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Abstract
The fifth force is a hypothetical force, which is introduced as a hypothetical
additional force, e.g. to describe deviations from gravitational force. Moreover,
it is possible, to explain the baryon asymmetry in the universe, an unsolved
problem of particle physics, with a hypothetical fifth force. This research shows,
how the concept of a fifth force and its quantization can be used as a model for
baryon asymmetry.

Introduction
In physics, there are four fundamental forces known. The weakest force of
them is the gravity, which acts with an inverse-square-root law and has only an
attractive direction [1]. Gravity can be described by Einstein’s theory of General
Relativity, but in Quantum mechanics, it is difficult, to derive a quantization
of Gravity. A stronger fundamental force is electromagnetism, which can act
either attractive or repulsive; the exchanged particle in quantum field theory
is the Photon. Furthermore, there exists the weak interaction, which acts in
nuclear decay or nuclear fusion (exchange bosons are for example the Z-boson)
and the strong interaction, where gluons exerting a force between the quarks,
the elementary particles of hadrons. The deviation of gravity from standard
gravitational laws was examined due to gravity experiments in the Greenland ice
cap, see [2] and [3]. Another experiments for measuring gravitational deviations
were done in [4]. Such deviations in the Standard gravity law (e.g. Newton’s
law of gravity) could be explained by a hypothetical fifth force. From quantum
field theory, it is known that the dirac equation [5] for Spin-1/2-particles has
the form

(−iγµDµ +m)ψ = 0 (1)

with the particle mass m, the covariant derivative Dµ, the Dirac matrices γµ

and the spinor ψ. The Dirac matrices obeyeing the relationship

{γµ, γν}+ = 2gµν (2)

with the metric tensor gµν . If the gravity is acting on a Spin-1/2-particle, the
Dirac matrices must be coupled on a general-relativistic vierbein eµa , which is
the relevant contribution for spacetime curvature, such as γµ 7→ eµaγ

a and the
covariant derivative must have an additional spin connection term. For the de-
scription of the fifth force, there can be introduced a deviation of the gravity
laws due to the change of Dirac matrices, i.e. γµ is dependent on spacetime.
A concept to make an additional matrix-valued quantum field γµ possible is a
topological map from the category of scalar-valued functions (i.e. the category
of mathematical fields) s to the category to matrix-valued functions m. The
dependence of Dirac matrices on spacetime would imply that the scalar prod-
uct for the quantum-mechanical probability density ψ†γ0ψ (in Standard model
there holds the relationship γ0 = diag(1, 1,−1,−1)) can have deviations in the
diagonal components. Hence, by the fact that the distribution of matter and
antimatter is changed, the baryon asymmetry in the universe can be explained.
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There are given other models for explaining baryon asymmetry, for example
in [6]. For derivation of a quantum field theory with matrices, the morphism
connection fuctor

F : Mor(s1, s2) 7→Mor(m1,m2) (3)

of the two categories must be known. By introducing the characteristic invari-
ances for these morphisms, the functor can be derived. This invariances leading
to gauge invariance of the fifth force field, so that a quantum field theory can
be concepted for the fifth fundamental force, that is similar to quantum electro-
dynamics. The coupling constant of this field theory must be very low, because
the effect of fifth fundamental force interaction is very weak.

Physical theory
For simplification, the theory of fifth force is treated with absence of gravity, i.e.
gµν = ηµν with the Minkowski metric ηµν . The quantum field for the fifth force
(also called Deviaton field) γµ ∈ m is the object of matrix category C4×4 with
the field of complex numbers C. Because all Dirac matrices have the properties

tr(γµ) = 0, (4)

this category must have morphisms of traceless matrix transformations
Mor×(β1, β2) with tr(β1) = tr(β2) = 0. May be q ∈Mor×(β1, β2) andM1,M2

two topological spaces with an invariant matrix trace. Then, the mapping

q :M1 →M2 (5)

is a homeomorphism. The mapping q is the kernel of the gauge invariant space
G, which is induced by the mapping

π :M1 ⊗M2 → G, (6)

where the two correlating topological structures, which are interlinked with q-
morphism, are covered with the mapping π to the gauge space. From the rela-
tionship (2) for two fifth force fields, the tensor product can be made equivalent
with equivalence relation (with generalization of Kronecker’s delta δ(X − Y ) =
δXY ):

