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Abstract 

In Dice 2010 Sumati Surya brought up a weaker Quantum sum 
rule as a biproduct of a quantum invariant measure space. Our 
question is, does it make sense to have disjoint sets to give us 
quantum conditions for a measure at the origin of the big bang? 
We argue that the answer is no, which has implications as to 
quantum measures and causal set structure. The entire supposition 
as to the incompatibility of quantum measures at a singularity 
means that our assumptions of Quantum gravity have to be 
revisited as to no 4 dimensional singularities, and that some 
embedding of 4 dimensional space time, inititally in line with work 
brought up by Dowker, et al, 2007 may suggest a solution to initial 
measures giving credence to t’Hoofts embedding of QM within a 
deterministic semi classical structure. 
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A  Introduction 

First of all, we are working with the formalism introduced by Surya [1] 
and submit that it breas down spectularly at a singularity . We introduce 
the formalism by appealing to the concept of spatial diffeomorphism  [2] 
as a necessary condition for linking the physics of what happens at a 
singularity and outside of the singularity of inflation generated space time 
geometry. Trivially, a diffeomorphism   is involving a infinitely 
differentiable, one-one and onto mapping of the model to itself, whereas 
one is having a break down of differentiability at the start of the big bang, 
if one is adhering to non loop quantum gravity theories. We submit that 
the difficulties in terms of consistency of Eq. (1) of this document,which 
in terms of initial causal structural break down which we claim leads to 
Eq. (19) later are telling us that one has to come up with a different way to 
embed quantum measures within a super structure, a situation we remark 
upon at the end of this paper. Spatial diffiomorphisms as [2] do not work 
unless one has a lattice structure, effectively doing away with a 
singularity. If the lattice structure is not used, differentiability breaks 
down and one does not have one to one and onto mapping of the physics 
of the big bang singularity with the rest of the inflationary process. We 
submit that this break down would be then making Eq. (1) and then later 
Eq.(19) not definable. 
 

In the causal set approach, the probabilities are held to be Markovian [1] , 
label independent and adhere to a casuality called Bells inequality. The 
author of [1] refers to a sequential growth called a classical transition 
percolation model. Then [1] makes an extension of the above idea to 
complex models involving quantum measures in the definition of a 
(quantum) complex percolation model which defiines the amplitude of 
transition as follows [1]. For a quantum measure space defined as triple as 
given by ( ), , VA μΩ , with Vμ a yet to be defined vector measure, A an 
event algebra or set of propositions about the system, and Ω is the sample 
space of histories or space time configurations. 
 

Let p Cε  ,  for an amplitude of transition, instead of a probability; and 
set ( )nCψ as the amplitude for a transition from an empty set to n element 

of a causal set nC , and with ( )nCyl C , cylinder set, as a sub set of 
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Ω containing labeled past finite causal sets whose first n elements form 
the sub causal set nC . Note that the cylinder sets form an event algebra 
Αwith measure given by form the sub-causal set nC . Here, ψ is a 
complex measure on Α , and so then  ψ  is a vector measure [1] .  This is 
the primary point of break down which occurs in the case of being at a 
space time singularity. Away from the singularity we will be working with 
the physics of  
 

( ) ( )( ) ( ) ( ),n n n nD Cyl C Cyl C C Cψ ψ∗′ ′=                                                          (1) 

 

This is done for a cylinder set [1], where γ  is a given path, and tγ as a 

truncated path, with ( )tcyl γ  a subset of Ω  and ( )( ) ( )t tcyl Pμ γ γ= , with  

( )tP γ the probability of a truncated path, with a given initial ( ),i ix t to 

final ( ),f fx t spatial and times.  Note that the μ measure would be for 

: A Rμ +→ obeying the weaker Quantum sum rule [3] 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )μ α β γ μ α β μ α γ μ β γ μ α μ β μ γ∪ ∪ = ∪ + ∪ + ∪ − − −  (2) 
 

This probability would be a quantum probability which would NOT be 
obeying the classical rule of Kolmogrov [1] 
 

( ) ( ) ( )1 2 1 2P P Pγ γ γ γ∪ = +                                                                                    (3) 
 

The actual probability used would have to take into account quantum 
interference. And That is due to Eq. (1a) , and Kolmogrov probability no 
longer applying. Leading to [1]  
 

( ) ( ) ( ){ }| 0t tcyl t t for all t tγ γ γ γ′ ′ ′≡ ∈Ω = ≤ ≤                                  (4) 

Here, :D CΑ×Α→ is a de coherence functional [1] which is (i) 
Hermitian, (ii) finitely biadditive, and (iii) strongly additive [4] , i.e. the 
eignvalues of D constructed as a matrix over the histories { }iα are non 
negative.  
 

