuatideelativistic and clas-
sical forms on flat spacetime of TGR in a gravitational fieldon€equently it is
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the usual forms of classical and special-relativistic goavitational laws (in their
usual instantaneousftirential forms) that must be subjected to transformations i
the context of TGR.

2.1 Transformations of non-gravitational laws in the context of the theory of
gravitational relativity

A classical or special-relativistic non-gravitationailanight take the following
general form on the flat proper spacetirig €t’) of classical gravitation

aT’
T bVAT = Q' (47)

wherea’, b/, T’ andQ’ are the proper (or classical) values of physical parameters
and constants on the flat proper spacetifiect’) of classical gravitation.

As presented fully under the Appendix in [2], the transfotiora of the non-
gravitational law (47) in the context of TGR must be achiewetivo steps viz:

Step 1: Obtain the inverse transformations of the parameters andtaots that
appear as dierential coéficients in Eq. (47) a® = fil(y,(r")a b =
ot (DB T = 74y, ()T andQ’ = T3 (y,(r))Q.and use these to re-
placea’, by, T’ andQ’ in Eq. (47) to have

200 Nan (70N 520 MDY (0, NT) = 570 )Q

(48)
The inverse transformation functiorfg,(y,(r')); f, 2(v,(r")); fr1(y,(r")) and
fél(yg(r’)) are spatially constant within the local Lorentz framehivitwhich
the transformations of the non-gravitational laws (47)asg derived. They
are also time-independent in static gravitational fieldg the shall be con-
cerned with. Consequently the inverse functiqﬁ(yg(r’)) can be factored
out of Eg. (48) to have as follows

fa 1(yg(r’))a% + £ (g (M)BVAT = f51 (e (M)Q (49)

Step2: Again as explained under the Appendix in [2], the gravitadiolocal
Lorentz transformation (GLLT) and its inverse simplify &g following triv-
ial coordinate interval transformations for the purposdeniving diferential
operator transformations to be used in transforming thegramitational laws
in the context of TGR

dt’ =dt; dr’ =dr; r'dd =rdg; r’ sind’dy’ =r sinfdy (50a)
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in the spherical coordinate system or
dt’ =dt; dxX' =dx; dy’ =dy; dZ =dz (500)

in the rectangular coordinate system.

The trivial differential operator transformations implied by system (5fa)
(50b) to be used in transforming non-gravitational law$imdontext of TGR
(derived under the Appendix in [2]), are the following

V2=V?2 V=V; §/0t°=8°/t% 9ot = d)dt'; etc (51)

System (51) must then be used in the semi-transformed rebntational law
(49) to have as follows finally

fa 1(“yg(f’))aaa—I + fy (g ()BVAT = fM (3, (r"))Q (52)

The inverse transformation functiorig™(y,(r)); f; *(y,(r’)) and {5 (y,(r"))
must be obtained from the relations for the gravitatiomdedivistic (or un-
primed) physical parameters and physical constafisandQ from Table 1.
For instancem = y,(r')2mo = fm(y,(r"))mo. Hencef 1(y,(r")) = y,(r")%.
The inverse transformation functiorfg(y,(r")); f, *(y,(r")); fo(y,(r")) and
fél(yg(r’)) will cancel out in Eq. (52) for some non-gravitational Ethereby sim-
plifying that equation as follows

a% +bv?T =Q (53)

Equation (53) retains the form of Eq. (47) but now in termsmaivifational-relativ-
istic (or unprimed) parameters of TGR and coordinates ofdlattivistic spacetime
(%, ct) of TGR. There is no dependence on position in the gravitatiield in the
transformed equation (53).

A classical or special-relativistic non-gravitationall#hat retains its form (in
terms of gravitational-relativistic parameters of TGR aondrdinates of the flat rel-
ativistic spacetimey, ct) of TGR, with transformation in the context of TGR, such
that the transformed law has no dependence on position iavéational field, shall
be said to be invariant with transformation in the conteXt GR.

It is expected that some non-gravitational laws will be iaat with transfor-
mation in the context of TGR, while some will not be invariavte shall now apply
the procedure described above to transform some non-gtiavial laws and inves-
tigate how far non-gravitational laws are invariant witlrtsformation in the context
of TGR.

817 A.Joseph. Validating Einstein’s principle of equivalence in the cofekGR.



Vol. 1(3B): Article 17 THE FUNDAMENTAL THEORY ... (M) Mar, 202

2.1.1 Transformation of mechanics in the context of the theory of gravitational
relativity

Now written on the flat proper spacetin® (ct’) of classical gravitation for the mo-
tion of a body of rest massy, the second law of motion of Newton is the following

d?x’
Mo dt/2
In writing Eq. (54) at radial distancefrom the center of the inertial mads of a
gravitational field source on the flat relativistic spacetig, ct) of TGR, we must
let, d?X’ /dt’? — d?x/dt?, (from invariance of inertial acceleration in the contekt o
TGRY); Mo — (1 - 2GMoa/r'c2)*mandF’ — (1 - 2GMoa/r'c?)"'F in Eq. (54) to
have

=F (54)

2GMpoa
T T o2
r Cg

d2x
1 A —
mdt2 (1

Gravitational interaction of the body with the source of theéernal gravitational
field has not been added to the right-hand side in order tanréta form of the
non-gravitational law (54). Eq. (55) simplifies as follows

d’x

9 (56)

Equation (56) is in the form of Eq. (54), which implies tha¢ thecond law of

motion of Newton is invariant with transformation in the ¢ext of TGR and hence
does not depend on position in a gravitational field. Theuision of a resistive
viscous force for motion through a fluid medium does not dhésr conclusion. For
if we add a resistive force proportional to velocity to Eq) e have the following

_ ZG Moa)—lﬁ

(1 -
r cg

) (55)

d?x’ dx’ ,

oGz +h dt =F
whereb’ is a constant for a given body and a given fluid medium throubichthe
body moves.

