
 

  

Features of the Hilbert Book Model. 

The HBM is a simple Higgsless model of fundamental 

physics that is strictly based on the axioms of traditional 

quantum logic. It uses a sequence of instances of an exten-

sion of a quaternionic separable Hilbert space that each 

represents a static status quo of the whole universe. 

 

 

 
Features of the 

Hilbert Book Model 
      

Hans van Leunen  

The Hilbert Book Model 





 

 

 

 
FEATURES OF THE HILBERT 

BOOK MODEL 
  



2  

 

 

Colophon 

 

Written by Ir J.A.J. van Leunen 

The subject of this book is a new model of physics 

 

This book is written as an e-book. It contains hyperlinks that be-

come active in the electronic version. That version can be accessed 

at http://www.crypts-of-physics.eu. Last update of this (published) 

version: Tuesday, August 21, 2012 

 

©2012 Ir J.A.J. (Hans) van Leunen 

 

All rights reserved. Nothing of these articles may be copied or 

translated without the written permission of the publisher, except 

for brief excerpts for reviews and scientific studies that refer to this 

resource. 

 

ISBN: 978-1-105-79240-3978-1-4477-1684-6 

 

  

http://www.crypts-of-physics.eu/


3 

 

 

 

Ir J.A.J. van Leunen 

 

 

 

FEATURES OF THE HILBERT 

BOOK MODEL 
  



4  

ACKNOWLEDGEMENTS 
 

I thank my wife Albertine, who tolerated me to work days and 

nights on a subject that can only be fully comprehended by experts 

in this field. For several years she had to share me with my text 

processor. She stimulated me to bring this project to a feasible tem-

porary end, because this project is in fact a never ending story. 

 

I also have to thank my friends and discussion partners that lis-

tened to my lengthy deliberations on this non society chitchat suita-

ble subject and patiently tolerated that my insights changed regular-

ly. 

  



5 

DETAILS 
 

The Hilbert Book Model is the result of a still ongoing research 

project.  

That project started in 2009. 

This version added sections on the progression factor, progres-

sion interval, the Higgs phenomenon and the covariant derivative. 
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Preface 

I started the Hilbert Book Model during my studies in physics in 

the sixties on the Technical University of Eindhoven (TUE). 

In the first two years the lectures concerned only classical phys-

ics. In the third year quantum physics was introduced. I had great 

difficulty in understanding why the methodology of doing physics 

changed drastically. So I went to the teacher, which was an old 

nearly retired professor and asked him: 

"Why is quantum mechanics done so differently from classical 

mechanics?".  

His answer was short. He stated": 

"The reason is that quantum mechanics is based on the superpo-

sition principle".  

 

I quickly realized that this was part of the methodology and 

could not be the reason of the difference in methodology. So I went 

back and told him my concern. He told me that he could not give 

me a better answer and if I wanted a useful answer I should re-

search that myself. So, I first went to the library, but the university 

was quite new and its library only contained rather old second hand 

books, which they got from other institutions. Next I went to the 

city’s book shops. I finally found a booklet from P. Mittelstaedt: 

(Philosophische Probleme der modernen Physik, BI 

Hochschultaschenbücher, Band 50, 1963) that contained a chapter 

on quantum logic. Small particles obey a kind of logic that differs 

from classical logic. As a result their dynamic behavior differs from 

the behavior of larger objects. I concluded that this produced the 

answer that I was looking for. 

I searched further and encountered papers from Garret Birkhoff 

and John von Neumann that explained the correspondence between 

quantum logic and separable Hilbert spaces. That produced a more 

conclusive answer to my question. 
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The lectures also told me that observables were related to eigen-

values of Hermitian operators. These eigenvalues are real numbers. 

However, it was clearly visible that nature has a 3+1D structure. So 

I tried to solve that discrepancy as well. After a few days of puz-

zling I discovered a number system that had this 3+1D structure 

and I called them compound numbers. I went back to my professor 

and asked him why such compound numbers were not used in 

physics. Again he could not give a reasonable answer.  

When I asked the same question to a much younger assistant 

professor he told me that these numbers were discovered more than 

a century earlier by William Rowan Hamilton when he was walk-

ing with his wife over a bridge in Dublin. He was so glad about his 

discovery that he carved the formula that treats the multiplication of 

these numbers into the sidewall of the bridge. The inscription has 

faded away, but it is now molded in bronze and fixed to the same 

wall. The numbers are known as quaternions. So, I went to the li-

brary and searched for papers on quaternions.  

In those years C. Piron wrote his papers on quaternionic Hilbert 

spaces. That information completed my insight in this subject. I fi-

nalized my physics study with an internal paper on quaternionic 

Hilbert spaces.  

 

The university was specialized in applied physics and not in the-

oretical physics. This did not stimulate me to proceed with the sub-

ject. Next, I went into a career in industry where I used my 

knowledge of physics in helping to analyze intensified imaging and 

in assisting with the design of night vision equipment and X-ray 

image intensifiers. That put me with my nose on the notion of quan-

ta.  

 



19 

The output window of image intensifiers did not show radiation. 

Instead they showed clouds of impinging quanta. In those times I 

had not much opportunity to deliberate on that fact. However, after 

my retirement I started to rethink the matter. That was the instant 

that the Hilbert Book Model continued further. 

 

Thus, in a few words: The Hilbert Book Model tries to explain 

the existence of quanta. It does that by starting from traditional 

quantum logic. 

 

The Hilbert Book Model is a Higgsless model of physics. It ex-

plains how elementary particles get their mass by using an ap-

proach that differs from the Higgs mechanism.. 

 

You will find the model to be in many aspects controversial and 

non-conventional. That is why the author took great efforts in order 

to keep the model self-consistent. 

 

Its main purpose is to get insight into the possibilities of the 

physical toolkit.  
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If a mathematical theory is self-consistent, then there is a realis-

tic chance that nature somewhere somehow uses it. 

 

If that theory is compatible with traditional quantum logic, then 

there is a large chance that nature will use it. 

 

This drives my intuition. 

 

HvL 
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PART I 
The fundaments 

Abstract 

The fundaments of quantum physics are still not well estab-

lished. This book tries to find the cracks in these fundaments and 

explores options that were left open. This leads to unconventional 

solutions and a new model of physics.  

 

In order to optimize self-consistency, the model is strictly based 

on the axioms of traditional quantum logic. Traditional quantum 

logic is lattice isomorphic to the set of closed subspaces of an infi-

nite dimensional separable Hilbert space. It means that the separa-

ble Hilbert space can be used as the realm in which quantum phys-

ics will be modeled. However, this would result in a rather 
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primitive model. It can easily be shown that this model cannot im-

plement dynamics and does not provide fields.  

 

First, the model is extended such that it can represent fields. This 

results in a model that can represent a static status quo of the whole 

universe. The most revolutionary introduction in the Hilbert Book 

Model is the representation of dynamics by a sequence of such stat-

ic models in the form of a sequence of extended separable Hilbert 

spaces.  

 

At this point the Hilbert Book Model already differs significant-

ly from conventional physics. Conventional quantum physics does 

not strictly hold to the axioms of traditional quantum logic, handles 

fields in a different way and implements dynamics differently. 

 

Conventional quantum physic stays with complex state func-

tions1. In contrast the HBM also explores the full potential of qua-

ternionic state functions. As a consequence the HBM offers two 

different views on the undercrofts of quantum physics. The com-

plex state function offers a wave dynamics view. The quaternionic 

state function opens a fluid dynamics view. The fluid dynamics 

view is unprecedented. 

 

Since the switch from complex to quaternionic quantum state 

function does not affect physical reality, the two views will both be 

correct 

 

                                                           
1 The HBM uses the name state function for the quantum state of an ob-

ject or system rather than the usual term wave function because the state 

function may characterize flow behavior as well as wave behavior. 
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The quaternionic state functions enable the exploration of the 

geometry of elementary particles in which quaternionic sign flavors 

play an important role.  

In the HBM elementary particles and physical fields are generat-

ed via the coupling of two sign flavors of the same quaternionic 

probability amplitude distribution (QPAD). 

The quantum fluid dynamic view opens insight in the effect of 

the state functions on space curvature.  
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1 FUNDAMENTS 

The most basic fundaments consist of quantum logic, its lattice 

isomorphic companion, the separable Hilbert space and the exten-

sions of these basic models such that they incorporate fields. 

1.1 Logic model 

In order to safeguard a high degree of consistency, the author 

has decided to base the Hilbert Book Model on a consistent set of 

axioms. It is often disputed whether a model of physics can be 

strictly based on a set of axioms. Still, what can be smarter than 

founding a model of physics on the axioms of classical logic?  

 

Since in 1936 John von Neumann2 wrote his introductory paper 

on quantum logic the scientific community knows that nature 

cheats with classical logic. Garret Birkhoff and John von Neumann 

showed that nature is not complying with the laws of classical log-

ic. Instead nature uses a logic in which exactly one of the laws is 

weakened when it is compared to classical logic. As in all situations 

where rules are weakened, this leads to a kind of anarchy. In those 

areas where the behavior of nature differs from classical logic, its 

composition is a lot more complicated. That area is the site of the 

very small items. Actually, that area is in its principles a lot more 

fascinating than the cosmos. The cosmos conforms, as far as we 

know, nicely to classical logic. In scientific circles the weakened 

logic that is discussed here is named traditional quantum logic. 

 

As a consequence the Hilbert Book Model will be strictly based 

on the axioms of traditional quantum logic. However, this choice 

                                                           
2http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics   

http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics
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immediately reveals its constraints. Traditional quantum logic is not 

a nice playground for the mathematics that characterizes the formu-

lation of most physical laws. Lucky enough, von Neumann encoun-

tered the same problem and together with Garret Birkhoff3 he de-

tected that the set of propositions of quantum logic is lattice 

isomorphic with the set of closed subspaces of an infinite dimen-

sional separable Hilbert space. The realm of a Hilbert space is far 

more suitable for performing the mathematics of quantum physics 

than the domain of traditional quantum logic. Some decades later 

Constantin Piron4 proved that the inner product of the Hilbert space 

must by defined by numbers that are taken from a division ring. 

Suitable division rings are the real numbers, the complex numbers 

and the quaternions5. The Hilbert Book Model also considers the 

choice with the widest possibilities. It uses both complex and qua-

ternionic Hilbert spaces. However, quaternions play a decisive role 

in the design of the Hilbert Book Model. Higher dimension hyper-

complex numbers may suit as eigenvalues of operators or as values 

of physical fields, but for the moment the HBM can do without 

these numbers. Instead, at the utmost quaternions will be used for 

those purposes. 

 

1.2 State functions 

Now we have a double model that connects logic with a flexible 

mathematical toolkit. But, this solution does not solve all require-

ments. Neither quantum logic nor the separable Hilbert space can 

handle physical fields and they also cannot handle dynamics. In or-

                                                           
3 http://en.wikipedia.org/wiki/John_von_Neumann#Lattice_theory  
4 C. Piron 1964; _Axiomatique quantique_  
5 http://en.wikipedia.org/wiki/Quaternion  

http://en.wikipedia.org/wiki/John_von_Neumann#Lattice_theory
http://en.wikipedia.org/wiki/Quaternion
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der to enable the implementation of fields we introduce quantum 

state functions6. The HBM does not fit quantum state functions in-

side a separable Hilbert space, but instead it attaches these func-

tions to selected Hilbert space vectors7. 