We have that a quantum mesurement is then defined via  
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( ) ( , ) 0Dμ α α α= ≥                                                                                   (5) 
 

A quantum vector measurment is defined via 
( ) [ ]:V Hαμ α χ= ∈                                                                                     (6) 

 

where 
 

( )
1
0αχ β
⎧

= ⎨
⎩

   ,     ( )αχ β =   1 if    β α= , ( )αχ β = 0 if    β α≠            (7) 

 
Also V  is the vector space over A  with an inner product given by  
 

( ) ( ) ( ), ,
V

A A
u v u v D

α β

α β α β∗

∈ ∈

≡ ⋅∑∑                                                                   (8) 

with a histories Hilbert space H constructed via taking a sequence of 
Cauchy sequences { }iu sharing an equivalence relationship  
 

{ } { }~i iu v  if  lim 0i i i V
u v→∞ − =                                                                          (9) 

 
So then as given in [1] the following happen, namely  
 

{ } { } { }i i i iu v u v+ ≡ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦                                                                                    (10) 

{ } { }i iu uλ λ≡⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                                                                                                     (11) 

{ } { }, lim ,i i i i i V
u v u v→∞≡⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                                                                          (12) 

 
This for all { } { },i iu v H∈⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ and Cλ ∈  so then that the quantum 

measure is defined for :V A Hμ → so that for the inner product on H  
 

( ) ( ) ( ), ,V V Dμ α μ β α β=                                                                                   (13) 

                                                       
The claim associated with Eq. (1) above is that since ψ is a complex 
measure on Α that Eq. (1) corresponds to what is called an unconditional 
convergence of the vector measure over all partitions. Secondly, according 
to the Caratheodary-Hahn theorem there is unconditional convergence for 
classical stochastic growth, but this is not necessarily always true for a 
quantum growth process.  
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Main point of the formalism going to Eq. (13) is of bi-additivity of D  
leading to the finite addivity of Vμ  

( )
11

n n

V i V i
ii

μ α μ α
==

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑U                                                                                          (14) 

 

B. Looking at Arguments against Eq. (1) in the vicinity/ origin of the 
big bang singularity.  
The pre condition for a quantum measure Vμ for a quantum measurement 

[1] is that for ndisjoint sets iα ε Α , is given by Eq. (14) above.  
 

This Eq. (14) is a pre condition for Vμ being a vector measure over Α  Eq 
(14) above right at the point of the big bang, cannot insure the existence of 

n disjoint sets iα ε Α .  Therefore at the loci of the big bang one would 

instead get, due to non definable disjoint sets iα ε Α  a situation 
definable as, at best. 
 

( )
11

n n

V i V i
ii

μ α μ α
==

⎛ ⎞
≠⎜ ⎟

⎝ ⎠
∑U                                                                                           (15) 

Not being able to have a guarantee of having n disjoint sets iα ε Α  
because of singular conditions at the big bang will bring into question if 
Eq. (1) can hold and the overall program of analyzing the existence of 
quantum measures Vμ . I.e. the triple ( ), , VA μΩ for quantum measures 

Vμ cannot be guaranteed to exist. More importantly, the statement that 

there exists ( )nCψ from an empty set to a nth element causal set cannot 
be adhered to, and Eq. (1) cannot exist since there would be no causal set 
structure at the loci of the big bang. 
 