E := {{M1,M2}+ = 2δ(M1 −M2)}. (7)

Summarizing the results (5),(6), and (7), there exists the following short exact
sequence:

0 //M1 ⊗M2/E
π //M1

q //M2
// 0. (8)

ForM1⊗M2 = E, the homeomorphism property (5) holds. The short exact se-
quence (8) is defines the morphisms of the category m. The connection between
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Mor×(m1,m2) and Mor(s1, s2) (with toplological spaces for scalars S1,S2) is
given by the following commutative diagram:

M1
q //

c1

��

M2

c2

��
S1

q′ // S2

. (9)

The mappings c1, c2 are the forget mappings, i.e. the property of the trace (4) is
forgotten. Then, by the relation (9) (i.e. q′◦c1 = c2◦q) and with the convention
that the relation ci ⊂ B hols for the forgetting group B it follows that q′ is given
by the transformation:

q′ = c2 ◦ q ◦ c−11 . (10)

Since q is a homeomorphism in the category Mor×(m1,m2), from (10) must
follow q′ ⊂ Mor(m1,m2). By the functor definition (3), the functor F is the
inclusion of scalar morphisms to matrix morphisms with generating of trace
condition (4). The short sequence (8) can be expanded to a longer exact se-
quence, so that the connection between matrix category and scalar category is
given. Consider the n-th Milnor K-Theory over a mathematical field k with its
abelization k#[7]:

Kn(k) = Tnk#/(a⊗ (1− a)). (11)

The Tn denotes the n-th tensor product algebra and a are the elements, which
generates the ideal (a⊗ (1− a)). May be St(A) the Steinberg group of a ring A
with the group homomorphism φ : St(A) → GL(A). Then the following short
and exact sequence holds:

0 // K2(A) // St(A) // GL(A) // K1(A) // 0. (12)

The comparison of (8) with (12) shows that there can be found isomorphical
mappings from K-theories and topological spaces in the sequence (8). For the
topological equivalence class M1 ⊗M2/E can be constructed an isomorphism:

i :M1 ⊗M2/E → K2. (13)

Analogous, the topological spaces M1,M2 can be mapped isomorphic to the
groups St(A), GL(A). These isomorphisms are possible, if the groups
St(A), GL(A) are not generated from any mapping π or q from the correspond-
ing fiber spaces. The expansion of the exact sequence (8) is the following dia-
gram with exact rows and columns:

0 //M1 ⊗M2/E //

��

M1
//

��

M2
//

��

X //

��

0

0 // K2(A) // St(A) // GL(A) // K1(A) // 0

. (14)
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From (14), the new topological space X is isomorphic to K1(A) for M2 = 0.
Moreover, if X ∼= K1(A), if:

M1 ⊗M2/E ∼=M1. (15)

By settimgM2 = 0 in (15), the isomorphy (15) is automatically satisfied, if the
quantization condition E holds. In Milnor’s K-theory, it holds the relation K1 =
GL(A)# with abelization operator #, so that X is the set of all commutative
matrices with nonvanishing determinant. Hence, the topological space X can be
represented by forget mappings (forgetting of the noncommutativity property
of matrices) acting on M1. Formally, this kind of forget mapping f is defined
as:

f :M1 → GL#. (16)

For two given matrices α, β, there holds the relation tr(αβ) = tr(βα). May be
α, β ∈ GL# and tr(α) = tr(β) = 0. Then tr(αβ − βα) = tr(0) = 0 and the
trace vanishing condition can be forgotten only by this abelization condition.
Hence, the mapping f is isomorphic to c1 in commutative diagram (9). Since
M1 ⊂ K2(A), the interlinking forget mapping f has the form:

f : K2(A)→ K1(A). (17)

Comparing (17) with (9) by us ing f ∼= c1, it yields the commutative diagram

(18)

with the isomorphic mappings rm (for matrices) and rs (for scalars). Hence, the
diagram (18) implies that the matrix-valued field γµ is from the set of abelian
matrices or K1(A), because the matrix-valued field is treated similar to a scalar-
valued field. In quantum electrodynamics (QED), the gauge transformation of
a scalar-valued field (electromagnetic potentials) Aµ is given by