 

It is a mathematical fact that both the real numbers and the ra-

tional numbers contain an infinite amount of elements. It is possible 

to devise a procedure that assigns a label containing a different nat-

ural number to every rational number. This is not possible for the 

real numbers. Technically this means that the set of real numbers 

has a higher cardinality than the set of rational numbers. In simple 

words it means that there are far more real numbers than there are 

rational numbers. Still both sets can densely cover a selected con-

tinuum, such as a line. However, the rational numbers leave open 

places, because infinite many real numbers fit between each pair of 

rational numbers.  

Complex numbers and quaternions have the same cardinality as 

the real numbers. They all form a continuum. Rational numbers 

have the same cardinality as the integers and the natural numbers. 

They all form (infinite) countable sets. 

Now take the fact that the set of observations covers a continu-

um and presume that the observed objects form a countable set. 

This poses a problem when the proper observation must be attached 

to a selected observed object. The problem is usually over-

                                                           
6 The HBM uses quantum state function rather than wave function. In 

this document “quantum state function” is often simplified to “state func-

tion”, which must not be exchanged with the classical notion of state func-

tion. 
7 It is well known that modulus squared integrable functions form a 

separable Hilbert space   . These measurable functions act as vectors, ra-

ther than as fields. 
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determined and in general it is inconsistent. The problem can only 

be solved when a little inaccuracy is allowed in the value of the ob-

servations8.  

In quantum physics this inaccuracy is represented by the (quan-

tum) state function, which is a probability amplitude distribution. It 

renders the inaccuracy stochastic. 

 

Thus state functions solve the fact that separable Hilbert spaces 

are countable and as a consequence can only deliver a countable 

number of eigenvectors for the particle location operator, while the 

observation of a location is taken from a continuum. 

 

Usually state functions are taken to be complex probability am-

plitude distributions (CPAD’s), but it is equally well possible to use 

quaternionic probability amplitude distributions. These include the 

full functionality of CPAD’s. With the selection of QPAD’s auto-

matically a set of fields is attached to the Hilbert space. The real 

part becomes a scalar field that can be interpreted as a charge densi-

ty distribution. The imaginary part becomes a vector field that can 

be interpreted as a current density distribution. 

 

Each state function links the eigenvector of the particle location 

operator to a continuum. That continuum is the parameter space of 

the state function. Next we introduce Palestra as the parameter 

space that is shared by all state functions. It is possible to attach the 

Palestra as eigenspace to a location operator that resides in the Gel-

fand triple of the separable Hilbert space. 

 

                                                           
8 The situation is comparable to the case where a set of linear equations 

must be solved, while is known that the set of possible solutions is smaller. 
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For some objects (the wave-like objects) not the quantum state 

function and the Palestra are used but instead the canonical conju-

gate equivalents are used. The corresponding operators are the ca-

nonical conjugates of the location operators. 

 

State functions extend over Palestra. Further, they superpose. 

They all consist of the same stuff. In a superposition it cannot be 

determined what part of the superposed value belongs to what state 

function. It is possible to define local QPAD’s that are defined as 

the superposition of tails of a category of state functions. Such con-

structed QPAD’s will be called background QPAD’s. 

 

It must be noticed that state functions neither belong to the sepa-

rable Hilbert space nor belong to the Gelfand triple. They just form 

links between these objects. 

 

The attachment of state functions extends the separable Hilbert 

space and connects it in a special way to its Gelfand triple. Due to 

the isomorphism of the lattice structures, the quantum logic is ex-

tended in a similar way. This leads to a reformulation of quantum 

logic propositions that makes them incorporate stochastically inac-

curate observations instead of precise observations. The logic that 

is extended in this way will be called extended quantum logic. The 

separable Hilbert space that is extended in this way will be called 

extended separable Hilbert space. 

1.3 The sandwich 

The introduction of state functions concludes the modeling of 

the extended Hilbert space. We now have constructed a sandwich 

consisting of a separable Hilbert space, a set of state functions and 

the Gelfand triple that belongs to the Hilbert space.  
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The target for the sandwich is that it represents everything that is 

present or will become present in universe. It must contain all in-

gredients from which everything in universe can be generated. 

In view of the existence of dark matter and dark energy, this is a 

very strong requirement. It will be difficult to prove. Instead we put 

it in the form of a postulate: 

 

“The sandwich contains all ingredients from which everything in 

universe can be generated.” 

 

It will be shown that elementary particles can be generated as a re-

sult of couplings of state function QPAD’s and background 

QPAD’s where the QPAD’s are sign flavors of the same base 

QPAD. The coupling is characterized by properties. These proper-

ties form the sources of corresponding physical fields. 

 

With other words the presumption that all ingredients for gener-

ating particles and physical fields are present in the sandwich is 

probably fulfilled. As a consequence each HBM page represents a 

static status quo of the universe. 

 

1.3.1 Alternative approaches 

The model could have introduced QPAD’s by collecting them in a 

special L2 space of measurable quaternionic distributions and embed 

that space in a wider separable Hilbert space.  

QED and QCD still take another approach and treat fields as op-

erators rather than as Hilbert vectors. 

The HBM takes another approach. Because they are so special, I 

have taken the fields apart. The HBM defines them as links between 

Hilbert vectors of a separable Hilbert space and continuum eigen-

spaces of operators in the Gelfand triple of that Hilbert space. For 
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the HBM that model works fine and offers easy and helpful insight. 

It does not raise conflicts.  

 

The most important effect is that the link with quantum logic is 

held upright and the extension can be mimicked in that logic. An-

other advantage is that the HBM approach produces a clear differ-

ence between the primary fields that are directly related to quantum 

state functions and the secondary fields that represent the influ-

ences of the properties of the couplings of primary fields. The sec-

ondary fields are physical fields that play a fundamentally different 

role than the primary fields. 

1.4 Model dynamics 

The fact that the separable Hilbert space is not capable of im-

plementing progression is exposed by the fact that the Schrödinger 

picture and the Heisenberg picture are both valid views of quantum 

physical systems, despite the fact that these views attribute the time 

parameter to different actors9. This can only be comprehended 

when the progression parameter is a characteristic of the whole rep-

resentation10. 

 

If everything that is present or will be present in universe can be 

derived from ingredients that are available in the sandwich, then the 

sandwich represents a status quo of the full universe. If this as-

sumption is correct, then implementing dynamics is simple. 

 

A model that implements dynamics will then consist of a se-

quence of the described sandwiches. The model will resemble a 

                                                           
9 See: History 
10 It turns out that the progression interval is a physical invariant 
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book. One sandwich represents one HBM page. The page counter is 

the progression parameter. 

 

The whole Hilbert Book Model consists of an ordered sequence 

of sandwiches that each includes the Gelfand triple including its 

Hilbert space and the attached QPAD’s. The progression parameter 

acts as page number of the book. 

In the resulting Hilbert Book Model the progression is made in 

universe wide steps. 
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Figure 1: Structure of the Hilbert Book Model 

 

 

1.5 Progression 

Time exists in two different forms. The first form is proper time 

and its clock is ticking at the location of an observed item. The se-

cond form is coordinate time and its clock is ticking at the location 

of the observer. Together with space these two notions of time form 
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the notion of spacetime. Both clock ticks indicate progression. This 

progression is independent of the observer and it is independent of 

a selected observed item. Like space, progression is a global char-

acteristic of the whole universe. Thus space and progression can be 

combined into a 1+3D space. This space does not have a Minkow-

ski signature like spacetime has. It has Euclidean signature. The 

corresponding 1+3D location fits in a quaternion.  

 

Apart from a constant factor and a shift, progression and proper 

time have the same value. When the interval is time-like an infini-

tesimal spacetime interval is equal to c times the corresponding in-

finitesimal proper time interval. In that case, the infinitesimal 

spacetime interval is apart from a constant factor equal to an infini-

tesimal progression interval. The infinitesimal spacetime interval is 

a physical invariant. Thus also the infinitesimal progression interval 

is a physical invariant. 

 

Dynamics occurs in steps that cover all space in universe. In a 

selected HBM page the progression parameter has a fixed value. 

However, taken over a sequence of pages the quaternionic progres-

sion-space location varies in its progressive real part as well as in 

its spatial imaginary part. 

 

In the HBM, special features of spacetime only come into play 

when an observer investigates another item. Its features become 

apparent when the reference frame of the observer moves with re-

spect to the reference frame of the observed object. The features 

that appear in that case are: Length contraction, time dilation and 

change of mass. 

 

The fact that progression occurs in universe wide steps includes 

that something exists that assures continuity between the HBM 
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pages. That something is formed by the quantum state functions. In 

their quaternionic format they contain currents. Thus, even a static 

QPAD contains moving charges. That movement constructs the 

link between subsequent pages. 

 

Without the quantum state functions the dynamics of the HBM 

would be chaotic. These functions glue the Hilbert spaces together.  

This requires the quantum state functions to be quaternionic. Only 

the imaginary parts of these functions represent the currents that 

store the preconditions for the next progression step. 

1.6 Progression factor 

The Hamiltonian has real and non-negative eigenvalues. In con-

ventional complex number based quantum physics the Hamiltonian 

can be considered as the generator of a unitary operator that appears 

as a factor in the (complex) quantum state function. Its canonical 

conjugate is the progression parameter11. However, with quaterni-

onic quantum state functions the choice of the unitary operator pos-

es problems, because the generator gets a spatial direction. In fact 

in the HBM only the modulus of the generator is relevant. In the 

HBM, the progression factor plays no role. 

However, if one wants to hold onto the Hamiltonian as a genera-

tor, than even in quaternionic quantum physics, it becomes valid to 

interpret the Hamiltonian   as  

 

    
 

  
  

 

                                                           
11 Dirac; “The principles of quantum mechanics”, Fourth edition, 

section 31. 

(1) 
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where   is the complex imaginary base number and   is the pro-

gression parameter. On the other hand this gives rise to conflicts 

and mix-ups between the complex and the quaternionic imagi-

naries.  

1.7 Quaternionic versus complex Hilbert space 

The link between the eigenvector of the particle location opera-

tor and the continuum eigenspace of the location operator in the 

Gelfand triple must be a probability amplitude distribution. It can 

be implemented by a quaternionic probability amplitude distribu-

tion (QPAD), as well by a complex probability amplitude distribu-

tion (CPAD). A complex state function will connect the particle lo-

cation operators in complex Hilbert space to the location operator 

in the corresponding Gelfand triple. QPAD’s will be used in com-

bination with a quaternionic Hilbert space. 

 

Complex quantum physics Quaternionic quantum 

physics 

Complex Hilbert space Quaternionic Hilbert space 

Complex inner product Quaternionic inner product 

Complex coefficients Quaternionic coefficients 

Hermitian location operator Normal location operator 

Real eigenvalues Quaternionic eigenvalues 

Complex state function Quaternionic state function 

CPAD QPAD 

Palestra Palestra 

Gelfand triple Gelfand triple 

Quantum wave dynamics Quantum fluid dynamics 

 

The selection for a complex number based approach has some 

consequences for features that are related to quaternions and that 
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complex numbers do not provide. These features must be simulated 

by using spinors and matrices that mimic quaternion features via 

complex state functions and Hermitian operators. If these simula-

tions are implemented properly, then the choice for QPAD versus 

CPAD is a purely mathematical decision. In any case the choice 

does not influence physical reality.  

 

One important fact is that the complex number based quantum 

state functions leave the freedom of an arbitrarily selectable phase 

factor. The quaternionic quantum state functions do not allow such 

factor. It would immediately affect the incorporated vector field. As 

a consequence gauge transformation pose problems with quaterni-

onic quantum state functions. On the other hand, complex quantum 

state functions do not incorporate fields. In quaternionic quantum 

physics gauge transforms must be restricted to cases with one di-

mensional spatial freedom. 