Now each term of Eq. (57) is a force, and as such must trandfkena force
in a gravitational field in the context of TGR. This impliesattbdX/dt = (1 -
ZGMoa/r’cg)b’ x dx’/dt’. Then sincedX/dt = dx’/dt’, (from the invariance of
dynamical velocity in the context of TGRpdxX/dt = (1 — ZGMoa/r’cg)b’dX/dt.
The relativistic valué in the context of TGR of the proper (or classical) constant
is then given a = (1 - 2GMoa/r'c2)b’.

In writing Eq. (57) at radial distanaefrom the center of the inertial mass of
a gravitational field source on the flat relativistic spavetig, ct) of TGR we must

(57)
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let
d?%’ /dt’? — d?%/dt?; dx’/dt’ — dx/dt;
Mo — ¥,(r")?m; F’ = 5,(r")?F; andb’ — v,(r")%b
in Eq. (57), wherey,(r') = (1 - ZGMoa/r’cg)*l/Z, to have
2GMgpa
r 02

)1 max _ _ZGMOa

1p B 2GMoa,_;
dtz I”CS ) - (1 ) 'f (58)

cm

(1-

Then by canceling the common factor{2G Moa/r’cj)‘l in Eq. (58) we have

d’x  dx
Moz +bg = F
Again Eq. (59) is of the form of Eq. (57), showing that the foofrEq. (57) is un-
changed with position in a gravitational field, or that E¢)(is invariant with trans-
formation in the context of TGR.

The second law of motion of Newton written as Eq. (54) or (5@n expression
of a balance of forces, which must be retained at every logati a gravitational
field. The third law of Newton expresses the balance of aciiwth reaction on a
body in contact with another body. Like the second law, theltlaw is invariant
with position in a gravitational field.

Since relativistic mechanics involves the incorporatidnspecial-relativistic
correction, (in terms of the factogsandg of special relativity usually, which are in-
variant in the context of TGR), into classical mechanics,itivariance with position
in a gravitational field of Newton’s second and third laws aftimn are equally true
in the special-relativistic situation. This can be aséeed by writing the special-
relativistic form of Newton’s second law on the flat propeasgtime £, ct’) of
classical gravitation as follows

F' = ymo(1 +yu?/cA)a’; (@ 1| u”) (60)

(59)

Equation (60) is true for the situation where the accelenatector is parallel to the
velocity vector, as indicated. In writing Eq. (60) at radiétancer from the center
of the inertial mas$/ in X of the gravitational field source, we must simply let

F" > ,(r')?F = F(1 - 2GMoa/r'c2) ™",
Mo — ¥,(r')*m = m(1 — 2GMoa/r'c) ™,
a3’ - 3&d andd’ — 0,
and tgese render the form of Eq. (60) unchanged upon cagdbircommon factor
Y1)
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2.1.2 Transformation of the kinetic theory of gases and the law of thermodynamics
in the context of the theory of gravitational relativity

We have shown in section one of this paper that although thetdy of heat added
to or rejected by a thermodynamical system; the change énriat energy and the
mechanical work done on or by the system, vary with positiom igravitational
field, the first law of thermodynamics, (Eqg. (12)), which istatesment of conser-
vation of energy, is invariant with position in a gravitatal field in the context of
TGR. The second law of thermodynamics is likewise invariaith position in a
gravitational field in the context of TGR, since Eq. (18) iganant with position
in a gravitational field. Also as demonstrated between égus(24) and (27), the
basic equationg; = KT or PV = nRT, of the kinetic theory of gases, as well as their
modified forms for solids and liquids are invariant with gimsi in a gravitational
field in the context of TGR.

2.1.3 Transformations of the transport phenomena and heat conduction eguation
in the context of the theory of gravitational relativity

The time-dependent conservation of mass (the continuitgtan) in fluid flows on
the flat proper spacetim&’( ct’) of classical gravitation is the following

’

do
ot
In writing this equation at radial distancdérom the center of the inertial mass in
the relativistic Euclidean 3-spageof a gravitational field source in the context of
TGR, we must leV’ — V; o’ — v,(")o; #’ — #andd/dt’ — 8/ét, in Eq. (61) to
have as follows

V.ot +=— =0 (61)

5 N oy 0 e)
V() o) + =2 =
The factor,y,(r') = (1 - 2GMoa/r’c?)""2, is time independent and is spatially
constant within a local Lorentz frame in which the invariamt natural laws in the
context of TGR is being verified. This allows us to rewrite &) as follows

0 (62)

no - ’ a
Y)Y - 03+ 7,() 5. = 0 (63)

The common factory,(r’) = (1 - 2GMoa/r’c5) "2, cancels out in Eq. (63), thereby
retaining the form of Eq. (61). This implies that the law ohservation of mass in
fluid flows (or the continuity equation) (61), is invariantttviransformation in the
context of TGR and is hence invariant with position in a giaidnal field.

The momentum equation in fluid flows, (the Navier-Stoke’sagigun), is simply
the continuum form of Newton’s second law of motion. It fos, since Newton’s
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second law of motion is invariant with transformation in ttentext of TGR, as
shown above, that the Navier-Stoke’s equation is invanittt transformation in
the context of TGR. The Navier-Stoke’s equation in xaedirection is given on the
flat proper spacetimex(, ct’) of classical gravitation as follows

Du/, P 9 w, 2.
/ = _ ’ 2 X _ _V/ L7
¢ Db ax o W o —3V T
a , 0v, v a , 0v, Qv
o (o + N+ = W (o= + 2)) (64)

oy M ox Ty Tz ox oz

where body forces (including gravity) have been assumee tabisent.

