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Abstract

The Statement of Modified Saint-Venant’s Principle is suggested. The
axisymmetrical deformation of the infinite circular cylinder loaded by an
equilibrium system of forces on its near end is discussed and its formula-
tion of Modified Saint-Venant’s Principle is established. It is evident that
finding solutions of boundary-value problems is a precise and pertinent
approach to establish Saint-Venant type decay of elastic problems.
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1 Introduction

Saint-Venant’s Principle is essential and fundamental in Elasticity (See Ref.[1]
and Ref.[2]). Boussinesq and Love announce statements of Saint-Venant’s Principe
(See Ref.[3] and Ref.[4]), but Mises and Sternberg argue, by citing counterexam-
ples, that the statements are not clear, suggesting that Saint-Venant’s Principle
should be proved or given a mathematical formulation (See Ref.[5] and Ref.[6]).
Truesdell asserts that if Saint-Venant’s Principle of equipollent loads is true, it
must be a mathematical consequence of the general equations of Linear Elastic-
ity (See Ref.[7]).

There is no doubt that mathematical proof of Saint-Venant’s Principle has
become an academic attraction for contributors and much effort has been made
for exploring its mysterious implications or deciphering its puzzle. Zanaboni
“proved” a theorem trying to concern Saint-Venant’s Principle in terms of work
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and energy (See Refs.[8],[9],[10]). However, Zhao argues that Zanaboni’s the-
orem is false (See Ref.[11]). The work published by Toupin cites more coun-
terexamples to explain that Love’s statement is false, and then establishes a
formulation of energy decay, which is considered as “a precise mathematical
formulation and proof” of Saint-Venant’s Principle for the elastic cylinder (See
Refs.[12], [13]). Furthermore, Toupin’s work seems to set up an example followed
by a large number of papers to establish Toupin-type energy decay formulae for
branches of continuum mechanics. Since 1965 the concept of energy decay sug-
gested by Toupin has been widely accepted by authors, and various techniques
have been developed to construct inequalities of Toupin-type decay of energy
which are spread widely in continuum mechanics. Especially, the theorem given
by Berdichevskii is considered as a generalization of Toupin’s theorem (See
Ref.[14]). However, Zhao points out that Toupin’s theory is not a strict mathe-
matical proof, and Toupin’s Theorem is not an exact mathematical formulation,
of Saint-Venant’s Principle. Interestingly and significantly, Saint-Venant’s Prin-
ciple stated by Love is disproved mathematically from Toupin’s Theorem, so
Toupin’s Theorem is mathematically inconsistent with Saint-Venant’s Principle
(See Ref.[11]).

Zhao disproves mathematically the “general” Saint-Venant’s Principle stat-
ed by Boussinesq and Love and points out mathematically that Saint-Venant
type decay can be proved or formulated by special formulating or adding sup-
plementary conditions to the problems discussed (See Ref.[11]). Therefore, we
suggest Modified Saint-Venant’s Principle in this paper.

The cylinder discussed by Toupin is of arbitrary length and cross section
and loaded with an arbitrary system of self-equilibrated forces, and Toupin’s
cylinder fails to be consistent with Saint-Venant type decay. The problem of
proof of Saint-Venant’s Principle of cylinders is still open. The question that
we have to answer is : what conditions are sufficient to guarantee Saint-Venant
type decay of stresses to occur in cylinders. We find in this paper that Saint-
Venant type decay can be established by excluding the arbitrariness of geometry
and loading of Toupin’s cylinder , and suggest the problem of Saint-Venant’s
Principle for the axisymmetrical deformation of the circular cylinder and prove
its Modified Saint-Venant Principle.

2 Modified Saint-Venant’s Principle

Love’s Statement of Saint-Venant’s Principle: “According to this principle, the
strains that are produced in a body by the application, to a small part of its
surface, of a system of forces statically equivalent to zero force and zero couple,
are of negligible magnitude at distances which are large compared with the
linear dimensions of the part.” (See Ref.[4])

Mises considers a body of finite dimensions and sees that “ Saint-Venant’s
principle in its traditional form does not hold true.” (See Ref.[5]) Toupin
asserts: “ The broader statement of the principle given by Love for bodies
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of arbitrary shape cannot possibly be true... ” (See Ref.[12]) He also refer-
s to counter-examples and argues that “ Confronted with such a collection of
counter-examples of the now traditional statement of the Saint-Venant’s prin-
ciple, one must agree that something is wrong with it.” (See Ref.[13])

Zhao disproves mathematically the “general” Saint-Venant’s Principle stated
by Love, but argues by mathematical analysis that Saint-Venant type decay of
strains (then stresses) described by Love’s statement can be proved true by spe-
cial formulating or adding supplementary conditions to the problems discussed
(See Ref.[11]). Therefore, we suggest the following Modified Saint-Venant’s
Principle:

”In an infinite elastic body, which is loaded by an equilibrium system of
forces on some small part of its surface (otherwise would be free) and supple-
mented with sufficient conditions , assumptions or constraints on its formation
of geometry and loading, the strains and stresses tend to zero as the distances
from the loaded part tend to infinite.”