 

The selection between CPAD’s and QPAD’s changes the view 

that human’s may have on physics. It appears that the choice for 

QPAD’s instead of CPAD’s turns the theory of fundamental phys-

ics from the familiar complex number based wave dynamics theory 

into a quaternion based fluid dynamics theory.  

 

Within the quaternion oriented theory the usefulness of the 

toolkit of conventional complex number oriented physics will re-

duce to special one-dimensional cases. This includes one-

parametric oscillations and rotations. 

 

Inside Palestra occur features such as charge density distribu-

tions, current density distributions, sources, drains, compression re-
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gions and decompression regions. These features12 can be described 

by QPAD’s, but cannot be described by CPAD’s. For that reason 

the QPAD approach is far richer than the CPAD approach.  

 

The fact that such a small change in strategy has such great and 

unexpected impact signals that the fundamentals of physics are still 

not well understood. 

 

The HBM approach is also richer than the GRT approach. With 

respect to GRT, the HBM offers a much more detailed analysis of 

what happens in the undercrofts of physics. 

 

The implementation of physical fields via the attachment of 

QPAD’s to eigenvectors in the separable Hilbert space is a crucial 

departure from conventional physical methodology. Conventional 

quantum physics uses complex probability amplitude distributions 

(CPAD’s), rather than QPAD’s13. Quantum Field Theory14, in the 

form of QED15 or QCD16, implements physical fields in a quite dif-

ferent manner. 

1.8 Spacetime versus quaternions 

Apart from a constant factor and a shift, progression and proper 

time have the same value. In principle these values can be synchro-

nized. 

                                                           
12 The HBM currently neglects vortexes. 
13 http://en.wikipedia.org/wiki/Probability_amplitude  
14 http://en.wikipedia.org/wiki/Quantum_field_theory  
15 http://en.wikipedia.org/wiki/Quantum_electrodynamics  

16 http://en.wikipedia.org/wiki/Quantum_chromodynamics  

http://en.wikipedia.org/wiki/Probability_amplitude
http://en.wikipedia.org/wiki/Quantum_field_theory
http://en.wikipedia.org/wiki/Quantum_electrodynamics
http://en.wikipedia.org/wiki/Quantum_chromodynamics
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Spacetime features, like proper time, coordinate time, the Min-

kowski space, time dilatation and length compression only play a 

role when the reference frame of the observer moves with respect to 

the observed item.  

 

In this case the dynamics at short range can be considered as a 

one dimensional displacement. In these cases the complex number 

based approach of quantum physics may work better (read easier) 

than the quaternionic approach. However, due to their multidimen-

sional nature, fields are nearly always easier treated in a quaterni-

onic approach. Only beams of radiation might be treated easier with 

a complex approach. The configuration of elementary particles can 

be better analyzed by using quaternionic quantum physics, because 

it uses quantum fluid dynamics. 

 

Due to the fact that spacetime as a 3+1D space has a Minkowski 

signature, it is useless to try to implement spacetime with quaterni-

ons. However it fits well in a complex number based construct. On 

the other hand, if the interval is time-like,  the spacetime interval    
is directly related to the proper time interval    and to the progres-

sion interval    17. 

 

          
  

                                                           
17 We use the same symbol τ for progression and for proper time. 
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Quantity Spacetime quaternion 

signature Minkowski Euclidean 

Nabla   {
 

 

 

  
  }   {    } 

Field     {      }   {    } 
Equation           

 

Arbab I. Arbab uses the complex spacetime approach in his pa-

pers about the quaternionic continuity equation18. 

1.9 Advantages of QPAD’s 

The choice for QPAD’s appears very advantageous. The real 

part of the QPAD can be interpreted as scalar field in the form of a 

“charge” density distribution. Similarly the imaginary part of the 

QPAD can be interpreted as a vector field in the form of a “current” 

density distribution. The squared modulus of the value of the 

QPAD can be interpreted as the probability of the presence of the 

carrier of the “charge”. The “charge” can be any property of the 

carrier or it represents a collection of the properties of the carrier. In 

this way, when the state function is represented by a QPAD the 

equation of motion becomes a continuity equation19.  

 

Since the state function QPAD’s attach Hilbert eigenvectors to a 

value in a continuum the carriers can be interpreted as tiny patches 

of that continuum. The transport of these patches can be responsible 

for the local compression or decompression of the continuum 

space. With other words, via this mechanism QPAD’s may influ-

ence the local curvature in that continuum. 

                                                           
18 http://arxiv.org/abs/1003.0071 
19 Also called balance equation. 
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Interpreting the carriers as tiny patches of the parameter space is 

a crucial step. It transfers the dynamics into quantum fluid dynam-

ics. Only via this step it becomes possible that QPAD’s influence 

local curvature. 

 

All state function QPAD’s share their parameter space. The 

shared affine parameter space is called Palestra. This space can be 

curved. It can be represented by a quaternionic distribution. This 

quaternionic distribution has a flat parameter space. We need the 

affine version of the parameter spaces because the center locations 

of the QPAD’s will differ. 
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1.10 Sign flavors 

In most cases where quaternionic distributions are used, the fact 

that quaternions possess two in-

dependent types of sign selec-

tions is ignored. The first sign se-

lection type, the conjugation, 

inverts the sign of all three imag-

inary base vectors. It is a combi-

nation of the sign switch of the 

whole number and the sign 

switch of the real part. The se-

cond sign selection type, the re-

flection, inverts the sign of a sin-

gle imaginary base vector. The 

reflection can be taken in three 

independent directions. When 

relevant these directions are col-

or coded. The sign selections in a 

quaternionic distribution are all 

similar. Individually, the conju-

gation and the reflection switch 

the handedness of the external 

vector product in the product of 

two quaternions that are taken 

from the same quaternionic dis-

tribution. The sign selection of the parameter space is usually taken 

as the reference for the sign selections of the quaternionic distribu-

tions. When a quaternionic distribution has the same sign selection 

as its parameter space has, then it will be called a base quaternionic 

Figure 2:  Sign selections 
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distribution. The sign selection of the parameter space is supposed 

to be isotropic. The two isotropic sign selections of the distribution 

are candidate to be the base sign selection. 

 

For each QPAD, the mixture of conjugation and colored reflec-

tions produces eight different sign flavors20. This adds a significant 

amount of functionality to quaternionic distributions. In quantum 

physics the sign flavors play a crucial role. In conventional physics 

this role is hidden in complex probability amplitude distributions 

(CPAD’s), alpha, beta and gamma matrices and in spinors.  

1.11 Virtual carriers and interactions 

Primary QPAD’s are quaternionic distributions of the probabil-

ity of presence of virtual “charge” carriers. They have no other ge-

ometrical significance than that they are tiny patches of the parame-

ter space. The “charge” may stand for an ensemble of properties. 

Both state function QPAD’s as well as constructed background 

QPAD’s are primary QPAD’s 

 

The couplings of primary QPAD’s result in elementary parti-

cles21. The properties that characterize this coupling form the 

sources of second category physical fields. Second category physi-

cal fields have actual charges as their sources and particles as their 

charge carriers. Second category physical fields concern a single 

property of the carrier. They are known as the physical field that re-

lates to that property. Their presence can be observed (detected). 

 

                                                           
20 R, G, B are colors. N is normal. W is white.  

L is left handed. R is right handed. 
21 See: Particle physics 
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The Hilbert Book Model does not use the notion of a virtual par-

ticle. Instead the role of carriers in primary QPAD’s is used for 

this purpose.  

 

Static primary QPAD's cannot be observed directly. Their exist-

ence can only be derived from the existence of second category 

physical fields. 

In the Hilbert Book Model the “implementation” of forces via 

the exchange of virtual particles is replaced by the mutual influenc-

ing of the corresponding QPAD’s. This influence is instantiated via 

the fact that the concerned primary QPAD’s superpose and that 

their currents feed/supply other QPAD’s. Further, elementary parti-

cles can interact with free QPAD’s that have the same sign flavor 

as their quantum state function. 

1.12 QPAD-sphere 

QPAD's are quaternionic amplitude distributions and can be in-

terpreted as a combination of a scalar "charge" density distribution 

and a vectorial "current" density distribution. The currents in a stat-

ic QPAD consist of uniformly moving charge carriers. The separa-

ble Hilbert space is a static environment. The currents can only 

change between HBM pages. When the state function of a particle 

is represented by a primary QPAD, then this gives a special inter-

pretation of that state function. A very special kind of primary 

QPAD is a local background QPAD22. It represents the local super-

position of the tails of the state functions of a category of distant el-

ementary particles.  

 

                                                           
22 See: Special QPAD’s 
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The QPAD's that act as state functions may be imagined in a re-

gion that glues the eigenspace of the location operator that resides 

in the Gelfand triple to the Hilbert eigenvectors of the particle loca-

tion operator that resides in the separable Hilbert space. Construct-

ed QPAD’s such as the background QPAD’s also reside in this re-

gion. They may be coupled to state function QPAD’s. In that case 

the coupling generates a particle. This region is called the QPAD-

sphere and contains potential “streams” of space patches that are 

superfluous in the eigenspace in the Gelfand triple and that fail in 

the corresponding eigenspace in the separable Hilbert space. Both 

eigenspaces are considered to be affine spaces. The actual stream-

ing takes place in Palestra. Coupled QPAD’s act as pumps that cir-

culate space patches in the QPAD-sphere23.  

 

                                                           
23 See: figure 3, the QPAD-sphere 
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Figure 3: The QPAD-sphere 

 

Now let this situation be managed by a mathemagician that must 

re-compute the situation at regular instances. He gets his location 

information from the continuum eigenspace in the Gelfand triple 

and must find the proper eigenvector in the Hilbert space for each 

particle. He has a countable number of potential target locations but 

a far larger number of potential input locations. He solves this by 
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allowing a stochastic inaccuracy between the continuum based in-

put location and his final result location. Thus each particle pos-

sesses a normal distribution of potential locations. The mathemagi-

cian implements his solution by stealing potential positions that 

belong to distant particles and adding them close to the center of 

the normal distribution of the potential positions of the local parti-

cle that he currently investigates. This process pumps potential po-

sitions around. Since every action of the mathematician is inde-

pendent from previous or later actions, the process behaves as a 

Poisson process. 

 

The next step is best visualized using affine eigenspaces. In this 

case a sphere results with a thin atmosphere in which thermal 

streams of eigenspace patches circulate such that at the location of 

particles the atmosphere is compressed. Like the air molecules in 

the earth's atmosphere the eigenspace patches are circulating. Each 

particle has its own state function QPAD, which is denser on its 

center than on its tail. The circulation takes place due to the fact 

that eigenspace patches are taken from the tails of the state func-

tions of distant particles and added to the QPAD of the local parti-

cle.  

A coupled local state function pumps space patches taken from 

the tails of other state functions to the drain at its center and sup-

plies them to a background QPAD, which spreads them over its 

surround. In this way it reclaims space patches that were supplied 

by distant sources and supplies them in the form of local space 

patches. Thus the local background QPAD acts as a source where 

the local coupled state function acts as a drain of space patches. The 

process that does this can be characterized as a Poisson process. 