: Force Force _ Y,(")?Force _ y,(r')Force
Now each term of Eq. (64) igg- But gy = 77 Volume = - Volme

Henceface. — 20R0Ce \yhere PO s measured on the flat proper spacetime
(2, ct’) of classical gravitation an% is measured at radial distancérom the
center of the inertial madsl of a gravitational source in the relativistic Euclidean
3-spaceX of TGR. Hence each term of Eq. (64) on flat proper spacetinet()

of classical gravitational fields transforms into the cep@nding term on flat rel-
ativistic spacetimeX, ct) in every gravitational field in the context of TGR by a

multiplicative factor ofy,(r’) = (1 - 2GMoa/r’c2)~2. That s,

o'Dvy/Dt"  —  y,(r")oDux/Dt;

8  , 0v, Ov N0 Ov,  Ouy,
57 (ax, + az')} = y,(r )6—2{#(5 + E)}’
OP'[OX  —  y,(r')oP/dx; etc (%)

In writing Eq. (64) at radial distanaefrom the center of the inertial mass of
a gravitational field source, in terms of coordinates of therglativistic spacetime
(%, ct) and gravitational-relativistic parameters of TGR, we tmaplace each term
in that equation by its right-hand side i) o have as follows

. Du P 9 v 2o
Yy(r )QﬁX = ()55 + 7o) 5 2 )

ox 3
A0 0v, Oy L0 Ov,  Oug
+y,(r )a_y{“(& + a—y)} +y,(r )B_z{#(& + E)} (65)

The common factoy,(r’) cancels out in Eq. (65), thereby making Eq. (65) to take
the form of Eq. (64) at every point in spacetime within a grawonal field. This
confirms the invariance with transformation in the contéxf@R and hence invari-
ance with position in every gravitational field in the cortek TGR of the Navier-
Stoke’s equation.
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Now, 5
0, 0vz  Ovx, nog O, 00, OU
62{”( ox * 62)} =) 07 tw (6x' * 0z

)} (66)

Bt 0,0 0 6 0v, 0
9 (v vy O OV O
6z(ax " 62) B 62'(6x’ * az) (67)

as follows from the invariance of flierential operators and velocity in the context

of TGR. The transformation of viscosity in the context of T@#t follows from

equations (66) and (67) is the following

2GMgpa

1/2
) (68)

p=y () = (1-
The transformation (68) has been incorporated into Tabkrliee
The energy equation is the continuum form of the first law efthodynamics
for a fluid element in a flow channel. It follows from the invamce with position
in a gravitational field of the first law of thermodynamicstttize energy equation
is invariant with position in a gravitational field. For raogular coordinates, the
energy equation is given on the flat proper spacetithe(’) of classical gravitation
as follows
D¢ . a 0T’ o ,,0T’
/ = / k/ kl
¢ br T+ o W)t oy &y
0, 0T’ P Do
—(K — @’ 69
&) o * (69)
where é is proper specific energy, (proper energy per unit magsy the proper
volumetric heat generation rate within the fluid element@his the proper viscous
dissipation term, in the proper Euclidean 3-spate
Now each term of equation (69) is time-rate of change of gneeg unit volume,
(or power per unit volume). The relativistic value % like the relativistic

value of £ in the context of TGR is%. Hence each term of Eq. (69)
on the flat proper spacetimg’(ct’) of classical gravitation is equal to factgy(r’)
times the corresponding term at radial distanceom the center of the inertial
massM of a gravitational field source on the flat relativistic sgane €, ct) of
TGR. By replacing each term of Eq. (69) by factg(r’) times the corresponding

gravitational-relativistic (or unprimed) term we have thowing

)

)+

.. De e N0 0T N0 0T
Yy(r )Qa = yy(r)a+y,(r )8_)((k&) +y,(r )E/(ka_y)
a0 0T P Do ,
+y,(r )B_Z(kE) +y,(r )Q ot Yy(r)® (70)
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The common factoy,(r’) cancels out in Eq. (70), thereby making it to retain the
form of Eq. (69). This implies that the energy equation (&pvariant with trans-
formation in the context of TGR and hence with position in avifational field.

Now

O 4Ty ey o
k=) =y () K S) 7
Bt 0 0T 0 0T’
(5= 7 50) (72)

sinceT = T/, (Eq. (21)) and from the invariance offtiirential operatof?/9dx? =
92/9x'?. The transformation in the context of TGR of thermal conilitgt that
follows from equations (71) and (72) is the following

2GMoa

k=7, (r')’lk' =(1- p
g re

)oK (73)
wherek’ is the conductivity in the flat proper spacetinma®, Ct’) of classical gravita-
tion. Again the transformation (73) has been incorporatéal Table 1 earlier.
Finally the equation for time-dependent heat conductioa 8vlid is given in
general on the flat proper spacetini®, €t’) of classical gravitation as follows

’

’ /aT ‘)/ /%I ’ ~
IG5 V- K¥T) =g (74)

Again each term in Eq. (74) isgt%. Hence each term in Eq. (74) on flat proper
spacetime Y/, ct’) in classical gravitational field is equal to factgy(r’) times the
corresponding gravitational-relativistic (or unpriméeim on flat relativistic space-
time (Z, ct) of TGR, at radial distancefrom the center of the inertial mass of a
gravitational field source in the relativistic Euclideasi@acex. By replacing each
term of Eq. (74) by factow,(r’) times the corresponding unprimed term we have

the following
N 0T [ e
Yo% = YoV - (KIT) = 74(r)q (75)

The common factoy,(r’) cancels out in Eq. (75), thereby making Eq. (75) to retain
the form of Eq. (74). This implies that the heat conductionapn (74) is invariant
with position in every gravitational field (or is invarianitiv transformation in the
context of TGR).

We have thus established, in this sub-section, the invegiavith position in a
gravitational field of the mass conservation equation imfflaws, (or the continuity
equation), the momentum (or Navier-Stoke’s) equation,ethergy equation for a
heated fluid flow in a channel, as well as the heat conductioaten in solids, in
the context of the theory of gravitational relativity.
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2.1.4 Transformation of the law of propagation of waves in the context of the
theory of gravitational relativity

All matter waves, such as sound waves through air or solidiume@nd pressure
waves in fluids, as well as electromagnetic waves, propaaterding to the fol-
lowing wave equation on the flat proper spacetiiedt’) of classical gravitation
1 626/
Vi = =2 76
‘f u/2 at/Z ( )
whereu’ is the velocity of the wave through a given medium, gnds the propa-
gating wave #ect that depends on the wave type.
In writing the wave equation at radial distanc&om the center of the inertial
massM of a gravitational field source in the relativistic Euclidespace& of TGR,
we must letV’2 — VZ v — u; 82/0t'2 — 02/t in Eq. (76) to have as follows

,_ 1%
T2 o2
Now given the inverse transformationiin the context of TGR a&’ = ff‘l(yg(r’))g-‘,
thenV2¢’ = V2[f 1 (y,(r)E] and 9%¢" /012 = 6%/0t[f 1 (y,(r"))€]. Since the in-
verse functionfgl(yg(r’)) is spatially constant within a local Lorentz frame within

which the transformation of law is being done and since itnetindependent in
static fields we are concerned with then,

V2% = V[, (M)€] = 172, (1) V2

Ve (77)

and

0% |07 = 07 |01 (v (M))E] = 17 (g (r))0%8 /0.
Eq. (77) therefore simplifies as the following final form
1 0%
V=2

¢ u? ot?

