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• ABSTRACT: We give and interpretation of the Riemann Xi-function ( )sξ  as the 
quotient of two functional determinants of an Hermitian Hamiltonian †H H= . To get 
the potential of this Hamiltonian we use the WKB method to approximate and evaluate 

the spectral Theta function 
2( ) exp( )n

n

t tγΘ = −∑  over the Riemann zeros  on the 

critical strip 0 Re( ) 1s< < . Using the WKB method we manage to get the potential 

inside the Hamiltonian  H  , also we evaluate the functional determinant 2det( )H z+  

by means of Zeta regularization, we discuss the similarity of our method to the method 
applied to get the Zeros of the Selberg Zeta function

• Keywords: =  Riemann Hypothesis, Functional determinant, WKB semiclassical 
Approximation , Trace formula ,Bolte’s law, Quantum chaos.

1. Riemann Zeta function and Selberg Zeta function

Let be a Riemann Surface with constant negative curvature and the modular 
group (2, )PSL R  , Selberg [14] studied the problem of the Laplacian
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These momenta nk  are the non-trivial zeros of the Selberg Zeta function, which 
can be defined by an Euler product over the Geodesic of the surface in an 
analogy with the Riemann Zeta function
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Selberg also studied a Trace formula which relates the Zeros (momenta of the 

Laplacian ∆ ) on the critical line 
1

0
2 nZ ik + =  

 and the length of the Geodesic of 

the Surface in the form

( ) 1/ 2 1/ 2
. .0
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n P p p o

D N P
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µ π
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∈

= +
−∑ ∑∫      (3)

Here, p.p.o means that we are taking the sum over the length of the Geodesic, 
( )h k  is a test function and ( )g k  is the Fourier cosine transform of  ( )h k  

0

1
( ) ( ) cos( )

2
g k dxh x kx

π

∞

= ∫ ( )Dµ  is the area of the fundamental domain describing 

the Riemann surface . In case we had a surface with the length of the Geodesic 
ln ( ) lnN P p=  for ‘p’ on the second side of the equation a prime number,then 
the Selberg Trace is very similar to the Riemann-weil sum formula [12]
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This formula (4) related a sum over the imaginary part of the Riemann zeros to 

another sum over the primes, here 
ln     
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0     otherwise   
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 with ‘k’ a positive 

integer is the Mangoldt function, in case ln ( ) lnN P p=  both zeta function of 

Selberg and Riemann are related by ( )
0

1

( ) n

n s
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=

= +∏  and their logarithmic 

derivative is quite similar if we set the function  1
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In both cases the Riemann and Selberg zeta functions obey a similar functional 
equation which relates the value at s and 1-s
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( )
(1 ) exp ( ) ( )
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µ π
π

− 
− = − + 

 
∫       (1 ) ( ) ( )s s sζ ζ− = Χ     (6)

The constant of integration ‘c’ is determined by setting 1/ 2s =  , and 

( )( ) 2 2 ( )cos
2

s s
s s

ππ −  Χ = Γ   
 for the case of the Riemann zeta function.

With the aid of the Selberg Trace formula (3) , we can evaluate the Eigenvalue 

staircase for the Laplacian ( )2 2 2
x yy∆ = − ∂ + ∂  
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Here 
1

4
p E= − , we can inmediatly see that the smooth part of (7) satisfy 

Weyl’s law  in dimension 2  
( )

( )
4smooth

D
N E E

µ
π

≈  , the oscillatory part of (7) satisfy 

Bolte’s semiclassical law [4] (page 34, theorem 2.10 ) 
1

arg
2

Z i E
λ

π
 +  

 with 

1λ = , the branch of the logarithm inside (7) is chosen, so 
1

arg 0
2

Z   =  
in this 

case the Selberg Zeta function is the dynamical zeta function of a Quantum 
system and the Energies are related to the zeros of ( )Z s . 