The result of the stream of space patches is a local space curva-

ture. 
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1.13 The HBM Palestra 

We introduce a special kind of space. This space can curve. Its 

curvature can change. So, the space can move. It is space that 

moves with respect to a flat coordinate system. If you attach a sepa-

rate coordinate system to the moving space, then you can describe 

what is happening. For example it can be described by a quaterni-

onic distribution. Use only the imaginary part of the values and the 

imaginary part of the parameter. Now you have a distribution that 

describes your special space. You can use this space as the parame-

ter space of still another function. For example you can use it as pa-

rameter space of a CPAD or a QPAD or any other field. 

In the Hilbert Book Model all state function QPAD’s and the 

fields that are derived from them or from their couplings, share the 

same parameter space. For that reason this common parameter 

space will be given a special name; the HBM Palestra24. This 

shared parameter space spreads universe wide. It is the place where 

universe is located. 

The HBM Palestra does not correspond to the historic notions of 

ether25 that were used in physics. Instead it is defined by the de-

scriptions that are given in this section. 

In general QPAD’s are no more than special kinds of quaterni-

onic distributions. In the HBM some of the primary QPAD’s have a 

special interpretation as quantum state functions of elementary par-

ticles. In the HBM CPAD’s will also use the HBM Palestra as their 

                                                           
24 The name Palestra is suggested by Henning Dekant’s wive Sa-

rah. It is a name from Greek antiquity. It is a public place for train-

ing or exercise in wrestling or athletics 
25 http://en.wikipedia.org/wiki/Aether_theories 

http://en.wikipedia.org/wiki/Aether_theories
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parameter space. If CPAD’s are  used as quantum state functions, 

then the Hilbert space will use complex numbers for its inner prod-

uct. CPAD’s are especially suited to handle one dimensional or one 

parametric problems. 

The parameter space of a QPAD can be interpreted as a quater-

nionic distribution. It has itself a parameter space, which is formed 

by a flat 3D continuum. The Palestra is taken from the eigenspace 

of a location operator that resides in the Gelfand triple of the sepa-

rable Hilbert space. Only the imaginary part of the quaternionic dis-

tribution is used. It can be considered as a 3D Riemannian mani-

fold. The local metric defines the local curvature. What occurs in 

this manifold is described by the QPAD’s. It is also possible to use 

the real part of the Palestra. However, in that case the value repre-

sents the progression parameter and is a constant throughout the 

imaginary part of the Palestra. 

The Palestra is the playground of all what happens in fundamen-

tal physics. It is governed by a special kind of fluid dynamics 

(QFD). Things like charge density distributions, current density dis-

tributions, sources, drains, compressed regions and decompressed 

regions occur in this space. The QPAD's are not the transporters. 

They only describe the transport process. The action takes place in 

their shared parameter space, which is the Palestra. That’s how 

these QPADS’s can influence each other.  

1.13.1 Metric 

The Palestra is a continuous and compact space. It is character-

ized by a continuous quaternionic distribution ℘ that has a single 

sign flavor. This means that in the Palestra no reflections occur. ℘ 

defines local distances. Every location of the Palestra is character-

ized by a metric tensor, which defines at every location for every 

direction an infinitesimal distance. The infinitesimal progression in-

terval plays an important role in this local distance and is a invari-
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ant with respect to transformations that represent continuous sym-

metries. These transformations form a Lie group. The infinitesimal 

distance in the curved Palestra is defined as
26

 

 

  ( )      ( )   ∑
 ℘

   
   

     
    ( )      

 

The quaternionic distribution ℘( ) specifies the metric of the 

Palestra.    are coordinates in the flat parameter space of ℘( ). 

 

The infinitesimal distance    is quaternion valued. The     are 

real valued. The infinitesimal distance specifies the step along the 

four quaternionic base axes when in the parameter space of  ℘( ) 
infinitial steps     are taken along the    axes. 

 

         ( )           
              

 

 

We define the factors   ( ) as derivatives of the quaternionic 

distribution ℘( ) 
 

  ( )     ( )   
  ( )   

 ℘

   
  

 

They belong to the flat parameter space of the quaternionic dis-

tribution ℘( ). The quaternion values are all expressed in the same 

coordinate system, which has base numbers            .  The flat 

parameter space of ℘( )  also uses these coordinates. The intervals 

    can also be considered to be taken in that flat parameter space. 

                                                           
26 This approach differs from the approach of Mendel Sachs. 

(1) 

(2) 

(3) 
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    is an interval taken in the Palestra that is measured in the 

coordinates of the flat parameter space. Without curvature it equals 

      . This corresponds to special relativity. 

 

    is the infinitesimal spacetime interval   . (In this discussion 

we suppose it to be time-like). Apart from a constant factor it 

equals the progression interval   . It is directly related to the proper 

time interval   . 
 

         
 

  is the proper time. It is measured at the location of the ob-

served item. Thus it is independent of who is observing.  

   appears to correspond to the coordinate time interval     . 
 

       
                   

         

           
 

The coordinate time interval    follows from 

 

                        
                   

 

     
                     

 

  is the coordinate time. It is measured at the location of the ob-

server. It includes the time that information needs to arrive from the 

observed item to the location of the observer. 

 

The infinitesimal progression interval    is a model invariant of 

the HBM. The infinitesimal spacetime interval    is a physical in-

variant. For that reason the infinitesimal spacetime interval    is 

used for the definition of the local spacetime metric tensor. 

(4) 

(5) 

(6) 
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By using the spacetime interval for defining the metric, the Pa-

lestra becomes a pseudo-Riemannian manifold with a Minkowski 

signature.  

When instead the coordinate time interval is used as the control-

ling interval for the metric, the Palestra is a Riemannian manifold 

with an Euclidean signature. The coordinate time interval is not a 

physical invariant. 

1.13.2 Lie groups 

When the spacetime interval is used as a physical invariant, then 

the corresponding Lie group is the Einstein group27. The Einstein 

group relates to a 1+3D pseudo Riemannian space with Minkowski 

signature. 

1.13.3 Path of a QPAD 

Even when a QPAD travels a geodesic, the curvature and the 

torque of the path go together with the existence of extra fields28. 

1.14 Dynamics control 

What happens in Palestra can be distinguished in two types of 

dynamics;  

 the dynamics of particles and  

 the dynamics of fields. 
The dynamics of particles is controlled by quantum mechanics. 

The dynamics of fields is controlled by quantum fluid dynamics. 

                                                           
27 http://en.wikipedia.org/wiki/Einstein_group#The_Einstein_group 

See: Symmetry in electrodynamics; M. Sachs 
28 Appendix; Path of the quantum state function 

http://en.wikipedia.org/wiki/Einstein_group#The_Einstein_group
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1.14.1 Quantum mechanics 

Quantum mechanics is well treated by conventional quantum 

physics. It concerns movements of particles and oscillations of par-

ticles or oscillations inside conglomerates. It is usually treated in 

the realm of a complex Hilbert space. The typical governing equa-

tion is the Schrödinger equation. 

1.14.2 Quantum fluid dynamics 

Quantum fluid dynamics relies on the use of QPAD’s as state 

functions. It concerns movements of fields. It is treated in the realm 

of a quaternionic Hilbert space. The typical governing equation is 

an equivalent of the quaternionic format of the Dirac equation. The 

generic equation is the elementary coupling equation and it is best 

interpreted as balance equation. 

 

What happens in the HBM Palestra is controlled by Quantum 

Fluid Dynamics (QFD). QFD differs from conventional fluid dy-

namics in that in QFD the charge density distributions and current 

density distributions describe probable locations and paths in their 

own parameter space, while in conventional fluid dynamics these 

distributions describe actual locations and paths that occur in an 

considered medium such as a gas or liquid. That is why in QFD the 

charge density distributions and current density distributions are 

combined in quaternionic probability amplitude distributions, while 

in conventional fluid dynamics they are located in scalar and vector 

fields. 

1.14.3 Elementary coupling 

Elementary coupling forms the base of particle generation. The 

elementary coupling equation couples two QPAD’s ψ and φ. 
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     φ 

 

Here   is the quaternionic nabla and   is a coupling factor. 

This equation immediately delivers a formula for the coupling 

factor  . 

 

∫ φ    
        

 ∫ φ φ  
        

   

 

When compared to the Dirac equation and the Majorana equa-

tion the two QPAD’s are sign flavors of the same basic QPAD. 

With eight sign flavors for each QPAD, this results in 64 different 

elementary coupling equations29. However, when   φ it can be 

shown that   must be zero. In that case the QPAD must either be 

zero or it must oscillate. 

Thus the restricted elementary coupling equation results in 56 

particles and 8 waves. The particles are attached to an eigenvector 

of the (particle) location operator and the waves are attached to an 

eigenvector of the canonical conjugate of the (wave) location op-

erator. 

In many cases the generated particles can be attributed to mem-

bers of the standard model. However, the standard model shows 

generations that do not yet show in this simple model. It means that 

there are three versions of m or with other words there are three 

generations of the pair {   }. It might be that the restriction that 
ψ and φ are sign flavors of the same base QPAD is too strong. 

 
The elementary coupling provides the generated particle 

with four properties: 

 The coupling factor m 

                                                           
29 See table of elementary particles. 

(1) 

(2) 
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 An electric charge 

 A spin 

 A color charge 
 

In higher order couplings the first three properties are preserved. 

In fact these properties are sources of new fields. All color 

charges appear to combine to white. Higher order couplings 

couple elementary particles with each other and with fields. 

1.15 Fields 

In the HBM fields consist of 

1. Oscillating QPAD’s (waves) 

2. Fields coupled in elementary particles 

a. State function QPAD’s  

b. Constructed background QPAD’s  

3. Coupling property fields 
 

This leads to two categories of physical fields 

 Oscillating QPAD’s (waves) 

 Coupling property fields 

1.16 Quaternionic versus complex quantum physics 

Quaternionic quantum physics provides a different view on the 

configuration and behavior of fields and tiny particles than complex 

quantum physics provides. The choice does not affect physical real-

ity. Nature stays the same. 

Quaternionic quantum physics treats its subject by applying 

quantum fluid dynamics. It is well suited for the analysis of quasi-

static multidimensional problems such as the geometry of fields and 

elementary particles. 
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Complex quantum physics is better suited for the analysis of sit-

uations where only a single spatial dimension is involved, such as 

oscillations and movements along a path. 
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2 History 

In its first years, the development of quantum physics occurred 

violently. Little attention was paid to a solid and consistent founda-

tion. The development could be characterized as delving in un-

known grounds. Obtaining results that would support applications 

was preferred above a deep understanding of the fundamentals.  

 

The first successful results were found by Schrödinger and Hei-

senberg. They both used a quantization procedure that converted a 

common classical equation of motion into a quantum mechanical 

equation of motion. Schrödinger used a state function that varied as 

a function of its time parameter, while operators do not depend on 

time. Heisenberg represented the operators by matrices and made 

them time dependent, while their target vectors were considered to 

be independent of time. This led to the distinction between the 

Schrödinger picture and the Heisenberg picture.  

 

Somewhat later John von Neumann and others integrated both 

views in one model that was based on Hilbert spaces. Von Neu-

mann also laid the connection of the model with quantum logic. 

However, that connection was ignored in many of the later devel-

opments. Due to the restrictions that are posed by separable Hilbert 

spaces, the development of quantum physics moved to other types 

of function spaces. The Hilbert Book Model chooses a different 

way. It keeps its reliance on quantum logic, but attaches fields, in-

cluding state functions, in the region between the Hilbert space and 

its Gelfand triple. 

