Some problems in Hungarian mathematical competition. IV.

Fang Chen

Department of Mathematics, Xinjiang Normal University Urumchi 830054, China Email: chenfang@stu.xjnu.edu.cn

Abstract

In this work, we continue to present some interesting problems in the Transylvanian Hungarian Mathematical Competition held in 2012. **D1st Problem.** Solve in \mathbb{Z} the following equation: $\frac{3}{\sqrt{x}} + \frac{2}{\sqrt{y}} = \frac{1}{\sqrt{2}}$.

Ferenc Kacsó

D2nd Problem. Let's consider set $M = \{a^2 - 2ab + 2b^2 | a, b \in \mathbb{Z}\}$. Show that $2012 \notin M$. Prove that M is a closed subset of \mathbb{N} in respect of the multiplication of integers. Béla Bíró

D3rd Problem. Solve in \mathbb{R} equation $5x^3 - 18x^2 + 43x - 6 = 3 \cdot 2^{x+2}$.

Béla Kovács

D4th Problem. In the not isosceles triangle ABC we have $m\left(\widehat{BAC}\right) = 90^\circ$, AD, AE, AO are altitude, angle-bisector and median, respectively $(D, E, O \in (BC))$. Prove that if OE = 2DE, then $AB^2 + AC^2 = 4AB \cdot AC$.

Lajos Longáver

D5th Problem. Uncle John has taken blood pressure drops for a long time according to the following rule: 1 drop for one day, 2 drops daily for two days, ..., 10 drops daily for ten days, 9 drops daily for nine days, ..., 2 drops daily for two days, 1 drop for one day, 2 drops daily for two days, One day he forgot how many drops he should take, finally he took 5 drops. What is the probability that he guessed right the daily dose? Later he remembered taking 5 drops previous day, so he calmed down that he guessed the dose correctly with high probability. What is this newer probability? $\acute{A}qnes Mik\acute{o}$

D6th Problem. a) At least how many elements must be selected from the group $(\mathbb{Z}_{2k}, +)$ such that among the selected elements surely there exist three (not necessarily distinct) with sum $\hat{0}$?

b) The same question for $(\mathbb{Z}_{15}, +)$.

Szilárd András