In the following sections we prove Modified Saint-Venant’s Principle of the
axisymmetrical deformation of the circular cylinder.

3 Formulating the Problem

Let us consider an axisymmetrical cylinder of length L with a constant circular
cross section. The end (z = 0) of the cylinder is loaded by an equilibrium system
of forces, otherwise the cylinder would be free. Denoting by a the radius of the
circular cross section, the boundary-value problem of the cylinder is:
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(0 ≤ r ≤ a, 0 ≤ z ≤ L), (1)

r = a : σr = 0, τrz = 0, (2)

z = L : σz = 0, τzr = 0, (3)

z = 0 : the equilibrium system of forces to be found. (4)
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σr =
∂

∂z
[ν∇2ϕ− ∂2ϕ

∂r2
],

σθ =
∂

∂z
[ν∇2ϕ− 1

r

∂ϕ

∂r
],

3



σz =
∂

∂z
[(2− ν)∇2ϕ− ∂2ϕ

∂z2
],

τrz =
∂

∂r
[(1− ν)∇2ϕ− ∂2ϕ

∂z2
].

(5)

We will establish, in the following sections, the equilibrium system of forces
on the end (z = 0) and the conditions that bring about Saint-Venant’s decay of
stresses for the cylinder.

4 Eigenvalue Equation

Considering Eq.(3), let the stress function be

ϕ(r, z) =
∞∑

n=1

φn(r)e
−knz, (0 ≤ r ≤ a, 0 ≤ z ≤ L) (6)

Putting Eq.(6) into Eq.(1), we find the solution

ϕ(r, z) =

∞∑
n=1

φn(r)e
−knz =

∞∑
n=1

[AnJ0(knr) +BnknrJ1(knr)]e
−knz. (7)

From Eq.(7)

σr =
∂

∂z
[ν∇2ϕ− ∂2ϕ

∂r2
]

=
∞∑

n=1

{An[−k3nJ0(knr) + k2n
1

r
J1(knr)]

+ Bn[(1− 2ν)k3nJ0(knr)− k4nrJ1(knr)]}e−knz, (8)

τrz =
∂

∂r
[(1− ν)∇2ϕ− ∂2ϕ

∂z2
]

=
∞∑

n=1

{−Ank
3
nJ1(knr)

− Bn[2(1− ν)k3nJ1(knr) + k4nrJ0(knr)]}e−knz. (9)

The condition (2) must be fulfilled by (8) and (9), therefore it is required
that

An[−k3nJ0(kna)+k2n
1

a
J1(kna)]+Bn[(1−2ν)k3nJ0(kna)−k4naJ1(kna)] = 0, (10)
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−Ank
3
nJ1(kna)−Bn[2(1− ν)k3nJ1(kna) + k4naJ0(kna)] = 0. (11)

The coefficients An and Bn have non-zero solutions from Eqs.(10) and (11)
if

[ −k3nJ0(kna) + k2n
1

a
J1(kna)][2(1− ν)k3nJ1(kna) + k4naJ0(kna) ]

− k3nJ1(kna)[(1− 2ν)k3nJ0(kna)− k4naJ1(kna)]

= 0. (12)

Excluding kn = 0, Eq.(12) is changed into

2(1−ν)k2na[J0(kna)]
2+(1−2ν)knJ0(kna)J1(kna)−[2(1−ν)

1

a
+k2na][J1(kna)]

2 = 0.

(13)
Equation (13) is the eigenvalue equation of the problem, from which kn are

determined.