Eq. (78) retains the form of Eq. (76), which implies that thaves equation (76)
is invariant with transformation in the context of TGR anahbe with position in a

gravitational field of arbitrary strength. For electromagowaves¢ is the mutually
perpendicular electric fiel and magnetic field, andu is the speed of light,.

(78)

2.1.5 Transformation of quantum theories in the context of the theory of gravita-
tional relativity

Demonstrating the invariance with position in a gravitaéibfield of the Schrod-
inger wave equation, the Dirac’s equation for the electrmhthe wave equations of
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Gordon and Klein for bosons, by argument based on the funad@tseof quantum
mechanics is beyond the current level of development of thegmt theory. How-
ever the invariance with position in a gravitational fieldtod wave equations can be
inferred from expressions for the Hamiltonians in cladsitachanics and special
relativity from which the wave equations are usually detive

The HamiltoniarH "’ is given in terms of kinetic energly’ and potential energy
U’ in classical mechanics on the flat proper spacetigc(’) of classical gravita-
tion as follows

p/2

T +U = U =H’ 79
+ 2mo+ (79)

Then by lettingg’ — —irV’, U’ > U’ andH’ — H’, Eq. (79) becomes the follow-
ing operator equation

h2

V24U =H’ 80

eV (80)
And by allowing each operator in Eq. (80) to act on the stegatg svave functiog’
we obtain the steady-state Schrodinger wave equation oftethgroper spacetime
(¥, ct’) of classical gravitation in the usual form as follows

hZ
_ V/Z ’ ! — E/ ’ 1
VW VY =EY (81)

whereH’y’ = E’y/ has been used. Also by lettii§f — ind/ot" andy’ — ¥
in Eqg. (81), the time-dependent Schrodinger wave equasi@itained in its usual
form as follows

oV’
o

Equations (81) and (82) are valid on the flat proper spacdfimet’) of classical
gravitation. In obtaining the transformations of theseatipms in the context of
TGR, we must start by obtaining the transformation of thasikzal equation (79)
for the Hamiltonian in the context of TGR. In other words, washwrite Eq. (79)
at radial distance from the center of the inertial madg of a gravitational field
source in the relativistic Euclidean 3-spatef TGR in terms of the gravitational-
relativistic (or unprimed) values for kinetic energylJ for potential energy, and
for the Hamiltonian in the context of TGR. This will be achéevby lettingT’ —
¥o(r")?T; U’ = y,(r")2U; H” — v,(r")*H and p’2/2mg — v,(r')?p?/2min Eq. (79)
to have as follows

hZ
—— V¥ L U'Y =in 82
2 + (82)

2
Yo(U'Y’T +7,(r")?U = Vg(r’)zg—m +7,(r")2U = 7,(r)?H (83)
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The common factoy,(r')? cancels out in Eq. (83) yielding

p2
T+U=_—+U=H (84)

Then by lettingd — —iAV,U — U andH — H in Eq. (84) we obtain the
following operator equation

hZ
—?nvz +U=H (85)

And by allowing each operator in Eq. (85) to act on the graiateal-relativistic (or
unprimed) steady-state wave functigrin the context of TGR, we obtain the trans-
formed steady-state Schrodinger wave equation in the xootd GR as follows

hz 2 —
—5m VA + Uy = By (86)

where againHy = Ey has been used. And by lettiey — i79/dt andy — ¥ in
Eq. (86) we obtain the transformed time-dependent Schgediwave equation (82)
in the context of TGR as follows

—h—zvz\}' +U¥ = ihg‘l’ (87)
2m St
Equations (86) and (87) derived from the classical expoeskir the Hamiltonian
in the context of TGR, retain the forms of Equations (81) &8®) (espectively de-
rived from the classical expression (79) for the Hamiltoroa flat proper spacetime
(2’ct’) of classical gravitation. This confirms the invariancehatitansformation
in the context of TGR and hence with position in a gravitagidifeld of arbitrary
strength of the steady-state and time-dependent Schierdiveye equations.

In the case of the Dirac’s equation for the electron, the Hamian is given on
the flat proper spacetim&’( ct’) of classical gravitation as follows

3
Zw,’(p((+ﬁ’rrbcz =H’ (88)
k=0

or

cappy+cd’ - B’ +B'mec® = H’ (89)

whereay = 1,@’ andg’ are (proper) Dirac matrices in the flat proper spacetime
(2, ct’) of classical gravitation.
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By performing the following transformation on Eq. (88) 08}8
S I R
kZ::O cajp, — _'EC;OQKW = i ~ihed’ - V', (90)
we obtain the following operator equation for the Hamileomi

—ih% —incd’ - V' +B'moc? = H’

or
0 S .
h@mcﬁ’.vwlﬂ'nbczzm’ (91)
Then by allowing each operator in Eq. (91) to act on the prdipee-dependent
wave-function¥” we obtain the following wave equation on the flat proper space
time (&, ct’) of classical gravitation

(h% L i -V 4B MY = iH Y (92)

For an electron propagating in an external electromagfietit with electrostatic
potentialg. and vector potentiak’ on the flat proper spacetime of classical gravita-
tion, the Hamiltonian is equal to the electromagnetic pideanergy of the electron.
That is,

H' =e(cd’ A - ¢p) (93)

Then Eq. (88) becomes the following

i

3
D ca'pi+B'mec? = e(cd’ - A — ) (94)
k=0
while the implied wave equation (92) becomes the following:
(h% +hcd’ -V +iB' MY = ie(cd’ - A — ¢p) ¥’ (95)

This is the Dirac’s equation for the electron, (not in cosatitensor form), on the
flat proper spacetimé&(, ct’) of classical gravitation, which follows from the Hamil-
tonianH’ of Eq. (88) or (91) withH’ given by Eq. (93) in the proper Euclidean
3-spacey’ of classical gravitation.