 

Due to the integration of both pictures in a single Hilbert space, 

it becomes clear that the Schrödinger picture and the Heisenberg 

picture represent two different views of the same situation. It ap-
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pears to be unimportant were time is put as a parameter. The im-

portant thing is that the time parameter acts as a progression indica-

tor. This observation indicates that the validity of the progression 

parameter covers the whole Hilbert space. With other words, the 

Hilbert space itself represents a static status quo. Conventional 

quantum physics simply ignores this fact. 

 

In those days quaternions played no role. The vector spaces and 

functions that were used all applied complex numbers and observa-

bles were represented with self-adjoint operators. These operators 

are restricted to real eigenvalues. 

 

Quaternions were discovered by the Irish mathematician Sir 

William Rowan Hamilton30 in 1843. They were very popular during 

no more than two decades and after that they got forgotten. Only in 

the sixties of the twentieth century, supported by the discovery of 

Constantin Piron that a separable Hilbert space ultimately may use 

quaternions for its inner product, a short upswing of quaternions 

occurred. But quickly thereafter they fell into oblivion again. Cur-

rently most scientists never encountered quaternions. The function-

ality of quaternions is taken over by complex numbers and a com-

bination of scalars and vectors and by a combination of Clifford 

algebras, Grassmann algebras, Jordan algebras, alpha-, beta- and 

gamma-matrices and by spinors. The probability amplitude func-

tions were taken to be complex rather than quaternionic. Except for 

the quaternion functionality that is hidden in the α  β  γ matrices, 

hardly any attention was given to the possible sign selections of 

quaternion imaginary base vectors and as a consequence the sign 

flavors of quaternionic distributions stay undetected. So, much of 

the typical functionality of quaternions still stays obscured. 

                                                           
30 http://en.wikipedia.org/wiki/William_Rowan_Hamilton  

http://en.wikipedia.org/wiki/William_Rowan_Hamilton
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The approach taken by quantum field theory departed signifi-

cantly from the earlier generated foundation of quantum physics 

that relied on its isomorphism with quantum logic. Both QED and 

QCD put the quantum scene in non-separable function spaces. The 

state function is only seen as a complex probability amplitude dis-

tribution. Spinors and gamma matrices are used to simulate quater-

nion behavior. Physical fields are commonly seen as something 

quite different from state functions. However they are treated in a 

similar way. 

 

The influence of Lorentz transformations31 gives scientists the 

impression that space and time do not fit in a quaternion but instead 

in a spacetime quantity that features a Minkowski signature. Length 

contraction, time dilation and space curvature have made it improb-

able that progression would be seen as a universe wide parameter32.  

 

These developments cause a significant deviation between the 

approach that is taken in contemporary physics and the line accord-

ing which the Hilbert Book Model is developed. 

2.1 Criticism 

Due to its unorthodox approach and controversial methods the 

Hilbert Book Model has drawn some criticism 

2.1.1 Model 

Question:  

                                                           

Appendix; Lorentz transformation 
32 However progression and proper time appear to be the same 

kind of parameter and are physical invariants. 
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The separable Hilbert space has clearly some nasty restrictions. 

Why can quantum physics not be completely done in the realm of a 

rigged Hilbert space? 

Answer: 

In that case there is no fundamental reason for a separate intro-

duction of fields in QP. It will also not be possible to base QP on 

traditional quantum logic (TQL), because the isomorphism that ex-

ists between TQL and separable Hilbert spaces (SHS’s) does not 

exist between TQL and a rigged Hilbert space (RHS). See figure 1. 

In the HBM the quaternionic probability amplitude distributions 

(QPAD’s) on which fields are based, link the SHS with its Gelfand 

triple {Φ SHS Φ’}, which is a RHS. However, the QPAD’s are not 

part of the SHS and are not part of the RHS. The HBM can be pic-

tured as: 

 

TQL⇔SHS⇒{QPAD’s}⇒RHS≡{Φ SHS Φ’} 
 

The isomorphism ⇔ is replaced by incongruence ⇐≠⇒ in 
 

TQL⇐≠⇒RHS 

2.1.2 Quaternions 

Remark1: 

A tensor product between to quaternionic Hilbert spaces cannot 

be constructed. So it is better to stay with complex Hilbert spaces. 

Remark2: 

The notion of covariant derivative, which is an important con-

cept on quantum field theory, offers problems with quaternionic 

distributions, so it is better to stay with a complex representation. 

(1) 

(2) 
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This is due to the fact that for quaternionic distributions in gen-

eral33: 

 

 (   ) ≠          (  )   
 

Response: 

The HBM proves that solutions exist that do not apply tensor 

products or covariant derivatives. 

 

In fact the subject can be reversed: 

If a methodology is in conflict with a quaternionic approach, 

then it must not be applied as a general methodology in quantum 

physics. A complex number based method can best be applied in 

special, one dimensional or one parametric cases. 

2.1.3 Quaternionic versus complex probability ampli-

tude distributions 

Remark 1 

Conventional physics solves everything by using complex prob-

ability amplitude distributions (CPAD’s).  

Remark 2 

It is sufficient to stay with that habitude. Quaternionic probabil-

ity amplitude distributions (QPAD’s) might be unphysical. 

 

Response: 

QPAD’s extend the functionality of CPAD’s and make it possi-

ble to interpret equations of motion as balance equations. They can 

be considered as a combination of a scalar potential and a vector 

                                                           
33 The quaternionic nabla can be split in its parts see below: Dif-

ferentiation 

(1) 
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potential or as the combination of a charge density distribution and 

a current density distribution. 

Their sign flavors enable the interpretation of spinors as a set of 

sign flavors that belong to the same base QPAD. This throws new 

light on the Dirac and Majorana equations. 

Coupling of QPAD’s can be related to local curvature. This in-

terpretation is impossible with CPAD’s. 

 

2.2 Consequence 

The application of the HBM requests from physicists that they 

give up some of the conventional methodology and learn new 

tricks. 

The HBM allows using complex number based quantum physics 

aside quaternion based quantum physics. It introduces fields as ob-

jects that are separated from the separable Hilbert space as well as 

from the corresponding Gelfand triple. 
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PART II 
The Hilbert Book 
Model 
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3 INGREDIENTS 

The most intriguing ingredients of the model are quaternions, 

quaternionic distributions and quaternionic probability amplitude 

distributions (QPAD’s), both equipped with their sign flavors. 

3.1 Role of the particle locator operator 

The particle locator operator 𝔖 is one of the operators for which 

the eigenvectors are coupled to a continuum called Palestra that is 

related to the eigenspace of a corresponding location operator that 

resides in the Gelfand triple. 

Palestra may be curved. It means that this continuum is a quater-

nionic function of the eigenvalues of another location operator. The 

eigenspace of that operator is flat. It is covered by the number space 

of the quaternions. Palestra has the same sign flavor as this parame-

ter space. Without curvature its parameters and the corresponding 

values are equal. 

For each eigenvector of the particle locator operator Palestra acts 

as parameter space for the QPAD that connects this eigenvector 

with the eigenspace of the corresponding location operator that re-

sides in the Gelfand triple. It means that Palestra is identical with 

that eigenspace. The QPAD can be visualized as a fuzzy funnel that 

drops stochastically inaccurate observation values onto the particle. 

 

The particle location operator has a canonical conjugate, which 

is the corresponding particle momentum operator. This corresponds 

to a different particle eigenvector, a different QPAD, a different 

corresponding eigenspace in the Gelfand triple and a different cor-

responding operator. For example the parameter space of the new 

QPAD is the canonical conjugate of Palestra and the corresponding 

momentum operator in the Gelfand triple is the canonical conjugate 
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of the discussed location operator. Without any curvature the old 

and the new QPAD would be each other’s Fourier transform. 

3.2 QPAD’s 

All elementary particles correspond to different eigenvectors of 

the particle locator operator 𝔖. 
Each elementary particle has its own QPAD that acts as its 

state function. 
 

Taken over a set of subsequent page numbers two pictures are 

possible. In both pictures existing particles are characterized by 

their own state function QPAD. Thus for particles their state func-

tion QPAD is a stable factor. 

According to the Heisenberg picture the QPAD is static between 

subsequent HBM pages, but links to different eigenvectors of the 

particle location operator. 

According to the Schrödinger picture the QPAD varies between 

subsequent HBM pages, but links to the same eigenvector of the 

particle location operator. 

In both pictures a location observation must deliver the same re-

sult. 

 
If we want to categorize particles, then we must categorize 

their state function QPAD’s. But, we also must take the back-
ground QPAD in account to which the state function QPAD is 
coupled.  

 
Some QPAD’s stay uncoupled. These QPAD’s must oscillate34. 

They form elementary waves. All elementary waves correspond 

                                                           
34 See Free QPAD’s 
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to different eigenvectors of the wave locator operator �̃�, which is 
the canonical conjugate of 𝔖. 

 
If a QPAD has a well-defined location in configuration space, 

then it does not have a well-defined location in the canonical 
conjugate space. So for this investigation we better consider 
both locations together. 

A possible strategy is to use the superposition of the QPAD 
and its Fourier transform. This solution distinguishes QPAD’s 
that, apart from a scalar, are invariant under Fourier transfor-
mation35.  

An important category of invariants is formed by QPAD’s 
that have the shape  ( )     , where   is a constant and   is 
the distance from the central location3637. 

Further it is sensible to introduce for each category the no-
tion of an average QPAD. Determining the average QPAD either 
involves integration over full Palestra or it involves integration 
over the canonical conjugate of Palestra. 

Another procedure constructs the superposition of all tails of 
a category of QPAD’s at a certain location. This produces a 
background QPAD. For each location such a background QPAD 
exists, but it may differ per location. However, when a large 
category is involved, it can only differ very marginally for 
neighboring locations. 

                                                           
35 See Appendix; Functions invariant under Fourier transform 
36 See 

http://en.wikipedia.org/wiki/Hankel_transform#Some_Hankel_transform_pairs  
37 Also see http://en.wikipedia.org/wiki/Bertrand's_theorem  

http://en.wikipedia.org/wiki/Hankel_transform#Some_Hankel_transform_pairs
http://en.wikipedia.org/wiki/Bertrand's_theorem
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3.3 Uncertainty 

The fact that QPAD’s are probability amplitude distributions 
makes them the main source of the indeterminism in the HBM. 
However, the fact that the particle location operator uses a 
QPAD and the momentum operator uses the Fourier transform 
introduces another source of indeterminism which is similar to 
the Heisenberg’s uncertainty. It is due to the properties of the 
Fourier transform. As a consequence the location operator and 
the momentum operator do not commute. This is equivalent to 
the Heisenberg uncertainty principle. 

3.4 Helmholtz decomposition 

A static QPAD consists of a charge density distribution and an 

independent current density distribution. The charge density distri-

bution corresponds to a curl free vector field and the current density 

distribution corresponds to a divergence free vector field. Any 

change in the currents goes together with extra field components 

that do not correspond to the charge density distribution or the cur-

rent density distribution. 

 

Inside a single HBM page the QPAD’s are static. Only taken 

over a range of HBM pages the Helmholtz decomposition is violat-

ed. 

3.5 QPAD vizualization 

If I was a good artist and I was asked to give an artist impression 

of the magic wand of a magician, then I would not paint a dull rod 

or a stick with a star at the end. Instead I would draw a very thin 

glass rod that has a sparkling fuzzy ball at its tip. A static view of 

that ball would be like: 
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  Figure 4: Typical isotropic QPAD 

 

A dynamic view would show how the sparkles move inside out 

(source) or outside in (drain). This fuzzy ball is how a simple 

QPAD may look like when we could see it. In a static QPAD, uni-

formly moving virtual charge carriers replace the sparkles. The 

movement need neither be purely parallel nor purely radial, but in a 

static QPAD it must be uniform. The carriers may be interpreted as 

tiny patches that are taken from the continuum background that 

forms the parameter space of the QPAD. 