2. A functional determinant for the Riemann Xi function ( )sξ

From the analogies between the Riemann Zeta function and the Selberg Zeta 
function, we could ask ourselves if there is a Hamiltonian operator  (the simplest 
second order differential operator which has a classical and quantum meaning 
and it is well studied  )in the form

2
2

2

( )
( ) ( ) ( ) ( )     (0) 0 ( )     n

n n n n n n n n

d x
H x V x x E x E

dx
γΨΨ = − + Ψ = Ψ Ψ = = Ψ ∞ =      (8)

So for the Riemann Xi-function 
/ 21

( ) ( 1) ( ) (1 )  
2 2

s s
s s s s sξ π ζ ξ−  = − Γ = −  

 we have 

that  
1

0   
2 ni Eξ  + =  

n N∀ ∈ , the potential is given by 
( )   0

( )
   0

f x x
V x

x

>
 ∞ ≤

 , at 

x=0 there is a infinite wall so the particle inside the well can not penetrate the 
region 0x <  . For the case of the Hamiltonian (8) the exact Eigenvalue 
staircase is [9]

( ) 1 1 1 1 ( )
( ) arg 1 arg
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With  
1    x>0

( )
0     x<0

H x




 ,   
1 1

( ) arg ln ln ...
4 2 2 2 2 8 48

T T T T
T i

e T

πϑ π
π

   = Γ + − ≈ − + +      

Also we will prove how the Riemann Xi function ( )sξ  is proportional to the 

functional determinant ( )det (1 )H s s− − , and how the density of states can be 
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evaluated from the argument of the Xi-function 2E p=  

( ) ( )2 21
log det ( )

2
n

n

d
m H i p E p

p dp γ
ε ρ δ γ

π
ℑ + − = = −∑

As a simple example of how Quantum Mechanics can help to solve problems of 
finding the roots of functions , let be a particle moving inside an infinite potential 
well , the energy is given by 2E p=  and the one dimensional Schröedinger 
equation [7] in units 2 1m= =h  (h  is the reduced Planck’s constant with value 

34 11.05.10  .J T− −=h  )

2
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π= − + = = = =      (10)

( )( ) sinnu x A xπ=  , in this case the Euler’s product formula for the sine function 

is the quotient between 2 functional determinants
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( )

0
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1

detn n
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π

∞

=

− 
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∏      †

0 0H H=     (11)

We can also compute the density of states to get the Poisson sum formula

( ) ( ) ( ) 2

1

1 1
( )

2 2
i np

n
n n n n

E E E p n p n e
p p

πρ δ δ δ
∞ ∞

= =−∞

 = − = − + − =  
∑ ∑ ∑ ∑      (11)

o Zeta regularized determinant for ( )sξ :

Given an Operator P with real Eigenvalues { }nE  , we can define its Zeta 

regularized determinant [6] in the form

( )2 2
0det exp ( , )P s

d
P k s k

ds
ζ =

 + = −  
     (12)

Here { } ( )2 2 2( , ) ( )
ss

P n
n

s k Tr P k E kζ
−−= + = +∑  is the Spectral Zeta function of the 

operator taken over all the Eigenvalues, the relationship between this spectral 

zeta function and the Theta function  ( ) exp( )n
n

t tEΘ = −∑ ,t>0 always , is given by 

the Mellin transform  ( )
2 1

2
0 0

1 1
( )

( )
tk s

s
n

n

dt
e t t

s tE k

∞∞
− −

=

= Θ
Γ+

∑ ∫   . If P is a Hamiltonian 

we can obtain the Theta function ( ) exp( )n
n

t tEΘ = −∑ (approximately) by an 

integral over the Phase space [7]  
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( ) 2 ( ) ( )
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n

t tE dp dxe dxe t
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∞ ∞∞ ∞ − − −

−∞
=

Θ = − ≈ = = Θ∑ ∫ ∫ ∫      (13)

The expression (13) depends only on the momentum and the function ( )f x  
defined in (8) to evaluate the Theta function, if we combine (13) and the 
definition of the Theta function for the Eigenvalues

( ) 2

0 0 0

1
( ) exp ( ) exp( ( ))

