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Abstract: 

The cosmic Big Bang was long believed to be associated with a decelerating expansion of 

the universe, until recent observations of distant supernovae indicated accelerating 

expansion that requires dark energy, which is still not fully understood.  It is proposed 

here that cosmic acceleration may be an illusion caused by gradually increasing rest 

mass, which produces an additional contribution to the apparent cosmological red shift.  

A novel simple model is presented that illustrates this effect without dark energy, 

whereby there is a smooth transition from an early universe of massless particles to the 

present universe of massive particles, stars, and galaxies, mediated by the decreasing 

gravitational potential of the expanding universe.  Implications of this model for the 

cosmic microwave background and the early universe are discussed. 
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I.  Introduction 

Modern observational cosmology is based primarily on measurements of red shifts of 

distant astronomical objects due to Hubble’s law expansion [1].  The expansion of the 

universe can be characterized in terms of a scale factor R(t), which is typically expressed 

as a Taylor series expansion around the present time, t0: 

 

 R(t) = R(t0)[1 + H0(t-t0) – ½ q0 H0
2
(t-t0)

2
 ...]    (1) 

 

Here H0 is the Hubble constant indicating the present expansion rate, and q0 is the current 

acceleration parameter, written for historical reasons as a deceleration parameter.  But 

R(t) is not measured directly; rather the spectral red shifts are measured in terms of a 

parameter z, and H0 and q0 inferred: 

 

 z+1  1/0 = R0/R1       (2) 

 

where 0 is the emission wavelength of the distant object at present time t0, 1 is the 

observed wavelength emitted at much earlier time t1, R0 = R(t0), and R1 = R(t1).  The red 

shift parameter can then be written as 

 

 z = H0(t0-t1) + (1+q0/2) H0
2
(t0-t1)

2
 ...     (3) 

 

Recent precision measurements of red shifts based on the “standard candle” of distant 

Type 1a supernovae have shown that this expansion is not slowing as was earlier 

expected, but rather is accelerating [2,3].  Present estimates yield 1/H0 = 14 billion years 

and q0 = -0.6 [3].  This acceleration requires the presence of some sort of dark energy or 

equivalent cosmological constant, producing a weak anti-gravity effect that can account 

for this cosmic acceleration.  The measurements giving rise to this acceleration have been 

carefully confirmed, and indeed have been recognized by the 2011 Nobel Prize in Physics 

[4].  Still, some researchers continue to question the need for Dark Energy to explain 

these results [5,6]. 
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The present paper suggests that a simple modification of gravity can lead to a non-

accelerating expansion that exhibits a red shift that simulates cosmic acceleration.  The 

use of red shift observations to measure R(t) implicitly assumes that the emission 

wavelength of the distant object at time t1, in its own reference frame, was indeed the 

same 0 as if this object were emitting at the present time near the observer.  If, on the 

contrary, the standard candle has an emission wavelength 0(t) which changes on the 

cosmic timescale, then a correction factor must be applied to Eq. (2): 

 

 z+1  1/0(t0) = [1/0(t1)] [0(t1)/0(t0)]= (R0/R1) [0(t1)/0(t0)] (4) 

 

So the key question is why the emission wavelength of the standard candle might change, 

and whether such a correction factor could be sufficient to change the corrected cosmic 

expansion from acceleration to deceleration.   

 

It is suggested here that if the rest masses of all elementary particles were to increase 

gradually on the cosmic timescale according to a universal mass scale M(t), this could 

cause the characteristic emission wavelength of objects such as supernovae to shift.  Such 

a variation in mass scale is not part of the standard Big Bang cosmology or general 

relativity.  But if all rest energies mc
2
 scale by the same function, and we further assume 

that all other energies scale in the same way, including those of emitted photons, then one 

obtains  0(t1)/0(t0) = M0/M1, and Eq. (4) would become: 

 

 z+1 = (R0M0)/(R1M1)        (5) 

 

The mass variation M(t) would also be expected to modify the absolute luminosity of 

supernovae and other standard candles, so that the apparent distance calibration of distant 

supernovae would also need to be modified.  The inferred values of H0 and q0 in Eq. (3) 

would then need to be corrected for these effects.   

 

There is as yet no evidence for such a variation in rest mass, but it is reasonable to 

suggest that this might reflect the gravitational interaction of the expanding universe.  In 
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order to account for this, we need a set of coupled equations that follow the variations of 

both R(t) and M(t) as the universe expands.  In the section below, we propose a 

simplified model that provides one illustration of these coupled equations. 

 

It is important to understand that M(t) does not represent the total mass of a finite 

universe, since that would suggest a varying total energy in violation of energy 

conservation.  Instead, M(t)c
2
  represents a rest energy, with variation that is compensated 

by changes in total kinetic energy of the expanding universe. 