 

Even when they are attenuated or spatially or temporally spread 

by a binomial process, Poisson processes create a result that has a 

Poisson distribution. The output of an efficient Poisson process has 

a density distribution that comes close to a Gaussian distribution. A 

typical example QPAD might show such a Gaussian density distri-

bution. When actual electrical charges would be distributed this 

way, then this distribution creates a potential that has the shape of 

an error function. Already at a short distance from its center this 

function decreases very close to a 1/r dependence. At that distance 

the local potential would be the same as when a single large charge 

was put at the center. Instead our example has virtual charges. So it 

represents a single virtual charge at the center (or an ensemble of 
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properties of the carrier of that single charge). The raised potential 

is also virtual. Still it describes our example QPAD. 

The source that creates the above described fuzzy ball may be 

characterized as a Poisson process.38 

3.6 QPAD categories 

In the HBM QPAD’s exist in several categories: 

 A primary QPAD is linked to an eigenvector of an 

operator in separable Hilbert space. 

o Coupled state function QPAD’s are linked to 

the particle location operator 

o Free QPAD’s are linked to the canonical con-

jugate of the particle location operator, they 

must oscillate and form waves. 

 A composed QPAD is constructed from a superposi-

tion of primary QPAD’s 

3.7 Special composed QPAD’s 

We will consider a special ensemble of primary QPAD’s 

{ ψ (    )}.  

 The ψ (   ) are normalized: ∫ |ψ (   )|
      

 
. 

 The ψ (   ) must be spherically symmetric. 

 From a given minimal distance their modulus must 

decrease with radius   as    . 
 

The special composed QPAD’s are Fourier transform invariant 

and conform to Bertrand’s theorem39. 

                                                           
38 See: What image intensifiers reveal 
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3.7.1 The average QPAD 

The ensemble { ψ (   )} of the special composed QPAD’s has 

an average  (   ) 

3.8 The background QPAD 

Background QPAD’s are composed QPAD’s. A given back-

ground QPAD depends on the selection criterion that is used in the 

composition. Every sign flavor might have its own background 

QPAD. 

The ensemble { ψ (  )} is distributed randomly over the center 

points {  } in an affine parameter space. At a given point P in this 

space the superposition of all tails of the members of the ensemble 

{ ψ (  )} will be constructed. 

This superposition will be renormalized and then indicated by 

Φ(   ). 
Thus,  

 

∫|Φ(   )|      
 

 

 

In this superposition the largest contribution comes from the 

ψ (  ) for which the    is farthest from P. Further the directions of 

the imaginary part are reversed with respect to the directions in the 

ψ (  ). 
Especially at long distances, all differences are smoothed away 

via an averaging process. 

 

The result is that for a background QPAD that consist of the su-

perposition of the tails of all QPAD’s in universe: 

                                                                                                              
39 http://en.wikipedia.org/wiki/Bertrand%27s_theorem  

(1) 

http://en.wikipedia.org/wiki/Bertrand%27s_theorem
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Φ(   ) =   (   ) 
 

We will interpret Φ(   ) as the background QPAD. 

The approach taken here, shows similarity with the approach of 

Dennis Sciama in his paper: “On the origin of inertia”40. 

3.8.1.1 Uniform movement 

Due to its construction the location as well as the shape of the 

background QPAD is very stable. In the HBM the background 

QPAD is reconstructed at every subsequent page. As long as the 

whole QPAD remains static, it can be reconstructed at a displaced 

location. Thus, as long as this movement is contained in its current 

density distribution, the background QPAD can move freely in a 

uniform way. 

In principle every location has its own background QPAD. 

However, it makes only sense to couple the locations of particles 

with a local background QPAD. If this coupling is strong then it 

acts as a sticky resistance against acceleration of the coupled parti-

cle. 

3.8.2 Isotropy 

Source QPAD’s are isotropic. Drain QPAD’s are also isotropic 

and are the conjugate of a corresponding source QPAD. 

Anisotropic QPAD’s are hybrids. In one or two dimensions they 

correspond to source QPAD’s. In the other dimensions they corre-

spond to a drain QPAD. 

                                                           
40 See: 

http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 

(2) 

http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
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Oscillating QPAD’s oscillate between source modes and drain 

modes. They usually can be described by spherical or linear har-

monic (quantum) oscillators. A special case of the oscillating 

QPAD is a plain wave. 

3.9 Physical fields 

Physical fields appear in two categories41 

 The first category physical field concerns free prima-

ry QPAD’s. 

 The second category physical field relate to proper-

ties of coupled QPAD’s 
 

Each of the members of the second category of physical fields 

represents the influences of a single property of a coupled pair 

of QPAD’s. 

 

The two categories are fundamentally different. They behave 

differently42. 

3.10 Inertia 

Inertia43 is based on the fact that all particles in universe influ-

ence a selected local particle. Since this influence is isotropic it 

usually does not disturb the particle. This condition holds as long as 

the particle is located stationary or moves uniformly. In that case 

the connected QPAD is static. However, when the particle acceler-

ates, according to field theory, this goes together with the existence 

                                                           
41 For more details see chapter 4. 
42 This becomes apparent at the event horizon of black holes. 
43 Appendix; The universe of items 



73 

of an extra field that becomes part of the particle’s QPAD and that 

counteracts the acceleration. 

 

The background QPAD that is coupled to the state function 

QPAD at the right side of the elementary coupling equation44 repre-

sents the influence of the universe on the local particle. It represents 

the superposition of all tails of a category of state functions of par-

ticles that exist in universe. For that reason it is the source of iner-

tia. This is shown in the elementary coupling equation. 

 

       

 

For the restricted elementary coupling equation the QPAD’s 

  and   are sign flavors of the same base QPAD  , which on its 

turn has the same sign flavor as Palestra has. 

For elementary fermions the coupled field   equals the isotropic 

background field Φ. 

For electrons the state function   equals   Φ   
The formula (1) holds for all massive elementary particle types. 

It holds for elementary fermions as well as for the elementary bos-

ons that couple to other sign flavors45 than Φ.  

 

If the restricted elementary coupling equation holds then, for 

every QPAD sign flavor    that acts as a state function of an ele-

mentary particle, exists a background QPAD    that has the same 

base QPAD  . However    will also suit as base QPAD. The cor-

responding particle type is fully characterized by the pair {     }  
These facts are in detail treated in the section on particle physics. 

 

                                                           
44 See Elementary particles 
45 See Quaternions; Sign selections 

(1) 



74  

According to equation (1) the state function QPAD is rather 

strongly coupled to the local background QPAD. The equation de-

scribes the situation of an independently moving particle. 

In atoms the electrons oscillate around the nucleus. There these 

particles move more freely. They are still coupled to the centrally 

located background QPAD, but the coupling is rather loose. Equa-

tion (1) does not describe that situation. Instead of the Dirac equa-

tion, the Klein-Gordon equation fits more appropriately. 

 

The background QPAD’s play the role that is thought for the 

Higgs field46. 

3.11 Coupling and curvature 

When a local state function QPAD is coupled to a local back-

ground QPAD, then the background QPAD can be considered as a 

source that supplies space patches to the local state function QPAD. 

On its turn the differential of the local state function QPAD acts as 

a drain. Thus, the coupled system pumps space taken from the rest 

of the universe to the locations where the local state function 

QPAD varies. These flowing space patches form part of the space 

that the eigenspace    of the location operator that resides in the 

Gelfand triple has extra with respect to the eigenspace    of the 

particle location operator that resides in the separable Hilbert space. 

Otherwise said: the eigenspace    compresses via the state function 

QPAD to the eigenspace    and expands back via the coupled 

background QPAD to eigenspace   . The observer that uses    as 

his observation space, experiences a local compression of his ob-

servation space at the location of the observed QPAD. This can be 

expressed by a local curvature of the observation space. 

                                                           
46 Sign flavors may complicate this picture. 
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As extra detail can be said that the source and the drain act as 

Poisson processes that cause a Gaussian distribution of the patches 

of space that flow in/out the drain/source location. 

 

The moving space patches may be interpreted as virtual carriers 

of the properties that characterize the coupling event. 

The coupling properties themselves act as sources of second cat-

egory physical fields. These are known as second category physical 

fields. In the GRT based Kerr-Newman metric equation47 similar 

properties act as sources of curvature. 

  

                                                           
47 The Kerr-Newman equation is NOT part of the HBM. It is on-

ly used for comparison. 
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3.12 Hyper-complex numbers 

Hyper-complex numbers form categories that are ordered with 

respect to their dimension. The dimension   takes the form   
  , where   is a non-negative integer. A hyper-complex number of 

dimension   can be obtained from a pair of hyper-complex num-

bers of dimension     via a construction algorithm. Several con-

struction algorithms exist. The most popular is the Cayley-Dickson 

construction48. A less known construction algorithm is the 2
n
-on 

construction of Warren Smith49. This construction delivers numbers 

that in the higher dimensions retain better arithmetic capabilities. 

Up and including the octonions the two construction algorithms de-

liver the same numbers. The sedions differ from the 2
4
-ons. 

 

In their lower m dimensions the 2
n
-ons behave similarly to the 

2
m

-ons.  

The 2
n
-ons have n independent imaginary base vectors. As a 

consequence the 2
n
-ons feature n independent sign selections or 

when independent directions are considered it are 2
n
  independent 

sign selections. 

Both construction methods ignore these sign selections. Sign se-

lections play a crucial role in this paper. 

3.13 Quaternions 

A quaternion is a 1+3 dimensional hyper-complex number. It 

has a one dimensional real part and a three dimensional imaginary 

part. As a result, it can be seen as the combination of a real scalar 

and a three dimensional vector.  

                                                           
48 http://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction  
49 Appendix; 2n-ons, See scorevoting.net/WarrenSmithPages/homepage/nce2.ps 

 

http://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction
file:///C:/web/NewWebSite/English/Science/scorevoting.net/WarrenSmithPages/homepage/nce2.ps
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The quaternions form a division ring50. According to the Fro-

benius theorem51, the only finite-dimensional division algebras over 

the reals are the reals themselves, the complex numbers, and the 

quaternions. 

The coefficients {  } are real numbers. Bi-quaternions exist 

that have complex coefficients, but these do not form a division 

ring. 

 

3.13.1 Sign selections 

The quaternions possess two independent sign selection types. 

When directions are reckoned they constitute four independent sign 

selections. The conjugation  ⇔    inverts the sign of all imagi-

nary base vectors. It acts isotropic.  

 

                  
 

The reflection  ⇔    inverts a single imaginary base vector and 

for  

that reason it acts anisotropic.  

 

                  
 

Here, the base vector   is selected arbitrarily. 

                                                           
50 http://en.wikipedia.org/wiki/Division_ring  
51 http://en.wikipedia.org/wiki/Frobenius_theorem_(real_division_algebras)  

(1) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Division_ring
http://en.wikipedia.org/wiki/Frobenius_theorem_(real_division_algebras)
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The four sign selections can be mixed. They generate eight sign 

states.  

Thus, if the three independent directions in which reflections can 

occur are also taken into account, then eight different sign selec-

tions are possible.  

These sign selections are color coded as is shown in figure 2.  

Individually the conjugation and the reflection both flip the 

handedness of the external vector product of the imaginary part 

when both factors use the same sign selections. 
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3.13.2 Habits 

The addition works as in all division rings, however the product 

of two quaternions does not commute. 