In obtaining the transformation in the context of TGR of thiedd’s equation for
the electron (95), we must start by writing the Hamiltoni&8)(at radial distance
from the center of the inertial mabs of a gravitational field source in the relativistic
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Euclidean 3-spacE of TGR in terms of the gravitational-relativistic valuestbg
energy in TGR. That is, we must let

Caf Py = Yo(t")2caxp BMoC® — y,(r')’pmc?
and H' — y,(r')?H
in Eqg. (88) to have as follows
3
D ¥or Y eanpi+ v, (r)°BME” = 7,(r'Y°H (96)
k=0

By canceling the common factgy(r’)? in Eq. (96) we have,

3
Z Caxpx + Bmc® = H (97)
k=0

And for an electron in motion within an external electrometim field, we must
write EqQ. (94) in a gravitational field in the context of TGR fmjlowing the same
steps that convert Eq. (88) to Eq. (95). This gives

3
D Cabi+ e = e(ca - A ge) (98)
k=0

Then by letting,

3 3 (9 a
ca —hC — = —jh— —ihc@-V
; kPk — é“kaxk ot ,

we obtain the following operator equation for the Hamiltomon the flat relativistic
spacetimeX, ct) of TGR

-ih%-ihc&-ﬁ+ﬁnn2=e(c&-ﬁ—¢E) (99)

Then by allowing each operator in Eq. (99) to act on the néktic time-depend-
ent wave function in the context of TGR we have,

(h% +hcd -V +iBmcAY = ie(cd - A— ¢)¥ (100)
The Dirac’s equation (100) for the electron within a grawitaal field of arbitrary

strength in the context of TGR, retains the form of Eq. (95})tmnflat proper space-
time ', ct’) of classical gravitation. This implies that the Dirac’suatjon for the
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electron is invariant with transformation in the contexfléR and hence with po-
sition in a gravitational field of arbitrary strength.

The invariance with position in a gravitational field of thewe equations for
bosons can likewise be shown. For spin-zero bosons, the egagion for the free
particle is the following on the flat proper spacetiié, ¢t’) of classical gravitation
(Landau and Lifshitz, 1982):

(p%c - mechH¥’ =0 (101)

wherep’? is the square of the four-momentystt, andny is the mass of the particle
on the flat proper spacetim&’( ct’) of classical gravitation. The explicit form of
Eq. (101) is the following

2y mpc?
12\’ _ ’
M (102)

Equation (102) admits of generalization to a particle wittegral spin. The wave
function of a particle with integral spigis an irreducible 4-vector of ran where
each component of this tensor must satisfy Eq. (102).

In obtaining the form the wave equation (102) will take on ffidativistic space-
time &, ct) in a gravitational field in the context of TGR, we must agaiarts
by writing Eq. (101) in a gravitational field by replacing, my and ¥’ by their
gravitational-relativistic (or unprimed) valugs m and¥ in the context of TGR
respectively. This will be accomplished by letting,

P =y, ("P; Mo = v, ()M ¥ = £ (MY,

(where qul(yg(r’)) is the inverse transformation function ¥f in the context of
TGR), in Eg. (101) to have as follows

Vg(r/)z(pzcz - m2C4) f\;’l(yg(r/))ql =0

or
(p?c® - mPcHh? = 0 (103)
The explicit form of Eq. (103) is the following
Y mc?
2 -
o n2 (104)

Equation (104) in a gravitational field of arbitrary stremgh the context of
TGR, retains the form of Eq. (102) on the flat proper space(®het’) of classical
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gravitation. This establishes the invariance with positioevery gravitational field
in the context of TGR of the wave Eq. (102) for bosons.

The invariance with position in a gravitational field of arhry strength of the
Schrodinger wave equation, the Dirac’s equation for thetede and Gordon’s wave
equation for bosons, deduced in this sub-section, shalbbsidered as the invari-
ance with position in every gravitational field of quanturedhes in general. Al-
though this conclusion has been deduced from invariancheotlassical and the
special-relativistic expressions for the Hamiltoniansni which the wave equa-
tions are usually derived, a more fundamental explanataseth directly on the
foundation of quantum mechanics might be possible withhirdevelopment of
the present theory.

2.1.6 Transformation of electromagnetism in the context of the theory of gravita-
tional relativity

Although gravity has not been incorporated into electromegigm up to this point in
the present theory, the results of combined electromagmetind the theory of grav-
itational relativity to be derived formally elsewhere witirther development have
been written as Egs. (42a) — (42]) and incorporated intoeTakéarlier. Obtaining
the transformation of electromagnetism in the context oRT&®nsists essentially in
obtaining the transformation of Maxwell equations in thateat of TGR by using
Egs. (42a) — (42)).

Now the Maxwell equations within a medium with electric apadensityor
and electric current densit§z on the flat proper spacetim&’(ct’) of classical
gravitation are the usual equations

V.E = ofey VB =0
o’ 4 T 1 6§/ .
\Y Xg = ﬂOJE+ng, (105)
5 o8
\v/ E/ - _
% av

In writing system (105) at radial distancdrom the center of the inertial ma$s
of a gravitational field source in the relativistic Euclide®-spacex of TGR, we
must replace the coordinates of the flat proper spacetiihet() in the equations
above by the coordinates of the relativistic spacetimetj of TGR, and proper pa-
rameters (with prime label) ir&(, ct’) in classical gravitation by the gravitational-
relativistic (or unprimed) parameters iR, €t) in the context of TGR to have the
Maxwell equations within every gravitational field in thentext of TGR. This im-
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plies that we must perform the following transformationsystem (108):
V 5V, E - y,(I"E; B - y,(r)E;

0t = Yo(") 0E; € = vo(r) Yeor oy — ¥y (r)o;
aJo — 8/dt; Je — y,(r') 13,

implied by Table 1, to have as follows

V-0uME) = 7,(") Yeelv () e

V-, (MB) = 0; .