C. Making sense out of QM and also wave-particle duality.  
 
So what can be inferred ? If discontinuous set structures do not exist at the 
onset of the big bang in effectively measure zero space, then what is left ?  
We get into all sorts of difficulties. Our assumption is that a break down of 
a quantum measure would probably be congruent with the break down of 
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use of QM, in the onset of the big bang. The bottom below is a simple 
quantum argument. i.e. how QM falls falls apart, i.e. the wave-particle 
duality structure.I.e. assume that we have ultra light gravitons, with a tiny 
rest mass, then a simple quantum argument will give us [5]  
 

                   
meters

cm

ceVhm

graviton
graviton

ICRELATIVISTgraviton

8

2122

108.2

/104.4

−

−−

×<
⋅

≡⇔

×<

hλ
                                     (16)       

i.e. the smaller the R.H.S. if Eq. (3) gets, the heavier the rest graviton mass 
is, which would get us into problems if we look at ultra short  wave 
lengths. The obvious generalization of Eq. (16) would be for a mass M 
 

   

1 2# /

# 10

RELATIVISTIC
M given h eV c

given meters
M c

βλ

−<

⇔ ≡ <
⋅

h                                                                (17)      

 
One could then get, as in Eq.  16 and  Eq, 17  , a situation in which     
 

, 0gravitonm M λ +→∞⇔ →                                                                                    (18) 
 

 If we went to a point source, i.e. an infinitely small wave length, the 
effective mass would go to huge, unphysical values. Since Eq.(16) and Eq. 
(17) is based upon Quantum structure, the shorter the wave length got, the 
less physical the problem becomes as in Erq. (18) , until we get to the 
absurdity of an infinitely massive gravition or an infinitely massive 
particle for an infinitely short wave length. i.e. not only there would be as 
we go to a point structure, no disjoint causal structure, our very physics as 
we understand QM insight would become not tendable. This will lead to a 
problem with the causal set discretization proceedure brought into 
analysis, next. 
 
D. QM, wave lengths, and problems with Quantum measure Eq.(14), 
and justification of Eq. (19)  
 
As stated by [1], one can think of Causal sets as part of a partial ordering 
of space time, and to replace the space time continuum with locally finite 
partially ordered sets [6] ,[ 7]. We assert that in place of Eq. (1) which will 
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involve the notion of partially ordered sets that instead one has in the 
immediate neighborhood of a singularity, where we are using the ideas of 
the beginning of this manuscript. So at the singularity. 
 

( ) ( )( ) ( ) ( ),n n n nD Cyl C Cyl C C Cψ ψ∗′ ′≠                                                         (19)    

 

That Eq. (19) may happen is due to what may happen in the finite 
dimensional       H  and what happens with total variation [1] as given by 
looking at finite partitions [9]  
 

                     ( ) { } , Aρπ α α α= ∈                                                                             (20) 

Here the supremum is over all finite partitions as given in Eq. (20) above. 
And then we look at if there is a sufficiently convergent behavior for Vμ , 
so that uniqueness would be guaranteed by the Caratheodary-Hahn –
Huvanek theorem. We will be looking at then having the following 
supremum expression for all FINITE partitions as of Eq. (20)  and   
 

               ( ) ( ) ( )supV V ρπ α
ρ

μ α μ α= ∑                                                                (21)  

 

Having a singularity removes applications of Eq. (20) , and of having 
uniqueness itself by[7] challenged ?  What happens if we have instead of 
Eq. (21) a sitaution for which we no longer have finite partitions, ordered 
sets, but instead 
 

        ( ) ( ) ( )supV V ρπ α
ρ

μ α μ α≠ ∑                                                                       (22) 

 

Or worse, a situation where there is no finite partially ordered set, i.e. no 
CAUSAL set ? Such a situation may 
 

What could go wrong? Suppose that Eq. (20)  no longer holds Suppose we 
cannot even write partitions or ordered causal sets at a singularity so 
Eq(21) no longer holds and we cannot even write Eq.(22)? 
 

Eq. (1) as given in the beginning depends upon having [1] an 
“unconditional convergence of the vector measure over all partitions “. 
Replace partitions with causal set structure, and one still has the same 
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requirement of an unconditional convergence of the vector set over all 
‘causal set structure’ within a finite geometric regime of space time. 
 