5 Stress Components

From Eq.(7) we find the stress components

σθ =
∂

∂z
[ν∇2ϕ− 1

r

∂ϕ

∂r
]

=
∞∑

n=1

[−An
1

r
k2nJ1(knr) +Bn(1− 2ν)k3nJ0(knr)]e

−knz, (14)

σz =
∂

∂z
[(2− ν)∇2ϕ− ∂2ϕ

∂z2
]

=
∞∑

n=1

{Ank
3
nJ0(knr)

+ Bn[−2(2− ν)k3nJ0(knr) + k4nrJ1(knr)]}e−knz. (15)

6 Saint-Venant Type Decay of Stresses and Its
Requirement

To guarantee condition (3) to be satisfied and from Eq.(15) and Eq.(9), it is
required that

L → ∞, (16)
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kn > 0 (17)

and

An = Bn = 0, (n > N), (18)

where N is a positive integer , that is,

N < ∞. (19)

And then , from Eq.(7) Eq.(8), Eq.(9), Eq.(14) and Eq.(15),

ϕ(r, z) =

N∑
n=1

[AnJ0(knr) +BnknrJ1(knr)]e
−knz, (20)

σr =
N∑

n=1

{An[−k3nJ0(knr) + k2n
1

r
J1(knr)]

+ Bn[(1− 2ν)k3nJ0(knr)− k4nrJ1(knr)]}e−knz, (21)

σθ =
N∑

n=1

[−An
1

r
k2nJ1(knr) +Bn(1− 2ν)k3nJ0(knr)]e

−knz, (22)

σz =
N∑

n=1

{Ank
3
nJ0(knr)

+ Bn[−2(2− ν)k3nJ0(knr) + k4nrJ1(knr)]}e−knz, (23)

τrz =
N∑

n=1

{−Ank
3
nJ1(knr)

− Bn[2(1− ν)k3nJ1(knr) + k4nrJ0(knr)]}e−knz, (24)

where kn is nth positive root of the eigenvalue equation Eq.(13) and N is a
finite positive integer, that is,

kn > 0, N < ∞, (25)

by virtue of Eq.(17) and Eq.(19).
From Eq.(23) and Eq.(24), the equilibrium system of forces loaded on the

end z = 0 should be
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z = 0 : σz =

N∑
n=1

{Ank
3
nJ0(knr)

+ Bn[−2(2− ν)k3nJ0(knr) + k4nrJ1(knr)]}, (26)

and

τzr =

N∑
n=1

{−Ank
3
nJ1(knr)

− Bn[2(1− ν)k3nJ1(knr) + k4nrJ0(knr)]}. (27)

Now we confirm that the boundary-value problem of the cylinder for Saint-
Venant type decay of stresses is formulated by Equations Eq.(1)(attached by
Eq.(16)), Eq.(2), Eq.(3), Eq.(26) and Eq.(27), added by Eq.(5). The solution
of the problem is found to be Equations (20), (21), (22), (23) and (24), which
satisfies all the fundamental equations and the boundary conditions confirmed
for the problem, and is unique because of the ”Uniqueness of Solution” (See
Ref. [15]). The solution is the formulation of Saint-Venant type decay of the
problem of the cylinder.

7 Modified Saint-Venant’s Principle of the Ax-
isymmetrical Deformation of the Circular Cylin-
der

From Eqs.(21), (22), (23) and (24) we come to the end equations

lim
z→∞

σr = 0,

lim
z→∞

σθ = 0,

lim
z→∞

σz = 0,

lim
z→∞

τrz = 0. (28)

Thus we prove Modified Saint-Venant’s Principle of the axisymmetrical de-
formation of the circular cylinder by the end equations in terms of Eq.(28).

8 Conclusion

1.The Statement of Modified Saint-Venant’s Principle is suggested.
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2.The problem of Saint-Venant’s Principle of the axisymmetrical deformation
of the infinite circular cylinder is suggested , and its Modified Saint-Venant’s
Principle is proved and the requirement for the principle to be true is found.

3.It is evident that finding solutions of boundary-value problems is a precise
and pertinent approach to establish Saint-Venant type decay of elastic problems.
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mouvements des solides élastiques. Gauthier-Villars, Paris, 1885.

[4] AEH Love , A treatise on the mathematical theory of elasticity. 4th ed.,
The University Press, Cambridge, England, 1927.

[5] R v Mises, On Saint-Venant’ Principle. Bull Amer Math Soc, 51(1945),
555-562.

[6] E Sternberg, On Saint-Venant’s Principle. Quart Appl Math, 11(1954),
393-402.

[7] C Truesdell , The rational mechanics of materials - past, present, future.
Appl. Mech. Reviews, 12(1959), 75-80.

[8] O Zanaboni , Dimostrazione generale del principio del De Saint-Venant.
Atti Acad Naz dei Lincei, Rendiconti, 25(1937), 117-121.

[9] O Zanaboni , Valutazione dell’errore massimo cui dà luogo l’applicazione
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