Fx0,8) = Oy () + 5 AR o
Y

- A(y,(r"B

Fx gy = -8

System (106) is the transformation of the Maxwell equationthe context of the
theory of gravitational relativity (TGR).

The factory,(r’) is time independent and spatially constant within evepalo
Lorentz frame for the static gravitational fields being ddesed. Hence system
(106) simplifies as follows

V-E = Vg(r/)_lQE/fo; V-B=0;
S .  10E
_ n-1 .
VxB = '}’g(r ) HodJe + C—iﬁ, (107)
S 9B
VXE = —-—
x at
or 2GM
ﬁé = (1_—20a)1/2'9_E;
r'cg €o
V.B = 0O
ﬁ S 2GMoa 1 6E (108)
VxB = uode(l- ==+ = —;
X Mo E( r,Cg ) + Cg/ 6t
. 9B
VxE = -—
% at

As system (108) shows, the Maxwell equations remain unatthagevery point
in spacetime within a gravitational field where electric rgfgadensity and electric
current density vanish. That is, where there are no sourfcdgedields. There is
however slight dependence on position within a gravitaidield of the Maxwell
equations where electric charge density and electric stidensity are non-zero, as
system (108) shows.
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2.2 Transformations of the gravitational laws in the context of the theory of
gravitational relativity

There is a Maxwellian theory of gravity involving masslesawtational field7 and
another massless partner-fi&cﬂo g, on the flat relativistic spacetim&,(ct) of the
theory of gravitational relativity (TGR), isolated in thegent theory, which shall be
developed elsewhere with further development. Four egusibf the Maxwellian
theory of gravity that describe the ‘propagation’ at gratidnal (or static) velocity
\7;(r’) on flat spacetimeX, ct), of the fieldsg andd, which are the counterparts in
gravity to the Maxwell equations in electromagnetism, ibalderived. The invari-
ance (of the four equations) of the Maxwellian theory of gsawith transformation
in the context of TGR and hence their invariance with posifio a gravitational
field, shall also be established with the aid of the grawtedl local Lorentz trans-
formation (GLLT) and its inverse of systems (3) and (4) of [2]

Only the transformation in the context of TGR of the clasidicaory of gravity
(C@) on the flat four-dimensional proper spacetiig t’) can be derived at this
point. Although it has been said at some points in this angbtbeious papers that
we shall restrict to spherically-symmetric gravitatiofialds until the Maxwellian
theory of gravity (MTG) is subsumed into the present theorg, shall however
consider non-spherically-symmetric gravitational figlgst in this sub-section.

The equation of CGin differential form at radial distanaé from the center of
a non-spherical rest mad4, of a gravitational field source in the proper Euclidean
3-spacey’ is the following

V' G'(r'.¢.¢) = 4nG(-ooa) = — 4nGooa (109)
or 3 ( )
Agi(r',0',¢")  9go(r',0',¢")  0g,(r'.0.¢
" : = —4nG 110
or’ r'oo’ r’'sing’ dy’ e (110)
where
g/(rl,el’sol) — _V/QI(/(r/’HI,(p/) (111)

and —opg is the density of the active gravitational mass (or gramitetl charge
density), the density of Moa that is equal in magnitude to the density of the rest
massMp in ¥’ (see the explanation of this in section 4 of [2]).

The transformations (110) and (111) in the context of TGR @m®to writ-
ing them in terms of gravitational-relativistic (or unpe) parameterg(r, 6, ¢),
(r,0,¢),—0a and unprimed operat(ﬁ in the relativistic Euclidean 3-spaceof
TGR, at radial distancefrom the center of the inertial masé of the gravitational
field source irx.
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The transformations of gravitational field, gravitatiopaitential and gravita-
tional charge density in the context of TGR, derived in [2§i éimis paper (and sum-
marized in Table | of this paper) are the following

gy = g'(r)
D) = y,(r)t(r) (112)
—oa = v4(r')(-00a)

System (112) is relevant to spherically-symmetric graiiteal fields. It will take
the following form in non-spherically-symmetric fields

gr(r,0,0) = ey, (r")gi(r', ¢, ¢")

go(r,0,0) = Toly,(r'))ga(r', ¢, ¢")

go(r,0,0) = T (yy(r")go(r', 6, ¢") (113)
O(r,0,¢) = v, () V(.0 ¢)

-oa = ¥4(r")(-00a)

where the transformation functiorig(y,(r’)), fi(y,(r")) and f,(y,(r")) shall be in-
ferred below.
By replacing

gi(r',6',¢') by 7 yy(r)gr(r.6.9); go(t'.6',¢") by T (vy(r))ge(r. 6.¢);
go(r'. 0. @) by 11y, (t")g,(r.0.0); @' (. 6'.¢") by v,(r)O(r. 6. ¢)
and
—00a by 7,(r") " (-ca)
in Eq. (110), by virtue of system (113) we have

[f Y ()gr(r6.0)] + 69,[f_1(7g(r )ge(r. 6, ¢)]

(£, (e ()gy (1, 6,0)] = = 472Gy, (') oa (114)

or’

+—
r’sing’ oy’

The inverse functiong, ™, fé,*l and f;l are spatially constant with a local Lorentz
frame within which the transformation of C@& being derived. Hence they can be
factored out of the square brackets in Eq. (114) to have

o ))ﬁgr(arr? . ¢) 2 ))ﬁge(/rag, ¢)
9g,(r. 6,
DL < 4Gy, () ea (115)
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As the next step, the transformation of the oper:ﬁtbin the context of TGR
must be derived and used in Eq. (115). The derived transtaymaf vV’ along with
other diferential operators, for the purpose of transforming thedkdimensional
classical theory of gravity in the context of TGR, under thgpandix in [2] is the
following

o 0 0 - 0
V/ = _f.‘l 9/ _ ~/
or’ - r'oo’ - r'sme'ago'@
0, 0 » 0
1 A~
r —r + —0+ — 116
Yo' roo rsm06¢¢ (116)

By applying this transformation in Eq. (115) we have
0g: (r, 0, 0ge(r, 6,
1o N EEED gy, ) 200 00)