3.13.2.1 Product rule 

The product rule is best expressed in the form of real scalars and 

3D vectors: 

 

        〈   〉              

 

〈   〉                 
 

     (         )   (         )
  (         ) 

 

        

 

3.13.2.2 Norm 

The norm or modulus is defined by: 

 

| |   √     〈   〉  

 

3.14 Quaternionic distributions 

Several forms of quaternionic distributions exist. Two forms are 

relevant for the HBM. 

 

A curved coordinate system can be related to a flat coordinate 

system via a quaternionic distribution. The flat coordinate system 

(1) 

(2) 

(3) 

(4) 

(5) 
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plays the role of parameter space. On its turn the curved coordinate 

system can also play the role of a parameter space. It does that for 

quaternionic probability amplitude distributions (QPAD’s). In the 

HBM, Palestra is the parameter space that is shared by all QPAD’s 

, all CPAD’s and all derived fields. 

 

A quaternionic probability amplitude distribution 52 is a quater-

nionic distribution. Its value can be split in a real part that can be 

interpreted as a charge density distribution and an imaginary part 

that can be interpreted as a current density distribution. The squared 

modulus of the value can be interpreted as the probability density of 

the presence of the carrier of the charge. The charge can be any 

property of the carrier or it stands for the ensemble of the properties 

of the carrier. 

  

                                                           
52 http://en.wikipedia.org/wiki/Probability_amplitude treats complex probability 

amplitude distributions. 

http://en.wikipedia.org/wiki/Probability_amplitude
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3.14.1 Sign flavors 

 The quaternions that form the values of a quaternionic distribu-

tion must all feature the same set of sign selections. This fact at-

taches a sign flavor to each quaternionic distribution. Quaternionic 

distributions come in eight sign 

flavors53. We indicate color by an 

extra index:          .  ̅  ̅  ̅ 

are anti-colors. See figure. The 

right column shows the handed-

ness of the distribution. We will 

use the symbol   or    for the 

sign flavor of the quaternionic 

distribution that has the same sign 

flavor as its parameter space. 

However, selecting    as base 

instead of     may work as well. 

Since    acts as background 

QPAD for fermions, it might be a 

better choice. 

 

Figure 5: Sign flavors. 

 

We will use 

 

            

 

                                                           
53 The notion of “sign flavor” is used because for elementary 

particles “flavor” already has a different meaning. 

(1) 
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Often the symbols   and    will be used instead of the symbols 

   and   . 

 

3.14.2 QD multiplication 

What happens when quaternions from different sign flavors will 

be multiplied? 

 

1. First a reference sign flavor is selected.  

2. This sign flavor is taken to be the sign flavor of the 

distribution that will receive the result. 

3. The factors are first brought to this reference sign se-

lection. 

4. In this process nothing changes in the values of the 

quaternions. 

5. After that the multiplication takes place. 

6. The result is delivered in the reference sign flavor. 
 

With other words the multiplication takes place with the hand-

edness that is defined in the target distribution. 

3.14.3 Differentiation and Fourier transform 

A quaternionic distribution f(q) can be differentiated54. 

 

 ( )     ( )      ( )  〈   ( )〉     ( )

     ( )  (    ( )) 

 

                                                           
54 For more details, see Appendix; Quaternionic distributions, 

(1) 
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The colored   and   signs refer to the influence of conjugation 

of  ( ) on quaternionic multiplication. The  sign refers to the in-

fluence of reflection of  ( ). 
In the Palestra    represents the derivative with respect to pro-

gression. It is not the derivative with respect to coordinate time. 

In this section, the parameter q is supposed to be taken from a 

non-curved parameter space. With that precondition, in Fourier 

space differentiation becomes multiplication with the canonical 

conjugate coordinate   and therefore the equivalent equation be-

comes: 

 

g̃( )    ̃( )

      ̃( )  〈   ̃( )〉     ̃( )

    ̃ ( )  (    ̃( )) 

 

For the imaginary parts holds: 

 

 ( )       ( )      ( )  (    ( )) 

 

 ̃( )      ̃( )     ̃ ( )  (    ̃( )) 

3.14.4 Extra freedom 

The solution  ( ) of  

 

 ( )     ( ) 
 

Is determined apart from a gauge term  ( ) 
 

 ( )    ( ( )    ( )) 
 

(2) 

(3) 

(4) 

(1) 

(2) 
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Where  

 

  ( )    
 

This leads to three equations: 

 

    ( )  〈   ( )〉    
 

    ( )      ( )    
 

   ( )    
 

This leads to the existence of    
 

 ( )     ( ) 
 

3.14.5 Spinors and matrices 

In contemporary physics complex probability amplitude distri-

butions (CPAD’s) are used rather than QPAD’s. Spinors and matri-

ces are used to simulate QPAD behavior for CPAD’s. 

 

A spinor [ ] is a 1×4 matrix consisting of CPAD’s that repre-
sent the sign flavors of a QPAD. Sometimes the spinor is repre-
sented as a 1×2 matrix. 

 
The   and   matrices influence the elements of spinor [ ]. 
 

   [
  
   

] 

 

(3 

(4) 

(5) 

(6) 

(7) 

(3) 

(4) 
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   [
  
   

] 

 

   [
  
   

] 

 

  [
  
  
] 

 

    and   represent imaginary base vectors of the simulated qua-

ternion.   represents the conjugation action for the spinor. 

 

A relation exist between          and the Pauli55 matrices 

         : 
 

   [
    
  
]     [ 

   
  

]     [
  
   

] 

 

                       
 

This combination is usually represented in the form of gamma 

matrices. 

In Dirac representation, the four contravariant gamma matrices 

are 

 

   [

    
    
     
     

]     [

    
    
     
     

]   

 

                                                           
55 http://en.wikipedia.org/wiki/Pauli_matrices  

(5) 

(6) 

(7) 

(8) 

(9) 

http://en.wikipedia.org/wiki/Covariance_and_contravariance
http://en.wikipedia.org/wiki/Pauli_matrices
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   [

     
    
    
     

]     [

    
     
     
    

]  

 

It is useful to define the product of the four gamma matrices as 

follows: 

 

                 [

    
    
     
     

] 

 

The gamma matrices as specified here are appropriate for acting 

on Dirac spinors written in the Dirac basis; in fact, the Dirac basis 

is defined by these matrices. In the Dirac basis56: 

 

   [
  
   

]     [    

    
]  

    [
  
  
] 

 

This corresponds with     
 ,      . 

Apart from the Dirac basis, a Weyl basis exists 

 

       [
  
  
]     [    

    
]  

    [
   
  

] 

 

The Weyl basis has the advantage that its chiral projections57 

take a simple form: 

                                                           
56 http://en.wikipedia.org/wiki/Gamma_matrices#Dirac_basis  

(10) 

(11) 

(12) 

http://en.wikipedia.org/wiki/Chirality_(physics)
http://en.wikipedia.org/wiki/Gamma_matrices#Dirac_basis
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     (    
 )[ ]  [

  
  
] [ ] 

 

     (    
 )[ ]  [

  
  
] [ ]  

 

[  ]  [
  
  
] [ ] 

3.14.6 Continuity equation 

When applied to a quaternionic probability amplitude distribu-

tion (QPAD), the equation for the differentiation leads to a continu-

ity equation58. 

 

When   ( ) is interpreted as a charge density distribution, then 

the conservation of the corresponding charge59 is given by the con-

tinuity equation: 

 

Total change within V = flow into V + production in-

side V 

 
 

  
∫       

 

 ∮  ̂  
 

 
   

 

 ∫     

 

 

 

∫       

 

 ∫〈   〉   

 

 ∫     

 

 

 

                                                                                                              
57 http://en.wikipedia.org/wiki/Chirality_(physics)  
58 See: http://en.wikipedia.org/wiki/Reynolds_transport_theorem  
59 Also see Noether’s laws: http://en.wikipedia.org/wiki/Noether%27s_theorem 

(13) 

(14) 

(15) 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Chirality_(physics)
http://en.wikipedia.org/wiki/Reynolds_transport_theorem
http://en.wikipedia.org/wiki/Noether%27s_theorem
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Here  ̂ is the normal vector pointing outward the surrounding 

surface S,  (   ) is the velocity at which the charge density 

  (   ) enters volume V and    is the source density inside V. In 

the above formula   stands for 

          
 

It is the flux (flow per unit area and unit time) of    . 
 

The combination of   (   ) and  (   ) is a quaternionic skew 

field  (   ) and can be seen as a probability amplitude distribution 

(QPAD). 

 

       

 

 (   )  (   ) can be seen as an overall probability density dis-

tribution of the presence of the carrier of the charge.   (   ) is a 

charge density distribution.  (   ) is the current density distribu-

tion. 

The conversion from formula (2) to formula (3) uses the Gauss 

theorem60. This results in the law of charge conservation:  

 

  (   )
     (   )

 〈  (  (   ) (   )     (   ))〉 

 

     (   )  〈   (   )   (   )〉 
 

     (   )  〈 (   )    (   )〉
 〈   (   )〉   (   ) 

 

                                                           
60 http://en.wikipedia.org/wiki/Divergence_theorem  

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
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 〈   (   )〉 
 

The blue colored ± indicates quaternionic sign selection through 

conjugation of the field  (   ). The field  (   ) is an arbitrary dif-

ferentiable vector function. 

 

〈     (   )〉    
 

 (   )      (   ) is always divergence free. In the follow-

ing we will neglect  (   ). 
 

Equation (6) represents a balance equation for charge density. 

What this charge actually is, will be left in the middle. It can be one 

of the properties of the carrier or it can represent the full ensemble 

of the properties of the carrier. 

 

This only treats the real part of the full equation. The full conti-

nuity equation runs: 

 

 (   )    (   )    (   )   (   ) 
 

      (   )  〈   (   )〉     (   )
     (   )

 (    (   )) 

 

     (   )  〈 (   )    (   )〉
 〈   (   )〉   (   )  

 

    (   )      (   )
     (   ) 

 

(7) 

(8) 
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 ( (  (   )    (   )   (   )

    (   )) 

 

  (   )
      (   )  〈 ( )    (   )〉
 〈   (   )〉   (   ) 

 

 (   )      (   )      (   ) 
 

 ( (  (   )    (   )   (   )

    (   ))) 

 

The red sign selection indicates a change of handedness by 

changing the sign of one of the imaginary base vectors. Conjuga-

tion also causes a switch of handedness. It changes the sign of all 

three imaginary base vectors. 

 

In its simplest form the full continuity equation runs: 

 

     

 

Thus the full continuity equation specifies a quaternionic distri-

bution   as a differential   . We can transform this equation in a 

coupling equation61 by introducing a coupling factor  : 

 

       

 

With other words, the coupling equation is a full continuity 

equation, where     is the source term and    is the correspond-

                                                           
61 See Elementary coupling equation. 

(9) 

(10) 
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ing drain. The qualification “full” means that both the real and the 

imaginary parts of the sources and drains are reckoned. 
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3.15 Hilbert space 

The unit sphere of the separable Hilbert space Ң is an affine 

space. All unit size eigenvectors end in this sphere.  

A normal operator in the separable Hilbert space has set of unit 

size eigenvectors that span the complete Hilbert space as an or-

thogonal base. For normal operators each eigenvector corresponds 

to an eigenvalue.  

This does not hold for the particle location operator and it also 

does not hold for the wave location operator. The wave location 

operator is the canonical conjugate of the wave position operator. 