2
st

n
n

t tE s dtN t e dx dp tp tf x
π

∞ ∞ ∞∞
−

= −∞

Θ = − = − ≈ − −∑ ∫ ∫ ∫    (14)

1
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0 0

1 1 1 ( )
exp( ( ))

2 2 2
tf x tr dV r

dq dp tp tf x dxe dre
drt tπ π π

∞ ∞ ∞ ∞ −
− −

−∞ −∞

= − − = =∫ ∫ ∫ ∫   (15)

From expressions (14) and (15)  and setting (0) 0N = (after changes of variable) 

1/ 2
1 1

1/ 2
0 0

1
( ) ( )     ( ) 2 ( )

2
sx sx d

s dxN x e dxf x e f x N x
dx

π
π

∞ ∞
− − − −= → =∫ ∫     (16)

To prove (16) we have used the properties of the integral representation for the 
inverse Laplace transform  

1
( ) ( )

2

c i
st

c i

D f t dsF s e s
i

α α

π

+ ∞

− ∞

= ∫      kt ktD e k eα α=    Rα∀ ∈     (17)

And the fact that if two Laplace transforms are equal then { } { }( ) ( )L f t L g t=  

implies that  ( ) ( )f t g t= , for the case of the Riemann Zeros 
1 1

( ) arg
2

N E i Eξ
π

 = +  
 (Bolte’s semiclassical law in one dimension) so 

1/ 2
1

1/ 2

2 1
( ) arg

2

d
f x i x

dx
ξ

π
−  = +  

 , since we want our potential inside (8) to be 

positive whenever we take the inverse we must choose the POSITIVE branch of 
the inverse in order to get  ( ) 0f x ≥  on the interval  [0, )∞ , the half derivative 
and the half integral for any well behaved function are given in [13]

1/ 2

1/ 2
0

( ) 1 ( )

(1/ 2)

xd f x d dtf t

dx dx x t
=

Γ −∫             
1/ 2

1/ 2
0

( ) 1 ( )

(1/ 2)

xd f x f t
dt

dx x t

−

=
Γ −∫    (18)

We have written implicitly the potential inside (8) , if the function  ( )f x  is 
defined by the functional equation 

21/ 2
1

1/ 2 2

( )2 1 2
( ) arg

2
n

n n

H xd
f x i x

dx x

γξ
ππ γ

− − = + =   −
∑  , then we may evaluate the 

Spectral Zeta function of the Quantum system given in (8), then
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( )
( )

2

2
0 0

det ( 1/ 2)
exp ( , ) ( ,0)

(1/ 2)P s P s

H z d d z
s z s

det H ds ds

ξζ ζ
ξ= =

+ + = − + − =  
   (19)

For the potential defined by  
1/ 2

1
1/ 2

2 1
( ) arg

2

d
f x i x

dx
ξ

π
−  = +  

 , we can evaluate 

the Theta kernel uisng (15) and (16)  
1

0

1 ( )
( ) e

2
ntE tx

n

df x
t dx e

dxtπ

∞ −
− −Θ = =∑ ∫ , for 

this potential the spectral theta function and its derivative are 

( )
( )2 2 2 2

2 2
0 0

1 1
( , )         - (0, ) = ln        0

2H H n ns
n n

n

d
s z z z i

dsz
ζ ζ γ ζ γ

γ

∞ ∞

= =

 = + + =  +
∑ ∑   (20)

Taking exponentials we reach to the infinite product for the Riemann Xi-function 
as an spectral determinant (functional determinant over the Eigenvalues of H)

( ) ( )
( )

2 2
2 2

0

2 0

0

( )det 1/ 2
1

det( ) 1/ 2

n
n

n n
n

n

zH z zz

H E

γ ξ
ξγ

∞

∞
=

∞
=

=

++ + 
= = + = 

 

∏
∏

∏
    (21)

If we choose the positive branch ( ) 0f x ≥    of the inverse 
1/ 2

1
1/ 2

2 1
( ) arg

2

d
f x i x

dx
ξ

π
−  = +  

 then the potential will be always positive so the 

Energies of the Hamiltonian inside (8) will be all positive 2
n nE Rγ += ∈ , then all 

the non-trivial zeros of the Riemann Zeta function will be on the critical line 
1