 

In special relativity, all forms of internal energy, both kinetic and potential, contribute to 

the rest mass of a body.  But in general relativity, it is assumed that the gravitational 

potential locally affects space-time, but does not directly alter the rest mass.  There have 

been several modified theories of gravity that incorporate variable gravity, either through 

a varying gravitational constant or through a rest mass that depends on the gravitational 

field [7-10].  One of the simplest such theories was recently presented by Ben-Amots 

[7,8], whereby the rest energy of a given particle is the sum of the unmodified rest energy 

and the gravitational potential energy, as shown in Eq. (6) for a small unperturbed test 

mass m0 in the presence of a large mass M.  Here the inertial mass mi is on the left, and 

the gravitational mass mg on the right. 

 

 mic
2
 = m0c

2
 – mgMG/r      (6) 

 

From the principle of equivalence, one has that mi = mg = m, and this is solved to yield  

 

 m = m0/(1 + MG/rc
2
)        (7) 

 

For the symmetric case where m = M, one obtains a quadratic formula which can be 

written in the form 

 

 m
2
/m1 + m – m0 = 0       (8) 
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where m1 = rc
2
/G is dimensionally a characteristic mass of the gravitational field. 

 

. m = (-m1/2) + [(m1/2)
2
 + m0m1]

1/2
     (9) 

 

This looks odd, but is quite well behaved.  For small r, m  (m0m1)
1/2

  r
1/2

, while for 

large r (i.e., large m1), m  m0.  This prevents the total energy from going negative, 

while reducing to the standard theory for weak gravitational energies. 

 

This gives rise to some surprising results [7].  Since rest masses go to zero asymptotically 

as densities get large and distances approach zero, this avoids singularities and event 

horizons, and eliminates black holes from the theory.  There are still gravitationally 

condensed bodies, but they are not black and can radiate energy.  Although this theory is 

unconventional, it is apparently in agreement with standard general relativity to lowest 

order, and consistent with experimental tests to date.  

 

It was indicated in the treatment of Ben-Amots [7] that these variable mass effects are 

significant only near a gravitationally condensed body, on the scale that would otherwise 

be identified as near an event horizon, i.e., distances r ~ GM/c
2
, and cosmological issues 

were not addressed.  However, the scale of the universe has long been known to be R ~ 

GM/c
2
, where R is the radius of the observable universe and M is its mass [10], so that 

similar variable mass effects should be relevant here as well.  This cosmological variable 

mass would change slowly, on the timescale of billions of years, although it would be 

expected to change more quickly during the early era of the Big Bang. 

 

This cosmological mass factor M(t) would be expected to be fairly uniform at any given 

time, with spatial variation only near gravitationally condensed bodies.  It would also be 

expected to apply to all masses down to microscopic levels.  So this would also provide a 

characteristic energy scale for phenomena such as stellar emission spectra and 

luminosities. 
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Such a cosmological mass dependence would not only alter inferred values of H0 and q0, 

but would also affect other cosmological phenomena such as the cosmic microwave 

background.  These other implications will be discussed after the model below is 

presented. 

 

II.  Model for Big Bang Expansion 

Consider first a homogeneous universe with a uniform mass density .  The gravitational 

potential energy for a test mass m due to spherical shells at a distance r is 

 

 Ug = -m 4 r
2
 G /r dr  r dr  rmax

2
    (10) 

 

Note that the potential is dominated by the most distant shells included in the integral, 

and in fact would diverge strongly for an infinite universe.  For a dynamically expanding 

universe, the field contribution from the more distant shells would come from the past, 

and the Big Bang itself provides a natural cutoff.  So a fully self-consistent calculation 

(with a properly retarded potential) would be complicated.  For simplicity consider 

instead the distance R(t) that represents the size scale of the universe since the Big Bang, 

and take the total gravitational potential energy to be 

 

 Ug = -M
2
G/2R,        (11) 

 

where M(t) = (t) (4/3) R
3
 is the effective mass of the universe up to this cutoff.  The 

factor of 2 prevents double-counting. 

 

Consider now the effect of the gravitational potential on the rest mass.  Adapting Eq. (6), 

we have 

 Mc
2
 = M*c

2
 + Ug = M*c

2
 – M

2
G/2R,     (12) 

 

where M* is the unmodified mass of the universe.  We can express this equation in terms 

of dimensionless units m = M/M* and r = R/R*, where R* = M*G/2c
2
 is the 

characteristic length scale. 
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 m = 1 – m
2
/r.        (13) 

 

This is a simple quadratic equation with solution 

 

   m = (r/2)[(1+4/r)
1/2

 –1]      (14) 

 

which goes from r for small r asymptotically to 1 for large r – see Fig. 1.  The crossover 

is r ~ 1. 

