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Abstract

In this paper, we address consensus seeking problem of dynamical agents on random sector graphs.
Random sector graphs are directed geometric graphs and have been investigated extensively. Each agent
randomly walks on these graphs and communicates with each other if and only if they coincide on a node
at the same time. Extensive simulations are performed to show that global consensus can be reached.
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1 Introduction

The consensus seeking problem is an important topic in the study of multi-agent systems. It has been exten-
sively used to represent systems in many practical applications such as social systems, biological systems,
formation control, and large-scale robotic systems. A set of agents aim to make an agreement on some
quantities of interest via distributive decision making. The information interactions are based upon local
neighboring structure. A consensus is said to be achieved if all agents in the system tend to agree on the
quantities of interest as time goes on. For more general backgrounds on consensus problems, we refer the
reader to [8, 12, 13, 21] and references therein.

An interesting and simple flocking model was proposed by Vicsek et al. [22] in 1995, where all agents
will reach consensus as time goes on, provided the communication graph switching deterministically over
time is periodically jointly connected. Later, Ali Jadbabaie et al. [6] provided theoretical proof. Consen-
sus in random multi-agent systems have also been addressed [5, 10]. Recently, a new model called moving
neighborhood network is introduced in [19]. In this model, each agent carries an oscillator and diffuses in the
environment. The computer simulation shows that synchronization is possible even when the communica-
tion network is spatially disconnected in general at any given time instant. Subsequently, several researchers
have derived analytical results on the moving neighborhood networks, see e.g. [1, 3, 7, 11, 18, 20].

An interesting random graph model is the random sector graph [4]. This model can be viewed as a
directed variant of random geometric graphs [9]. Some graph theoretical properties of random sector graphs
have been reported [15, 16, 17]. The aim of this paper is to implement consensus on moving neighborhood
network modeled by random sector graph. In this paper, we show that it is possible to reach consensus on
them by using moving neighborhood model.
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2 Preliminaries

Let G = (V,E,W ) be a weighted graph with vertex set V . E is a set of pairs of elements of V called
edges. W = (wij) is the weight matrix, in which wij > 0 if (i, j) ∈ E, and wij = 0 otherwise. Consider n
identical agents {v1, v2, · · · , vn} as random walkers on G, moving randomly to a neighbor of their current
location in G at any given time. For each agent, the random neighbor that is chosen is not affected by the
agent’s previous trajectory. The n random walk processes are independent to each other. If vi and vj meet
at the same node simultaneously, then they can interact with each other by sending information.

Let Xi(t) ∈ R be the state of agent vi at time t. We use the following consensus protocol

Xi(t + 1) = Xi(t) + ε
∑

j∈Ni(t)

bij(t)(Xj(t) − Xi(t)) (1)

where ε > 0 and Ni(t) is the index set of neighbors of agent vi at time t. The factor bij > 0 for i 6= j, and
bii = 0 for 1 ≤ i ≤ n. Let A(t) = (aij(t)) be the adjacency matrix of the moving neighborhood network,
whose entries are given by,

aij(t) =
{

bij(t), (vi, vj) ∈ E(t)
0, otherwise

for 1 ≤ i, j ≤ n. Suppose that 4 := max1≤i≤n(
∑n

j=1 bij(t)), and we further assume ε ∈ (0, 1/4) for all
t. We will show that the states of all agents walking on a random sector graph reach consensus as time goes
on.

3 Simulation examples

For a randomly generated sector graph, we take the weight matrix as the adjacency matrix. In addition, we
take the bij(t) randomly from a set of basic functions such as et, sin(t), cos(t) and so on. In Fig. 1,2,3,4 we
show that the consensus can be achieved asymptotically.
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Figure 1: (Color Online) The consensus over moving neighborhood network modeled by a random sector
graph.
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Figure 2: (Color Online) The consensus over moving neighborhood network modeled by a random sector
graph.
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Figure 3: (Color Online) The consensus over moving neighborhood network modeled by a random sector
graph.
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Figure 4: (Color Online) The consensus over moving neighborhood network modeled by a random sector
graph.
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