Re( )
2

s =  , with a simple change of variable 
1

2
z s= −  we obtain

1
det (1 )

( ) (1 )4
1

1(0) (0)det
4

H s s
s s s

H ρ

ξ ξ
ξ ξ ρ

 − − +   − = = = −    +  

∏     (22)

Equation (22) is the Hadamard product for the Riemann Xi-function in terms of 
the quotient of  2 functional determinants, since the expected value of the 

Hamiltonian is positive | | 0n nHψ ψ ≥ and Hermitian ,with ( ) 0f x ≥  then all the 

Energies are positive (1 )nE s s R+= − ∈  Riemann Hypothesis should hold.
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o Bohr-Sommerfeld quantization condition and the square of the Riemann 
zeros:

The expression 
1/ 2

1
1/ 2

2 1
( ) arg

2

d
f x i x

dx
ξ

π
−  = +  

 could also be obtained from the 

Bohr-Sommerfeld quantization conditions [7]

1
2

2C

pdq nπ  = +  ∫          
0

2 ( ) ( )
a

dx E f x p x− =∫          ( )E f a=        (23)

‘a’ is the classical turning point, ( )n N E=  is the Eigenvalue staircase, the first 
integral inside (23) is a line integral taken over the closed orbit of the classical 
system, equation (23) can be understood as an integral equation for the inverse 
of the potential in the form

( ) 1
1/ 2

0 0

1
2 ( ) 2 ( ) 2 ( )

2

a a E E

x

df
n E E V x dx E x D f x

dx
π π

= −
− + = − = − =   ∫ ∫   (24)

If we take the half derivative on both sides of (24) we would get 
1/ 2

1
1/ 2

1 1 1
( ) 2 arg

2 2

d
f x i x

dx
π ξ

π
−   = + +    

   in this case this result is completely 

equivalent to the one we got by Zeta regularization and by the WKB 

approximation of the Theta function 
( )

0

1
( )

2
tf x

WKBdxe t
tπ

∞
− = Θ∫  .

In order to evaluate the inverse of the potential 
1/ 2

1
1/ 2

2 1
( ) arg

2

d
f x i x

dx
ξ

π
−  = +  

 

we would need to evaluate 
1 1

arg
2

i xζ
π

 +  
 , this can be made using the 

Riemann-Siegel formula [10]   to  evaluate the zeta function on the critical line

( )( )
( )

1/ 4
1

cos ( ) ln1 1
( ) 2     

2

U k
i k

n

k k n
Z k ik e O k

kn
ϑ ϑ

ζ
=

−   = + = + → ∞      
∑   (25)

The functions inside (25) are  ( )
2

k
u k

π
 

=  
 

 , [ ]x  is the floor function and 

1 1
( ) arg ln ln ...

4 2 2 2 2 8 48

T T T T
T i

e T

πϑ π
π

   = Γ + − ≈ − + +      
 

From equation (24)  the density of states could be evaluated as 

( )
1/ 2 1

2
1/ 2

1 ( )
( )

2
n

n

d f x
x x

dx
ρ δ γ

π

−

= = −∑  , the density of states or trace of 

( ){ }( )Tr E f xδ −  depends on the half-derivative of the inverse of the potential for 
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the Hamiltonian, we will prove in the next section that this density of states 
reproduces a distributional version of the Riemann-Weil explicit formula

o Riemann Weil explicit formula as the Trace  ( ){ }( )Tr E f xδ − :

The next question is to compute the density of states for the Hamiltonian 
desfined in (8) , let be the property of the delta function  p E=  

( ) ( ) ( )2

2

p p
E

p

δ γ δ γ
δ γ

− + +
− =  , if we use Shokhotsky’s formula for the delta 

function 
0

1 1
lim ( )m x a

x a iε
δ

π ε→

 ℑ = − − − + 
, the density of states ( ){ }( )Tr E f xδ −

( ) ( )2 2 21 1
arg

22

1 1 1 1 ' 1 1 ln ' 1 1

2 2 2 2 2 4 2 4

' 1 1 2 2
( )