 

In order to use this as the basis for a dynamical expansion of the universe, we take the 

usual energy-momentum relation from special relativity: 

 

E
2
 = (Mc

2
)
2
 + (pc)

2
       (15) 

 

Note that this includes no dark energy or other exotic anti-gravity effect.  Also, it does 

not include curved-space effects present in general relativity; however, the best current 

evidence suggests that the universe is practically flat [3], so that this may be sufficient.  

Let us consider the case with E = M*c
2
 as the constant total energy of the expanding 

universe.  Then Eq. (15) can be written in terms of velocity v = pc/E, in reduced units, as  

 

 m
2
 + v

2
 = 1        (16) 

 

where m is in units of M* and v in units of c.  By construction, the total energy is 

enhanced by the usual relativistic factor of  = (1-v
2
/c

2
)
-1/2

 above the rest energy. 

 

This then yields a critical expansion from M = 0 and v = c for small R to M= M* for R 

>> R*, as the expansion slows to zero velocity – see Fig. 1.  (Choosing a smaller value of 

E would yield a universe with a maximum scale Rmax that would then start to collapse.) 

 

One can reconstruct the time dependence by using v = dr/dt, where t is the dimensionless 

time in units of * = R*/c = M*G/2c
3
.  If one numerically integrates the v(r) relation in 
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Fig. 1, one can obtain t(r).  This enables one to plot r(t), m(t), and v(t) – see Fig. 2.  

Clearly, this corresponds to decelerating expansion. 
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Fig. 1.  Mass and velocity as function of expansion scale in simple Big Bang Model with 

variable mass. 
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Fig. 2.  R, M, and v vs. time t in simple Big Bang model with variable mass. 

 

However, as mentioned above, the astronomical observations do not directly measure the 

expansion.  Instead, they measure the spectral shift of objects that are believed to have a 

standard absolute spectrum and luminosity.  On the contrary, if we assume that the 

variation in M(t) establishes the energy scale for all astronomical objects, then one would 
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expect that the emitted spectrum (i.e. the energy scale of the emitted photons) would also 

scale as M(t), and therefore the received spectrum would scale as the product MR, instead 

of just R(t). This would lead to overestimating the expansion rate.  Similarly, the apparent 

distance dL is actually based on measurement of the received luminosity  = L/4dL
2
, 

assuming a constant value of the absolute luminosity L0, so that dL  1/.  But if on the 

contrary L(t) scales with M(t), then dL should scale as d/M, where d is the true distance 

of the object.  

 

In order to simulate the inferred red shift measurements in a way that incorporates M(t), 

Fig. 3 shows a (normalized) plot of RM vs. t/M for the data of Fig. 2 above.  This 

should be compared with the R vs. t plot of Fig. 2.  Note that this now shows an 

accelerating expansion (with upward curvature), similar to what the astronomical 

observations indicate.  But this is an illusion; there is no dark energy or cosmological 

constant in this model, and the universe is decelerating rather than accelerating.  While 

this model may be simplistic, it illustrates the point that astronomical evidence for cosmic 

acceleration, although based on accurate measurements, may be deceptive. 
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Fig. 3.  Normalized plot of RM vs. t/M from simple Big Bang model with variable mass, 

simulating observations of cosmic acceleration in distant supernovae.  
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III. Discussion 

The present cosmological model obtains a mass parameter that varies in time due to 

gravitational interaction with distant matter near the edge of the observable universe.  

This is reminiscent of Mach’s principle, in which inertia is defined relative to the total 

mass in the universe.  But unlike theories based on Mach’s principle such as Brans and 

Dicke [10], where the rest energy and gravitational potential energy are constrained to 

remain comparable as the universe expands, in the present model the rest energy 

increases as the universe expands, while the potential energy decreases. 

 

Returning to the analysis above, in order to correct the red shift data, one needs to 

separate the RM product into R(t) and M(t), which in turn requires information from 

other observations to identify the present time t0.  For t >> 1, the mass variation saturates 

and the correction factor M0/M1 goes to unity.  For very small t (<~ 0.1) the red shift 

would be dominated by changes in M, while for larger t it would be dominated by 

expansion, with small corrections due to mass changes. But in general, the correction will 

lead to a reduction in the Hubble constant H0, and an increase of q0 from an apparent 

negative value toward a positive value.  This, in turn, would require a recalibration of 

various parameters such as the critical density (c  H0
2
), and the present size and mass 

of the observable universe R0 and M0.  For example, if one selects the present time t0 = 

0.5 (corresponding to r0 = 0.5 and m0 = 0.5), one would expect the corrected H0 to be 

reduced about 30%, and c reduced by about 50%. 

