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Abstract
The unification of Einstein’s field equations with Quantum field theory is a prob-
lem of theoretical physics. Many models for solving this problem were done, i.e.
the String Theory or Loop quantum gravity were introduced to describe grav-
ity with quantum theory. The main problem of this theories is that they are
mathematically very complicated. In this research text, there is given another
description of gravity unified with Quantum field theory. In this case, grav-
ity is described so that for weak gravitational fields the (semi)classical gravity
desciption is equivalent.

Introduction
Quantization of gravity is a difficult problem of theoretical physics, because
there is a difficulty in renormalization of a gravity quantum field theory [1]. One
of the problems in Quantum Gravity is the singularity, which appears at the
Big Bang or in Black Holes [2]. For solving this problem, there were developed
different theories. In [3] and [4] the String Theory was used for unify all four
well-known fundamental forces. The theory needs extra dimensions to describe
the universe with its fundamental forces. Another model for unify gravity with
all other fundamental forces is the Loop quantum gravity [5]. There is no
semiclassical limit shown, which exists in Loop quantum gravity. Furthermore,
this theories for quantum gravity are mathematically very complicated. The way
described in this research text is the derivation of a gravity field equation, which
is similar to special-relativistic field equations of quantum field theory. There
are existing quantization relations and the field equation yielding Einstein’s
field equations of general relativity, if the gravity field strength is weak. The
equations have basically a minkowski metric (the non-gravitational case) and
if gravity exists, there are introduced paths, which have a projective character
on relativistic energies. This projection properties of the paths make massive
objects to attract each other, i.e. paths that passing through 4-dimensional
spacetime leading to the masses, which attracts or repulses a certain particle.
For each amount of energy it is existing a path π that is oriented to the position
of the amount of energy and a co-path ω, that is oriented outwards from amount
of energy. For very dense matter, the outward path ω is dominating (repulsion
of matter), otherwise the attractional path π has the dominance. So, if matter
is not very dense, gravity has the well-known properties like attractivity and the
independence of gravity force on materia positioned between the line of gravity
interaction (because there are all kinds of projective paths possible).
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Physical theory
From special relativity, the following metric is well-known:

ds2 = −dt2 + dx2 + dy2 + dz2 = ηµνds
µdsν . (1)

. For a line element ds in 4-dimensional spacetime, the metric tensor ηµν is flat,
i.e. for Christoffel’s symbols holds the relation Γκµν = 0. May be π, ω : [0, 1] 7→ X
open curves that passing a set of points X ⊂ R4 in a topological space T (here:
Minkowski space). Then, ηµν can be projective (expanded to the projective
metric fµν), if the direction of projection is given by π and ω. The projectivizion
mapping p : ηµν 7→ fµν is given by the relationship:

fµν = ηµβg
βαhαν . (2)

Here, the two path metrics gβα (describing path elements in pi) and hαν (de-
scribing path elements in omega) are introduced. From (2), the line element
has the form:

ds∗2 = dsµfµνds
ν = dsµηµβg

βαhανds
ν = dsµηµνds

∗ν . (3)

Equation (3) defines a scalar product in a projected minkowski space with the
mappings pds = π−1◦ω : dsµ 7→ ds∗µ. For π = ω the mapping is the identity, i.e.
there is no gravitational interaction available. According to Einstein’s General
Relativity, Gravitation is the effect of curved spacetime. In this theory, gravity
occurs, if the two path metrics are different, so that the closed path made from
joining π and ω on their end points, i.e. λ := π⊕ω has an interior area Aλ. So,
the projection line follows from the crossing path τ between the two paths.
May be h : π × [0, 1] → ω a homotopy that maps the curve π to ω. Then the
following diagram is commutative:

π × [0, 1]
i //

h

��

π ⊗ λ

h′

��
ω

i′
// τ

. (4)

The upper relation on (4) is the isomorphy i between the interval [0, 1] and λ,
by taking the two end points of this interval on the two paths that build up λ.
Analogous, to the tensor product space π ⊗ λ a homotopy h′ can be declared.
From this construction, the mapping i′ is an isomorphism, if h and h′ have the
same (projective) behavior. May be H the group of homotopies in R4, then
H ′−1HH ′ ⊂ H is the subgroup, which is equal to H, when H ′ = H. So, the
quotient

χ(H ′, H) = H/H ′−1HH ′ (5)

is the identity for H ′ = H. The following short sequence is exact:

0 // ω
i′ // τ

q // χ(H ′, H) // 0 . (6)
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From (6) follows that χ(H ′, H) ∼= ω/i′(ω), because i′(ω) ∈ ker(q). Hence, ω
can be partitioned into a kernel i′(ω) and a non-kernel part χ(H ′, H), i.e.