0g,(r., 6, ‘P)

00N g, r sinddy

— 472Gy, (r') *oa

or

6gr(r 6, ¢) 6ge(r 6, ¢)

yg(r ) () ==

90(r0.¢) _
r sinfdyp

(1) =

+y(r) 1, l(y,,( 2 47TGQ (117)
Eq. (117) gives the transformation of Eq. (110) of ‘Gterms of the undeter-

mined functionsf,*, f;* and f;1. We shall then require that Eq. (109) or (110)

of CG is invariant with transformation in the context of TGR. Thidl make CG

to be the same in all local Lorentz frames in every gravitaldield in accordance

with the first principle of TGR (see sub-section 1.1 of [2])p@lying this require-

ment on Eq. (117) gives the following

fr_l(')/g(r,)) = 1= fr('y_f/(r’)) =1 }

Yo(r) 5 (1)) 1= fo(yy(r) = 74(r') !
Yo(r) T, (1)) 1= flry(r) = y,()

System (118) simplifies Eq. (117) as follows

(118)

ge(r, 0, ) N 0gy(r, 6, ¢) N 0g,(r, 0, p)

= —47G 119
or roo r sinfdyp e (119)

or
V- §(r.60.¢) = - 4rGoa (120)
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Eq. (119) or (120) is the equation of the classical theoryrafigy on the flat rela-
tivistic Euclidean 3-spacE of TGR, showing the invariance of Eq. (109) or (110)
of CG with transformation in the context of TGR.

By using system (118) in system (113) we have

g:(r.0,9) = gi(r.6.¢)
go(r.0,9) = v,(r')'gs(r'. 0. ¢)
- a- 2(r3/Mzoa)1/2 W0, ¢') (121)
9o(1,0,0) = y,(r')tgu(r.¢.¢')
- - TR )
O(r,0,9) = y,(r') (.0, ¢)
= (1- 2?'::"205‘)1% (.60,¢) (122)
and 2GM
~0a=%(")(-0oa) = (1= =755 -2 (123)

For the transformation of Eq. (111), let us re-write it in qmment form as
follows

gi(r 0 O + gt 0,00 + g,(t'. 0. @)@ =
aq)/(r/’gl’sol)’\’ aq)/(r’,e’,gﬁ’)'\, B(D,(r/,g’,gp’) .,
- - 6" - :
or’ r'oo’ r’sing’ dy’

(124)

Using system (121) and Eqg. (122) along with the transforomatif vV’ given by
Eqg. (116) in Eq, (124) we have

gr (1, 6, )F +v,(r") 2go(r, 6, )0

e R oD(r, 0, ) .
+y,(1") tg,(r, 6, 9)p = —%r
aD(r, 6, 4,0) o0(r,0,¢) .
Yo(r)” roe ~ %) r sinfog

Hence A
gl’ (r> 9, ‘10)? + gé’(rv 0» ‘70)9 + gtﬁ(rv 9> QO)‘;\J =
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_ aq)(n 0’ 90) I'; _ aq)(n 0’ So)é _ aq)(n 09 (P) ~

. 125
or roo I sinfoy (125)

or
g(r.0,¢) = —Vo(r,0,¢) (126)

The invariance of Eq. (111) with transformation in the cahtd TGR has thus been
shown.

The invariance of the primed classical theory of gravity (CGoverned by
Egs. (109) or (110) and Eqg. (111) with transformation in thatext of TGR has
been demonstrated in the above. Egs. (120) and (125) in tefrgravitational-
relativistic (or unprimed) gravitational parameteis, 6, ¢), @(r, 8, ¢) and—og on
the flat relativistic spacetime(ct) of TGR, on which CG is formulated, retain the
forms of Eq. (109) and (110) in terms of the proper (or primg@yitational para-
metersg’(r', ¢, ¢’), ®'(r',¢,¢’) and—ogg on the flat proper spacetim&’(ct’) of
CG'. Consequently the gravitational-relativistic classidadory of gravity (CG) —
not RNG - is independent of position in an external grawtai field of arbitrary
strength.

Egs. (122) and (123) have been derived in [2], while syste@i)$hall be re-
derived more formally in the context of the Maxwellian thgof gravity elsewhere
with further development of the present theory. Eq. (109hésfirst of four equa-
tions of MTG that shall be derived and subjected to transédion in the context of
TGR with the aid of the gravitational local Lorentz transf@tion (GLLT) and its
inverse, systems (3) and (4) of [2].

2.3 Validity of the strong equivalence principle in the context of the theory of
gravitational relativity

The non-gravitational laws are mechanics (classical aediaprelativistic), ther-
modynamics and kinetic theory of gas, transport phenomemapf propagation
of waves, quantum theories and electromagnetism. Any atbargravitational
natural law should be a part (or arff-ghoot) of one or a combination of these.
We have demonstrated the invariance with position in a taaenal field of the
non-gravitational laws formally in the context of TGR inglsection, (except for
the Maxwell equations (or electromagnetism) that has sligipendence on posi-
tion within a gravitational field where there are sourceslettic and magnetic
fields). We have likewise demonstrated formally the invase@awith position in a
gravitational field of the Newtonian gravitational law arith8 do the same for the
Maxwellian theory of gravity with further development.

The invariance with position in spacetime in a gravitatldingld of the non-
gravitational and gravitational laws implies their imarce with position in space-
time in the universe. We have therefore demonstrated thdityabf the strong
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equivalence principle (SEP), (which states that the outcofrany local non-gravi-
tational [or gravitational] experiment is independent dfare and when in the uni-
verse it is performed), in the context of the theory of gratiinal relativity in this
section.

2.4 Event horizon of a black hole: The ‘melting-pot’ of physics

A whole volume of this report shall be devoted to the intengstmplications in
black hole physics of the combination of the theory of gaidnal relativity (TGR)
and the metric theory of combined absolute intrinsic gyasitd absolute intrinsic
motion @MAG +pMAM) with further development of the present theory. For now
however, we find since, QZGMoa/rbcg) = 0, at the event horizon of a black hole of
rest mas$p and radiusy, (of its event horizon), that virtually all physical quardg
and constants, summarized in Table I, vanish at the eveitdmof a black hole.
In particular the inertial mass of a particle, all forms o&egy, entropy, force (iner-
tial and gravitational), gravitational potential, thieetive gravitational acceleration
defr (Eq. (86) or (87) of [2]) on a test particle towards a blackeh@llectrostatic po-
tential, electric field, magnetic field, etc, all vanish at #vent horizon of a black
hole.