 

There are other astronomical observations that also have been interpreted in terms of dark 

energy, which should be reexamined in the light of the proposed model.  The strongest 

such evidence is the cosmic microwave background [3,11] (CMB), corresponding to 

black body radiation at a temperature of 2.7 K.  This is about a factor of 1100 lower than 

the expected temperature of ~ 3000 K at which it was believed to be emitted, 

corresponding to a red shift z ~ 1100.  In contrast, assume that the large red shift is 

actually measuring the product MR, and that the present time corresponds to r0 = 0.5 and 

m0 = 0.5.  Then the red shift associated with the expansion would be reduced to about 

130, with the remaining shift factor ~ 8 corresponding to a reduced temperature (~ 360 
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K) and proportionally longer wavelength at the time of emission.  This would be a major 

change from the conventional CMB theory, and it is not clear that all observations would 

be compatible with such a picture. 

 

Another consideration related to CMB is that the observed homogeneity and lack of 

anisotropy of the CMB radiation indicates that the universe is (and was) essentially flat 

(without gravitational curvature), suggesting that the average mass density 0 should be 

equal to the critical density c.  A similar conclusion has been derived from the widely 

accepted inflationary cosmology model [12].  However, the estimated mass density from 

galactic dynamics, even including “dark matter”, is about a factor of 4 below c as 

determined from measurements of the Hubble constant H0 [2,3].  The conventional theory 

of dark energy asserts that the dark energy can supply the missing density to achieve 

criticality.  Can one account for this apparent discrepancy without invoking dark energy? 

 

It was pointed out above that a corrected value of H0 in the present picture would be 

somewhat reduced, and so would c = 3H0
2
/8G.  Furthermore, one might argue that the 

proper density to include in this picture (with variable mass) should be the density 

associated with the constant total energy M*c
2
, including the kinetic enhancement of the 

rest energy.  For the above example with t0 ~ 0.5, this would approximately double 0 and 

cut c in half, thus fully accounting for the apparent factor of 4 discrepancy.  This is 

preliminary and somewhat speculative, but it suggests that perhaps there may be no need 

for dark energy in the theory of CMB either.  (This would not appear to address the origin 

of the dark matter, however.) 

 

This analysis can be more quantitative, using conventional literature estimates of 

measured quantities H0 = 2.3 x 10
-18

 s
-1

 [equivalent to (14 billion years)
-1

] and c = 1 x 

10
-26

 kg/m
3
 [3].  First, correct these as suggested above to H0 = 1.8 x 10

-18
 s

-1
 and c = 0.5 

x 10
-26

 kg/m
3
.  Now combine the following two relations for M* and R*: 

 M* = 2c
2
R*/G        (17) 

and 
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 M* = c (4R
3
/3)  c (R*

3
/6)     (18) 

 

(taking R  0.5R*/2), to obtain  

 R*  2c/(Gc)
1/2

 = 10
27

 m = 100 billion light years 

 * = R*/c = 100 billion years       (19) 

 M* = 3 x 10
54

 kg 

 

So this simplified model suggests that the current universe corresponds to R  50 billion 

light years and t  50 billion years since the Big Bang.  These values are somewhat larger 

than those generally accepted, but still quite reasonable. 

 

It is worth noting that the proposed cosmological model proposes an early universe 

composed of fully relativistic, virtually massless particles.  While the conventional 

picture of the early universe exhibits extremely high temperatures at which exotic 

massive particles would be present, this new picture would be even more dominated by 

exotic particles and fields.  In this context, this new picture might provide a more natural 

environment for the generation of cosmic inflation as well as other novel regimes of high-

energy physics.  Even beyond early cosmology, this concept of variable mass from the 

gravitational potential may be more compatible with fundamental principles of quantum 

field theory, where the total relativistic energy corresponds to a (non-negative) oscillation 

frequency of the quantum wave.  Together with the avoidance of singularities (black 

holes and event horizons), this might provide a more consistent foundation for 

developing a quantum theory of gravity,  

 

IV.  Conclusion 

In summary, a novel theory of gravitation with a time-varying rest mass (but no dark 

energy) has been applied to cosmological expansion, using a simplified model based on 

the varying gravitational potential of the universe.  The results suggest that the observed 

cosmological red shift may also include a significant component associated with changes 

in mass, and that the inferred cosmic acceleration seen for distant supernovae may be 

illusory.  Further analysis also suggests that the condition of critical density, needed for a 
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flat universe without curvature, may be achieved without the need for dark energy.  It 

remains to be seen whether this theory and simplified cosmological model are compatible 

with other observed phenomena in cosmology and astrophysics.  But if this approach is 

valid, it offers important new insights into the foundations of gravitation and cosmology. 
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