Our entire supposition as to Eq. (1), Eq. (21) and even Eq. (22) becomes 
untendable at the singularity. So then, we cannot force QM, with an 
infinitely small ‘wavelength’, i.e. infintely small measure back upon a 
cosmic singularity, i.e. the big bang itself.  
 

 E. Conclusion? Back to a deterministic treatment of QM, as 
suggested by t’Hooft QM 
 
[1] Suggests a way out of the impasse. If we look at unconditional 
convergence over all partitions, if we cannot do this for a point, in which 
we tried to have Quantum measures constructed, then we have to look at 
how the singular point , for the big bang, is embedded via higher 
dimensional analogs to a non singular structure. Secondly, is to not insist 
upon forcing the situation given in Eq. (16) and Eq. (17) to its extremes. 
I.e. looking at what was said “as to “ real”  complex percolation models  
in which one accepts that a quantum measure is not additive, as in 
Eq.(15), but that “ the observables of the theory are identical to those of 
the classical transitive percolations. In particular, the observables can be 
characterized by “stem sets”  .  
 
If we can put the surrounding the big bang singular point classical 
transitive percolations and relate that to observables identical to classical 
transitive percolations, we are on the way to fixing the problem of the 
Quantum measure [9]. I.e. this may be a way to be in fedelity with 
working with t’Hooft’s embedding of Quantum mechanics within a higher 
dimensional theory, as would show up in fixing the problems with the 
Quantum measure[8] and QM as given in the limits as to Eq. (16) and Eq. 
(17) above.  
 

We can assert though our arguments in 4 space cosmology would 
contravene [10] ‘s structure at the extreme limits of singular big bang 
physics, as well as lead to the untendability of the quantum sum rule ( due 
to vanishing of disjoint set structure). That is if we stick to 4 dimensional 
space and no higher dimensions.  
 

The only way about the above stated problems for 4 dimensions and a 
tradtional big bang singularity would be using  singular point classical 
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transitive percolations and relate that to observables identical to 
classical transitive percolations and giving up the additivity of quantum 
measure. Suggesting to the author some sort of solution in line with 
t’Hoofts thoughts as to Quantum structure in a deterministic embedding 
[8]. Further work may have similarties as to reconciling structure as 
given by [11]. Weyl quantization in part will have to be reconciled 
with problems with Quantum measures as outlined above. Appendix 
A should be viewed as material to be reconciled with giving up the 
additivity of Quantum measures as stated in our conclusion. And is 
similar to work on worm holes between universes the author has 
worked with in other publications [12] Appendix B is the sort of semi 
classical embedding the quantum measure would be part of.  
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Appendix A: Linking the thin shell approximation, Weyl quantization 
, and the Wheeler De Witt equation 

 
This is a re capitulation of what is written by S. Capoziello,[51] et al 
(2000) for physical review A, which is assuming a generally spherically 
symmetric line element . The upshot is that we obtain a dynamical 
evolution equation, similar in part to the Wheeler De Witt equation which 
can be quantified as 0=ΨH .Which in turn will lead to, with 

qualifications, for thin shell approximations 1<<x ,  

042 =Ψ+Ψ ′′ xa                                                                                      (1a) 
 so that 6/1Z is a spherical Bessel equation for which we can write  

3/23
6/1 ~

3
xxaZx ⎟

⎠
⎞

⎜
⎝
⎛≡Ψ                                                                        (2a)                                         

Similarly, 1>>x  leads to 

⎟
⎠

⎞
⎜
⎝

⎛
⋅

≡Ψ 3
6/1 23

xaZx                                                                           (3a)                                        

Also, when    1≅x        
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( )[ ] ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅−⋅≡Ψ −

2/3
4/3

3
2 1

3
812 xaZxa                                             (4a)                                        

 
Realistically, in terms of applications, we will be considering very small 
x values, consistent with conditions near a singularity/ worm hole bridge 
between a prior to our present universe. This is for mequilibriuRRx ≡  

Appendix B. How to obtain worm hole bridge between two 
universes, via the Wheeler De Witt equation : i.e. forming 
Crowell’s time dependent Wheeler-De-Witt equation, and its 
links to Wormholes ( higher dimensions).  

