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Abstract

This paper investigates the consensus problem in almost sure sense

for uncertain multi-agent systems with noises and fixed topology. By

combining the tools of stochastic analysis, algebraic graph theory, and

matrix theory, we analyze the convergence of a class of distributed

stochastic type non-linear protocols. Numerical examples are given to

illustrate the results.
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1. Introduction

In the distributed control problems, a critical problem is to design dis-

tributed protocols such that group of agents can achieve consensus via local

communications. Distributed coordination for multi-agent systems has be-

come a very active research topic and attracted great attention of researchers

in recent years; see e.g. [6, 9, 10, 12, 13, 14]. The network protocol is an

interaction rule, which ensures the whole group can achieve consensus on

the shared data in a distributed manner. Consensus problems cover a very

broad spectrum of applications including formation control, distributed com-

putation, unmanned aerial vehicles, mobile robots, autonomous underwater

vehicles, distributed filtering, multi-sensor data fusion, automated highway

systems, and formation control of satellite clusters [11].

A key problem of the consensus problem is the convergence time. Some

researchers have investigated the so-called finite time consensus, where the

consensus occurs in a finite time, see e.g. [2, 3, 12, 20, 19, 17, 18, 7, 8, 16,

15, 5]. However, in most of these works, the random noises have not been

considered. Since the random noises are inevitable in the nature, we must

take them into account.

In this paper, we investigate a continuous-time nonlinear multi-agent

system with random noises. We provide extensive simulation results to

show the finite-time consensus as well as the effect of the randomness.

The rest of the paper is organized as follows. In Section 2, we pro-

vide some preliminaries and formulate the problem. Section 3 contains the

numerical simulations and we draw conclusion in Section 4.

2. Problem formulation

Let G(A) = (V(G), E(G),A) be a weighted directed graph with the set of
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vertices V(G) = {1, 2, · · · , n} and the set of arcs E(G) ⊆ V(G) × V(G). The

vertex i in G(A) represents the ith agent, and a directed edge (i, j) ∈ E(G)

means that agent j can directly receive information from agent i, the parent

vertex. The set of neighbors of vertex i is denoted by N (G, i) = {j ∈

V(G)| (j, i) ∈ E(G)}. The corresponding graph Laplacian L(A) = (lij) ∈

Rn×n can be defined as

lij =


∑n

k=1,k 6=n aik, j = i

−aij , j 6= i
.

If AT = A, we say G(A) is undirected.

We study a system consisting of n dynamic agents, indexed by 1, 2, · · · , n.

The interaction topology among them are described by the weighted directed

graph G(A) as defined above. We further assume the diagonal entries of A

are zeroes. The continuous-time dynamics of n agents is described as follows:

ẋi(t) = ui(t), i = 1, 2, · · · , n, (1)

where xi(t) ∈ R is the state of the ith agent, and ui(t) ∈ R is the control in-

put. Denote x(t) = (x1(t), · · · , xn(t))T and 1 = (1, · · · , 1)T with compatible

dimensions. For a vector z ∈ Rn, let ‖z‖∞ denote its l∞-norm.

Given a protocol {ui : i = 1, 2, · · · , n}, the multi-agent system is said to

solve a consensus problem if for any initial states and any i, j ∈ {1, · · · , n},

|xi(t) − xj(t)| → 0 as t → ∞; and it is said to solve a finite-time consensus

problem if for any initial states, there is some finite-time t∗ such that xi(t) =

xj(t) for any i, j ∈ {1, · · · , n} and t ≥ t∗.

We consider the following protocol:

ui = fi

( ∑
j∈N (G(A),i)

aij(xj − xi)
)

, (2)
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where functions fi : R → R, i = 1, · · · , n is taken as a random bounded

continuous function.

3. Main result

We first provide a key result from [12].

Theorem 1. Assume G(A) is a directed graph with Laplacian matrix

L(A), then we have

(i) L(A)1 = 0 and all non-zero eigenvalues have positive real parts;

(ii) L(A) has exactly one zero eigenvalue if and only if G(A) has a spanning

tree;

(iii) If G(A) is strongly connected, then there is a positive column vector

ω ∈ Rn such that ωT L(A) = 0;

(iv) Let b = (b1, · · · , bn)T be a nonnegative vector and b 6= 0. If G(A) is

undirected and connected, then L(A) + diag(b) is positive definite. Here,

diag(b) is the diagonal matrix with the (i, i) entry being bi.

The state trajectories of the agents are shown in Fig. 1 to Fig. 5. In Fig.

1, we take fi(x) = i∗ sgn(x). In Fig. 2, we take fi(x) =
√

i∗ sgn(x). In Fig.

3, we take fi(x) = i2 ∗ sgn(x). In Fig. 4, we take fi(x) = sin(i) ∗ sgn(x). In

Fig. 5, we take fi(x) = cos(i) ∗ sgn(x).

4. Conclusions

This paper attempted to look for some insight into the behavior of ran-

dom consensus problem on a fixed network. We consider various random

networks and protocols. The simulations show that the systems achieve fi-

nite consensus quite fast despite of random noises. For future researches, we

will focus on the switching topologies as well as coupling time delays.
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Figure 1: The state trajectories of the agents.
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Figure 2: The state trajectories of the agents.
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Figure 3: The state trajectories of the agents.

[10] R. Olfati-Saber, Flocking for multi-agent dynamic systems: Algorithms

and theory. IEEE Trans. on Autom. Control, 51(2006) 401-420

[11] R. Olfati-Saber, J. A. Fax, R. M. Murray, Consensus and cooperation

in networked multi-agent systems. Proceedings of the IEEE, 95(2007)

215-233

[12] R. Olfati-Saber, R. M. Murray, Consensus problems in networks of

agents with switching topology and time-delays. IEEE Trans. Autom.

Control, 49(2004) 1520-1533

[13] W. Ren, R. W. Beard, Consensus seeking in multi-agent systems under

dynamically changing interaction topologies. IEEE Trans. on Autom.

Control, 50(2005) 655-661

[14] W. Ren, R. W. Beard, E. M. Atkins, Information consensus in multi-

vehicle cooperative control. IEEE Control Systems Magazine, 27(2007)

7



0 5 10 15 20 25 30 35 40
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time

S
ta

te
s

Figure 4: The state trajectories of the agents.
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Figure 5: The state trajectories of the agents.
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