Aµ 7→ Aµ +
∂

∂xµ
Λ (19)

for arbritary gauge function Λ [8]. The gauge invariance (19) is satisfied, if the
electromagnetic field strength tensor has the form:

Fµν =
∂

∂xµ
Aν −

∂

∂xν
Aµ. (20)

Then, the Lagrangian (density) of the elctromagnetic field can be written as:

L = λFµνF
µν (21)

with the coupling constant of QED λ. In analogy to (19), (20) and (21), the
field for fifth force can be quantized. May be Ξ an arbritary matrix in K1(A).
Then, the gauge transformation of K1(A) is given by:

γµ 7→ γµ +
∂

∂xµ
Ξ. (22)

5



The matrix-valued field γµ is a matrix in K2(A). By introducing the fifth force
field strength tensor

Eµν =
∂

∂xµ
γν − ∂

∂xν
γµ, (23)

this form of field strength tensor is independent on the gauge transformation
(22). In equation (21), the tensor elements Fµν and Fµν are commutative.
The commutativity of the fifth force field strength tensor elements must be
commutative, too. With the introduction of the wedge product mapping

w(K2(A),K2(A)) : K2(A)×K2(A)→ K1(A);w(x, y) := x ∨ y, (24)

the relation Eµν ∨Eµν = Eµν ∨Eµν is satisfied. The standard product EµνE
µν

can be expressed as a wedge product via:

EµνE
µν = Eµν ∨ Eµν + [Eµν , E

µν ]−,K1 . (25)

The commutator [x, y]−,K1
vanishes, if xy − yx = 0. Otherwise, there can be

set [x, y]−,K1 = xy−yx. May be LD the Lagrangian of the Dirac field, then the
Lagrange function

L =

∫
d4x(LD + gEµν ∨ Eµν) (26)

with the fifth force coupling constant g, which has a very low value, must be
minimized. For canonical quantization, the relation

{γµ(X), γν(Y )}+ = 2gµνδ(X − Y ) (27)

for two arbritary points in spacetime X,Y must hold. Becuase equation (26) has
the same form as the QED Lagrangian, the Lagrange function is Lorentz invari-
ant. By (26), the source of the fifth force fields is coming from the contribution
of Dirac’s equation.

Conclusions
The Lagrange function (26) with its quantization condition (27) shows that it
is possible to develop a quantum field theory for an additional fifth force. With
the concept of a deviation in Dirac matrices, there can be constructed a model
for measured deviations in gravity. Furthermore, the baryon asymmetry can be
explained as a deviation in the matrix γ0, which occured at the high energy
values of the Big Bang. These high energy values imply that the sources of fifth
force field (the contributions in Dirac’s equation) become larger and hence, the
deviations in γ0 are significant. Moreover, from the concept of non-constant
Dirac matrices, there could be derived alternative models for gravitation for
further theoretical researches.

6



References
[1]Majorana, Q., (1920). On gravitation. Theoretical and experimental re-
searches, Phil. Mag. [ser. 6] 39, 488-504

[2]Ander, M. E., M. A. Zumberge, et al. (1989). ”Test of Newton’s inverse-
square law in the Greenland ice cap.” Physical Review Letters 62(9): 985-988

[3]Zumberge, M. A., M. E. Ander, et al. (1990). The Greenland gravitational
constant experiment. Journal of Geophysical Research. 95: 15483-15501

[4]Liu Y.C., Yang X.-S., Zhu H., Zhou W., Wang Q.-S., Zhao Z., Jiang W., Wu
C.-Z.,”Testing non-Newtonian gravitation on a 320 m tower”, Physics Letters
A., vol. 169, 131-133 (1992)

[5]Dirac, P. A. M. (1928). ”The Quantum Theory of the Electron”. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences 117
(778): 610

[6]Davidson, Keay Smoot, George. Wrinkles in Time. New York: Avon, 2008
: 158-163

[7]Daniel Quillen: Higher algebraic K-theory: I. In: H. Bass (Hrsg.): Higher
K-Theories. Lecture Notes in Mathematics, vol. 341. Springer-Verlag, Berlin
1973

[8]R. P. Feynman (1950). ”Mathematical Formulation of the Quantum Theory
of Electromagnetic Interaction”. Physical Review 80 (3) : 440-457

7