 

This appendix will be to show some things about the wormhole 

we assert the instanton traverses en route to our present 

universe. This is the Wheeler-De-Witt equation with pseudo 

time component added. From Crowell[12] 

 ( ) ( ) Ψ⋅−=Ψ+
∂
Ψ∂

⋅+
∂
Ψ∂

− φηφ
ηη

&&rrrR
rrrr

3
22

2 11
                                          (1b) 

This has when we do it ( )t⋅≈ ωφ cos , and frequently 
( ) ≈3R constant, so then we can consider  

( ) ( )[ ]∫
∞

−+ ⋅−⋅≅
0

μ
ϖ

μ
ϖ ωωωφ xikxik eaead

                             (2b)                       

In order to do this, we can write out the following for the 

solutions to Eqn. (1b) above. 

( ) ( ) ( ) ( )

( ) ( )rSir

rrrrJtC

⋅−⋅+

⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅⋅+⋅⋅+⋅⋅⋅⋅⋅=

ω
ω

ω
ω

ωωω
ω

ω
ω

πη

55

515
2

1

6cos15

cossin4
2

4

      (3b)                      

And  

( )( ) ( )rCierC r ⋅⋅+−⋅−⋅
⋅

= ⋅− ω
ω

ω
ω

ω
442

64cos1
2

3
               (4b)                    
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This is where ( )rSi ⋅ω  and ( )rCi ⋅ω  refer to integrals of the form 
( ) xd
x

xx

′
′
′

∫
∞−

sin  and ( ) xd
x

xx

′
′
′

∫
∞−

cos . It so happens that this is for forming the 

wave functional that permits an instanton to form. Next, we should 
consider whether or not the instanton so formed is stable under evolution 
of space-time leading up to inflation.  To model this, we use results from 
Crowell [12] on quantum fluctuations in space-time, which gives a model 
from a pseudo time component version of the Wheeler-De-Witt equation, 
with use of the Reinssner-Nordstrom metric to help us obtain a solution 
that passes through a thin shell separating two space-times. The radius of 
the shell ( )tr0  separating the two space-times is of length Pl in 
approximate magnitude, leading to a domination of the time component 
for the Reissner – Nordstrom metric’ 

( ) ( )
2

2
22 Ω++⋅−= d

rF
drdtrFdS                                                                              (5b) 

This has: 

( ) ( )2
~10

2
2

2

33
21 32 PKelvinT

lrr
r
Q

r
MrF =⋅

Λ
−⎯⎯⎯⎯⎯ →⎯⋅

Λ
−+−=

∞→
                      (6b)                                                

This assumes that the cosmological vacuum energy parameter has a 
temperature dependence as outlined by Park [13] , leading to  

( ) ( ) ( )PP lrTlr
r
F

≈⋅≡≈⋅
Λ
⋅−

∂
∂ η

3
2~                                                               (7b)                                        

 as a wave functional solution to a Wheeler-De-Witt equation bridging two 
space-times. This solution is similar to that being made between these two 
space-times with “instantaneous” transfer of thermal heat, as given by 
Crowell [12] 
( ) { } 2

2
1

2 CACAT ⋅⋅⋅+⋅⋅−∝Ψ ωηη                                                                   (8b)                                        
This has ( )rtCC ,,11 ω=  as a pseudo cyclic and evolving function in terms 
of frequency, time, and spatial function. This also applies to the second 
cyclical wave function ( )rtCC ,,22 ω= , where we have =1C Eqn (3b) 
above, and  =2C  Eqn. (4b) above.  Eqn. (8b) is an approximate solution 
to the pseudo time dependent Wheeler-De-Witt equation. The advantage 
of Eqn. (8b) is that it represents to good first approximation of 
gravitational squeezing of the vacuum state.  When examining this 
solution, we shold keep in mind that the Wheeler De Witt equation as 
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given by Crowell [12] is a semi classical approximation, with a pseudo 
time component, as opposed to the time independent Wheeler De Witt 
equation [14] Kolb and Turner outline which is time INDEPENDENT. 
The situation in [12] inevitably involves higher dimensions, whereas [14] 
is for a 4 dimensional space time geometry.  
 