4 2 4 2

d
i i E E p

dEE

p
ip ip i

p p p p

i i
p p

p
i E

p p

γ γ
ξ ε δ γ δ γ

π
ζ ζ π

π ζ π ζ π π

δ πδ
ρ

π

 − + + = − = − =  
Γ     + + − − + + +     Γ     

   − + +   Γ      − + = Γ  

∑ ∑

   (26)

Here  
0

1 2
lim

2 2 2

i
m x

x i iε
δ

π ε→

   ℑ = ±   − ± +   
, this factor comes from the logarithmic 

derivative of ( 1)s s −  along the critical line 
1

2
s ip= + , equation (26) is a 

distributional version of the Riemann-Weil trace formula , taking formally the 
logarithm of the Euler product for the Riemann Zeta function on the critical line 

yields to 
ln

1

( ) ' 1

2
ip n

reg
n

n
e ip

n

ζ
ζ

∞
−

=

Λ  = − +  
∑  , using two test functions h(x) and g(x) 

0

1
( ) cos( ) ( )g x dr rx h r

π

∞

= ∫  we recover the oscillatory part of the Riemann-Weil 

trace formula  
1

( )
2 (ln )

n

n
g n

n

∞

=

Λ− ∑  .

Unlike the model of Wu and Sprung, we have considered also the oscillatory 

part of the Riemann Eigenvalue Staircase  
1 1

arg
2

i Eζ
π

 +  
 , which satisfy 

Bolte’s semiclassical law , Wu and Sprung considered only the smooth part of 

teh Eigenvalue staircase in the limit 1T >>  ln ( )
2 2

T T
N T

eπ π
  ≈  

 in order to get a 

Hamiltonian whose Energies are the positive imaginary part of the Riemann 
Zeros, their starting point is the Harmonic oscillator [15] , but unlike the normal 
quantum mechanical oscillator whose functional determinant gives the Gamma 
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function 
1

2
1

( ) n

s

s n

π ∞

=

 = + Γ  
∏  the product taken ONLY over the positive imaginary 

part of the zeros (even if it converges) 
0

1
n n

s

γ

∞

=

 
+ 

 
∏  has no meaning, also the 

Wu-Sprung model doesn’t obey Weyl’s law in one dimensio ( )/ 2( ) d
smoothN E O E=

, in our case , the Hamiltonian (8) with the Smooth part of the Eigenvalue 

staircase ( ) log
2 2

E E
N E

eπ π
 

≈    
 , satisfies a Weyl’s law with 1

2
d

ε= +  and the 

spectral determinant (quotient)   
0

( )
1

(0) n n

E E

E

∞

=

 ∆ = − ∆  
∏ 2

n nE γ=  is proportional to the 

Riemann xi function on the critical line  
1

2
i Eξ  +  

By analogy with the zeros of the Selberg Zeta function, is better to consider the 
case with the Energies 2

n nE γ=  , in this case the Trace of the Resolvent of the 

Hamiltonian ( ) 1
E i Hε −+ −  is the Riemann-Weil trace for the Riemann zeros.

o Analytic expression for ( )f x :

From the expression for the fractional derivative of powers 
( )

( )
1

1

k
k

k

d x
x

dx k

λ
λλ

λ
−Γ +

=
Γ − +  , we can obtain for the inverse function

1/ 2 2
1

1/ 2 2
0

2 1 2 ( )
( ) arg

2

d H x
f x i x

dx xγ

γξ
ππ γ

−

>

− = + =   −
∑     (27)

Using the Riemann-Weil formula we can rewrite (27) as

1
2 2

1

8 1 ' 1 ( )
( ) ln 2 ( , ln )

4 28 1

x

nx

dr ir n
f x g x n

x nx r
π

ππ

∞
−

=−

 Γ  Λ = + + − −  Γ+   −
∑∫     (28)