ω = i′(ω)⊕ χ(H ′, H) = h′(π ⊗ λ)⊕ χ(H ′, H) = h(π × [0, 1]). (7)

The relation (7) is equivalent to χ(H ′, H) = h(π × [0, 1])/h′(π ⊗ λ), where for
h′ 7→ h it must follow χ(H ′, H) = id; hence

h(π ⊗ λ) = h(π × [0, 1])⇔ π ⊗ λ ∼= π × [0, 1]. (8)

The conclusion in (8) follows from the uniqueness of the definition of h. The
commutation of the paths ω, π, i.e. C := ωπ−πω vanishes , if they have different
starting and ending points. If the starting and ending points are equal, from
relation (8) there exists a homeomorphism between the closed path λ and a finite
interval and because closed paths leading to the same point for infinite winding
around that paths, the value of C is infinite. This result can be summarized
with:

δ(X−Y ) = ω(X)π(Y )−π(X)ω(Y ); [hµν(X), gαβ(Y )]− = δµαδνβδ(X−Y ). (9)

Equation (9) is the quantization condition. For computation of volume elements
in projective minkowski space, the value Aλ must be determined. May be
Aλ : λ 7→ [0,∞] a measurable function on λ. This measure is zero, if π = ω =
h(π × [0, 1]) = τ = h′(π ⊗ λ) = h(π ⊗ λ) (where the last conclusion comes from
(8)), i.e.:

(Aλ = 0⇒ h = h′)⇔ (Aλ = 0⇒ χ(H ′, H) = id). (10)

This measure must be σ-additive and by the definition

Aλ := |χ(H ′, H)|, (11)

there exists the connexion that every equivalence class that is added contributes
to the from λ enclosed area. With ω = h(π × [0, 1]) and τ = h′(π ⊗ λ) =
h′(π × [0, 1]) = τ follows

ω = h ◦ h′−1(τ)⇒ χ(H ′, H) = τ/ω (12)

, that means that all paths between π and ω, denoted by τ , projected in direction
of ω is the group χ(H ′, H). If τ lies in the enclosed area of λ, the homotopy h,
which leading from π to ω can be chosen so, that τ is approximately isomorphic
to ω, whereas follows:

Aλ = |χ(H ′, H)| ≈ 0. (13)

In general relativity, the following Lagrangian can be used to derive Einstein’s
field equations with classical metrix gµν [6]

L =

∫
d4x
√
−g(κRµνg

µν − S(gµν)), (14)
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where κ is a coupling constant, g = det(gµν), Rµν is the Ricci tensor and S is
the Lagrangian density of all other fields. In projective formulation, the volume
element g can be approximated as follows (with gµν 7→ fµν and (13)):√
−f =

√
−det(ηµα(δαν + gαβhβν − δαν)) ≈ 1− 1

2
tr(ηµα(gαβhβν − δαν)ηµαadj) =

1 +
1

2
(gαβhβα − δαα) = −1 +

1

2
gαβhβα.

(15)
Here, a linear approximation on the from λ enclosed area was done. By substi-
tuting (15) into (14) with gµν 7→ fµν the Lagrangian of the field theory is:

L = −
∫
d4x(1− 1

2
gαβhβα)(κRµνf

µν − S(fµν)). (16)

Variation on the fields gµν and hµν yields two coupled field equations. Conclu-
sions
The equation (16) tends to linearized Einstein’s equations for the limit fµν 7→
ηµν . Otherwise, the metrics g and h become different. So, the product gµαhαν
is finite, if both metrics grow at the same order. The field equation (16) can
be used as a model to describe gravity strength at the Big Bang [7]. Further,
this field theory is a model that describes the gravitational interactions of dark
matter.
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