The implication of the above is that the whole of physics shas, thereby mak-
ing no event possible at the event horizon of a black holehédontext of the
theory of gravitational relativity. The event horizon of kdk hole is a ‘melting-
pot’ of physics. It is an event horizon indeed. The strongwdence principle, and
indeed, the whole of the principle of equivalence, do notyappthe event horizon
of a black hole.

3 Thetheory of gravitational relativity and the principle of equivalence

Einstein’s equivalence principle (EEP) in general relati{GR) is composed of
(1) the strong equivalence principle (SEP), which states tile outcome of any
local non-gravitational [or gravitational] experimentiiglependent of where and
when in the universe it is performed, (2) the weak equivaepinciple (WEP),
which states that all bodies fall in a gravitational fieldlwiqual acceleration, and
(3) local Lorentz invariance (LLI), which states that thecmme of any local non-
gravitational experiment is independent of the velocitg arientation of the freely
falling apparatus [5]. Now given LLI, SEP will be valid if tretassical and special-
relativistic values of mass and other physical quantitied @nstants are invariant
with location in spacetime within the universe. It is forghlieason that the invari-
ance with position in a gravitational field of mass and othHgrsical quantities and
constants are assumed in GR, having first assumed the yaifdit |.
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The equivalence principle remains an unproven postula@HRnbut with abun-
dant experimental support. The Eotvos-Dicke experimdridg been considered a
strong support for WEP. Several experiments, starting wighMichelson-Morley’s
ether’s null-shift experiment of 1887 [7], to the more redaser test of isotropy of
space of Brillet and Hall of 1979 [8], and the so far highesigsion atomic physics
tests of J. D. Prestage et al of 1985 and Heckel et al of 1985 {8)], have been
considered to set stringent limit against the violation bf, lwhile the astronomical
observational fact that natural laws do not vary within thkagies, (expressed as the
“uniformity of nature” by Edwin Hubble, who first observeddtiact) [11] and fur-
ther observational confirmation of the same within the sefyatem and elsewhere in
the universe in the more recent times, have been considsmdgarimental support
for SEP. It must be noted however that the invariance witatioo in the universe
(or in a gravitational field) of the classical or speciakt@listic values of mass and
other physical quantities and constants, which is assumédRj has no experimen-
tal justification.

While the principle of equivalence remains unproven thécally in general rel-
ativity, its validity has now been confirmed theoreticatithe context of the present
theory of gravitational relativity (TGR). It arises frometffiact that, having isolated
a ‘two-dimensional’ intrinsic spacetime, (the absolutepace-notime)¢p, ¢&¢t),
which is curved in a gravitational field, and which suppohts tnetric theory of
absolute intrinsic gravityfMAG), the flatness (or the Lorentzian metric tensor) of
the four-dimensional spacetime is unaltered in a graweitati field, thereby making
local Lorentz invariance (LLI) (in SR) possible on flat sp@oe in a gravitational
field of arbitrary strength. The validity of local Lorenta/ariance on the flat space-
time of TGR in a gravitational field has been demonstrateahétly in [1] and [2].

Now the derived expression for th&ective gravitational acceleration on a test
particle radially towards a spherical gravitational fietdisce in the context of the
gravitational-relativistic Newtonian (or classical) tmg of gravity (RNG) in [2] is
the following

GMoa,. 2GMga 3GMoa ,2Moa

2GM
5 _ 3/2¢ 0ay1/2-
Jdeff = r’2 ( r/Cg ) r+ 2 2 (r/CZ )(1_ r/Cs ) r
9
2GMoas, 3., 2GMaa,,. 2GMoa,
— >/ 1_— / _ S 1_ /2 127
70 - 50 (- T (127)

The dfective gravitational acceleratigfyg is independent of the properties of the
test particle. Hence all particles and bodies fall with écpfective gravitational
acceleration in a given gravitational field in the contexT @R. Thus WEP is valid
in the context of TGR for as long as it is valid in classicaltaion. That is, in
so far as all particles and bodies fall at equal Newtonianitgional acceleration
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g’ on the flat proper spacetim&’(ct’) of classical gravitation. However violation
of WEP when the test particle contains a large quantity of gu@vitational energy
shall be derived in a paper later in this volume.

By starting with the mass relation in the context of TGR dedivn [1] and [2],
the gravitational-relativistic values in the context of R@f various physical pa-
rameters and physical constants were derived in sectiontlisopaper. Then by
substituting the derived gravitational-relativistic wat of the various parameters
and constants in the context of TGR into the usual classiwdispecial-relativistic
forms of the natural laws, implied by the validity of localdemtz invariance on flat
spacetime in a gravitational field of TGR, the invariancehvgbsition in a gravita-
tional field of the non-gravitational and gravitational Eef physics in the context
of TGR are demonstrated in section 2 of this paper. This iesghat the validity of
SEP has been confirmed theoretically in the context of TGRfikde despite the
validity of SEP in TGR, that the invariance with position igm@avitational field, (or
with point in spacetime within the universe), of the clagkand special-relativistic
values of mass and other physical parameters and physinatatis assumed in
general relativity is untrue.

Having derived theoretically, in the context of the theofygmavitational rela-
tivity, the validity of local Lorentz invariance (LLI), theveak equivalence principle
(WEP), (in so far as WEP is valid in Newtonian gravitation lijmand SEP in [2]
and this section, we have validated theoretically Ein&girinciple of equivalence
(EEP) in the context of TGR. Only a slight violation of WEP whibre test par-
ticle falling towards a gravitational field source contam$arge quantity of non-
gravitational energy, to be discussed in the next artitiell e found. The depen-
dence on position in space of Maxwell equations where theceswof electric and
magnetic fields are non-zero must also be remarked.
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