Here 2 2
0

2 cos( )
( ln , )

x ut
g u n x dt

x tπ
= =

−∫  , a final question is could the expression 

1/ 2
1

1/ 2

2 1
( ) arg

2

d
f x i x

dx
ξ

π
−  = +  

 be inverted to get ( )f x  ? ,the smooth part of 

the Eigenvalue staircase is given by  ( ) log
2 2

E E
N E

eπ π
 

≈    
  , 

0

1

!n

e
n

∞

=

= ∑  , if we 

use the expression for the logarithm 
1

log( )
x

x
ε

ε
−≈   as  0ε →  and apply the half 

derivative expression, then the following holds   0ε →
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( ) / 22 2 / 2

1
4 ( )

( )smooth

e A x B
f x

ε επ ε

πε

−

−
−

≈       

2

2 2( ) 4
( )smooth

x B
f x e

A

εε ππ
ε

 +≈    
        (29)     

  

3
2

( )
1

2

A

ε

ε
ε

+ Γ  =
 Γ +  

  and   
3

2 2
B

π = Γ =  
 , the second expression inside (29) is 

the asymptotic of  ( )f x  as  x → ∞ , for this potential , the energies inside (8) are 

( )
2 2

1

2 1

4
( ) ( )smooth

n smooth

n
E f n N E

W ne

π−
−

= = ≈       
1

1

( )
( )

!

n
n

n

n
W x x

n

−∞

=

−= ∑      (30)

The function ( )W x  is the Lambert function (principal branch), more than in the 

potential 
1/ 2

1
1/ 2

2 1
( ) arg

2

d
f x i x R

dx
ξ

π
−  = + ∈  

 we are interested in the Theta 

function 
2( ) exp( )n

n

t tγΘ = −∑  , if we use the semiclassical Theta function as an 

integral over the Phase space and introduce the potential given by 
1/ 2

1
1/ 2

2 1
( ) arg

2

d
f x i x R

dx
ξ

π
−  = + ∈  

 one obtains , 
2axa dxe π

∞
−

−∞

=∫

22

( , ) ( ) 1

0 0 0

2
2

2
0

1 1
( ) ( )

2 2

( )
( ) exp( )n

tH x p tf x tr
WKB

ttr txn
n

nn

t
t dp dxe dxe dre f r

t

H rt t
dre e dx e t t

r

γ

γ γ

π ππ

γ γ
π πγ

∞ ∞ ∞ ∞
− − − −

−∞

∞ ∞
−− −

−∞

Θ = = = =

 − = = Θ = − 
−  

∫ ∫ ∫ ∫

∑ ∑ ∑∫ ∫
   (31)

In (31) we have obtained the Heat function 
2( ) exp( )n

n

t tγΘ = −∑  , from the 

potentiall function 
1/ 2

1
1/ 2

2 1
( ) arg

2

d
f x i x R

dx
ξ

π
−  = + ∈  

 of course to be correct we 

must take the smooth and the oscillatory part of the Eigenvalue staircase 

( )
1/ 2

1
1/ 2

2
( ) ( ) ( )smooth osc

d
f x N x N x

dxπ
− = +  otherwise the description will be not 

complete as in the Wu-Sprung potential  [15] , from this Theat Kernel 

2 ( , )( ) exp( ) tH x p
n

n

t t dp dpeγ
∞ ∞

−

−∞ −∞

Θ = − =∑ ∫ ∫  here t>0 and the Hamiltonian has been 

defined in (8) using the Zeta regularization method for the determinant

( )( , ( 1)) ln det (1 )s H s z z H z zζ−∂ − = − −   ( ){ }( , ( 1)) ( 1)
s

H s z z Tr H z zζ −− = + −  (32)
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   2

1
( , ( 1))

1
( 1)

4

H s
n

n

s z z

z z

ζ
γ

− =
 + − +  

∑
 , the zeros of the determinant 

( )det (1 )H z z− −  with H an Hermitian operator are the zeros of the Riemann Xi-

function  ( )zξ
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