For these operators the eigenvectors do not correspond directly with 

a fixed eigenvalue. In the quaternionic Hilbert space this link is a 

QPAD. In the complex Hilbert space this link is a CPAD. Further 

the eigenvectors do not span the whole Hilbert space. 

 

Particle location Wave location 

The particle location operator is 

a position operator. 

The wave location operator is a 

momentum operator. 

The particle location operator 

links a particle to its position  

The wave location operator 

links a wave to its momentum.  

For the particle location opera-

tor the eigenvectors are linked 

to the eigenvalue via a quantum 

state function 

For the wave location operator 

the eigenvectors are linked to 

the eigenvalue via a quantum 

wave function.  

Quantum state functions link ei-

genvectors of the particle loca-

tion operator to a position ei-

genvalue. 

Quantum wave functions link 

eigenvectors of the wave loca-

tion operator to a momentum 

eigenvalue. 

The parameter space of the 

quantum state function is the 

Palestra 

The parameter space of the 

quantum wave function is the 

canonical conjugate of Palestra 
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Taken over a set of subsequent page numbers two pictures are 

possible. In both pictures existing particles are characterized by 

their own quantum state function. Each elementary wave is charac-

terized with its own quantum wave function, which is the canonical 

conjugate of the quantum position function. 

According to the Heisenberg picture the quantum state function 

is static between subsequent HBM pages, but links to different ei-

genvectors of the particle location operator. 

According to the Schrödinger picture the quantum state function 

varies between subsequent HBM pages, but links to the same ei-

genvector of the particle location operator. 

In both pictures a location observation must deliver the same re-

sult. 

According to this view the state functions and wave functions 

carry the post conditions for the previous HBM page and the pre-

conditions for the next HBM page. They control temporal continui-

ty. This is best expressed in the Schrödinger picture. 

 

The eigenvectors of the locator operators are exceptional. They 

do not have a fixed eigenvalue. Instead these eigenvectors attach to 

a linking CPAD or QPAD, which on its turn is attached to the con-

sidered object. The eigenvalues of the location operator are not di-

rectly coupled to an eigenvector of that operator. Instead the linking 

probability amplitude distribution (PAD) intermediates and delivers 

the eigenvalue. The eigenvalue is taken from the HBM Palestra. 

The HBM Palestra is the parameter space that is shared by all state 

function QPAD’s. The Palestra corresponds to the eigenspace of an 

operator that houses in the Gelfand triple Ħ of the Hilbert space Ң. 

A quaternionic distribution maps the Palestra to a coordinate sys-

tem that overlays the number system of the quaternions. That flat 
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space is the eigenspace of still another operator that resides in the 

Gelfand triple. 

 

The Pauli principle introduces extra restrictions. Fermions that 

possess the same properties cannot obtain the same location value. 

In the Hilbert space the eigenvectors of the particle location opera-

tor that are attached to fermions are mutually orthogonal, but do not 

form a base of the full Hilbert space. 

 

When stepping from one HBM page to the next page, the state 

function QPAD’s install the tendency to keep the corresponding ei-

genvectors together such that the corresponding expected eigenval-

ues form a coherent and ordered set.  

 

The coupling between the eigenvectors of the particle locator 

operator and the Palestra is not precise. It is stochastic and its min-

imal size is of the order of the Planck-length. This granularity is 

due to the fact that the Hilbert space is separable and as a conse-

quence the set of eigenvalues is countable. That is why the granules 

in the surface of a black hole have this size. The surface of a black 

hole is an image of the unit sphere of a subspace of the Hilbert 

space where the eigenvectors of the particle location operator form 

an orthogonal base and all attached QPAD’s pack the eigenvalues 

together in an optimal way.  

Via the PAD, the eigenvectors of the particle locator operator all 

touch such a granule. The relation with quantum logic means that 

the Hilbert vector stands for a proposition that has a yes/no value. 

In case of the Hilbert vectors that are attached to the granules the 

yes/no value represents group membership. Thus each granule rep-

resents a bit of information. 
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For the eigenvectors of the particle locator operator a densest 

packaging exists. It means that in that condition the QPAD’s have 

shrunk to their smallest possible location difference. 
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4 PARTICLE PHYSICS 

This chapter treats the first level coupling. The result of that 

coupling are first level particles. These particles are solely created 

out of coupled primary QPAD’s and annihilate back into primary 

QPAD’s62. That is why these particles are called elementary parti-

cles. The zero-level of coupling stands for no coupling. It results in 

elementary waves. 

This section will not separate different particle generations. 

4.1 Elementary coupling equation 

First level particles appear to obey a special kind of (full) conti-

nuity equation. The generic equation is called the elementary cou-

pling equation. In this continuity equation the source term is repre-

sented by the coupled background QPAD φ. It is coupled to the 

state function QPAD  .   

 

     φ 

 

Here   is the quaternionic nabla and   is a coupling factor. 

   represents the derivative with respect to progression. 

The equation is a full continuity equation.   φ is the source 

term and    is the corresponding drain. 

This equation immediately delivers a formula for the coupling 

factor  . 

 

∫ φ    
        

 ∫ φ φ  
        

   

 

                                                           
62 In this chapter only QPAD’s are discussed. CPAD’s do not carry sign flavors. 

(1) 

(2) 
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For the antiparticle holds the conjugated equation. 

 

(  )    φ  
 

Apart from the conjugation, it looks exactly the same equation 

as (1), but the Palestra does not take part in the conjugation. In 

comparison with ”normal” elementary particles, the antiparticles 

act as if progression is reversed. 

4.1.1 Extra freedom 

Each solution   of  

 

     φ 

 

is also solution of  

 

 (   )    φ 

 

where 

 

     
 

This is a gauge transformation of  . 

4.1.2 Origin 

The elementary coupling equation did not fall from heaven. It is 

possible to use the following reasoning (which is not historical) 

 

     

 

(3) 

(1) 

(2) 

(3) 
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defines quaternionic differentiation.   is the quaternionic nabla 

and   and   are quaternionic distributions. The whole equation can 

be split in a real part and an imaginary part. 

 

     
 

is the form of the corresponding continuity equation63. It is also 

known as balance equation. Here   represents the source term. It is 

better known as the real part of the equation. 

 

       〈   〉       
 

The term 〈   〉 concerns the inner product of   and  . 

Continuity equations are known in integral format and in differ-

ential format. 

 

The next step is adding the coupling factor  . This results in the 

elementary coupling equation. 

 

       

 

The real parts of the quaternionic distributions are scalar fields. 

The imaginary parts of the quaternionic distributions are vector 

fields. 

 

Now the final step is the interpretation of the real parts as charge 

distributions, the imaginary parts as current distribution and the 

charge carriers as tiny patches of the parameter space of the distri-

butions. 

                                                           
63 Appendix; Differentiation; Continuity equation 
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This interpretation transforms   and   into quaternionic proba-

bility amplitude distributions (QPAD's) and the equations in equa-

tions that describe quantum physical phenomena. 

 

The last equation has a striking similarity with the quaternionic 

format of the Dirac equation and with the quaternionic format of 

the Majorana equation. This means that   represents a quantum 

state function of a particle. The equation couples   and   into a 

pair {   }, which represents the particle. 

4.2 Restricted elementary coupling 

Restricted elementary coupling means that the coupled QPAD’s 

are sign flavors of the same base QPAD. Both the Dirac equation 

and the Majorana64 equation belong to this type of elementary cou-

pling equation. 

For all restricted particles hold: 

 

         
 

      〈   
 〉       

 

        
     

        
 

For the antiparticle: 

 

            
 

The Fourier transform equivalents are 

                                                           
64 The Majorana particle is supposed to consist of the combina-

tion of a neutrino and an anti-neutrino. 

(1) 

(2) 

(3) 

(4) 
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   ̃   〈   ̃
 〉     ̃  

 

   ̃    ̃     ̃
      ̃  

 

   is generally known as the Hamiltonian65.   is the momentum. 

 

∫         

 

 

 

∫               

 

                

 

The factor    is real and non-negative. 

Further, the equation for coupling factor   is: 

 

∫ (      )   
 

   ∫(     )   
 

  ∫|  |    
 

 

 

An equivalent of the Lagrangian may look like 

 

                   
 

 

4.2.1 Dirac equation 

The best known equation of motion for elementary fermions is 

the Dirac equation. It is written using spinors and matrices. 

                                                           
65 However,    is the derivative with respect to progression (not 

coordinate time) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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The Dirac equation for a free moving electron or positron is 

known as: 

 

  [ ]  〈   〉[ ]    [ ] 
 

The Dirac matrices   and   give the spinor [ ] the function of a 

pair of QPAD’s. 

   represents derivative with respect to progression. 

This spinor equation can be converted into two quaternionic 

equations that act on the QPAD’s    and   : 
 

             
 

             

 

In the mass term the coupling factor   couples    and   . 

When     then    and    are not coupled. Further: 

 

     
       

 

In the left term of equations (2) and (3),   and    represent the 

state function of the particle. In the right side appears the back-

ground field. In that sense {     } and {     } represent each oth-

er’s antiparticle. 

 

Reformulating these equations gives 

 

         

 

  (    )   (    )   (    ) 
 

For the conjugated equation holds 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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  (    )   (    )   (    ) 
 

This implements the reverse flip. The corresponding particle is 

the antiparticle. 

 

{     }   {     } 

 

Both flips switch the handedness. 

 

Equations (5) and (7) are each other’s quaternionic conjugate. 

However, it must be noticed that all terms are conjugated, including 

the nabla operator, but the parameter space stays untouched. Thus 

equation (7) differs from equation (5). 

 

Summing the equations gives via 

 

        〈   〉 
 

the result 

 

      〈   〉        
 

The difference gives 

 

                  

 

Just reversing the sign flavors does not work. For the same 

QPAD  , the corresponding equation will contain extra terms: 

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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      (    )   (    )
                 

 

 (     〈   〉)  (        )     
 (     〈   〉) 

 

      〈   〉       
 

Thus if the reverse equation fits, then it will concern another 

QPAD configuration    that will not fit the original equation. 

The pair {       } that fits equation: 

 

            

 

represents a different particle than the electron {     }, 

which obeys equation (5). It also differs from the positron 

{     }, which obeys equation (7).  

 

Where the electron couples to the general background QPAD 

  , the new particle couples to the conjugate    of the general 

background QPAD   . The new particle is called a shadow of the 

positron. 

4.2.1.1 Correspondence principle 

The Dirac equation obeys the correspondence principle. 

 

        
 

              (  )    (   ) 
 

(13) 

(14) 

(1) 

(2) 
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This corresponds to the Klein Gordon equation. 

   represents derivative with respect to progression rather than 

with respect to coordinate time. 

4.2.1.2 The coupling factor 

Multiplying both sides of the equation of motion for the elec-

tron: 

 

         

 

with    and then integrate over the full parameter space gives: 

 

∫        
 

   ∫          
 

  ∫|  
 
|
 
   

 

    

 

Thus, the coupling factor   can be computed from the QPAD 

  . 

4.2.2 The Majorana equation 

The Majorana equation deviates from the Dirac equation in that 

is applies another sign flavor of the state function QPAD  . That 

other sign flavor is still coupled to the general background QPAD 

   . 
 

        
  

 

(3) 

(1) 

(2) 

(1) 
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The conjugated equation defines the antiparticle. 

 

         
   

 

The particle is represented by the ordered pair {     }. The 

corresponding flip does not switch the handedness. 

 

The Majorana particle is supposed to consist of the combination 

of a neutrino, and an anti-neutrino. The HBM takes the assumption 

that equation (1) holds for a single elementary particle. 

 

The equation offers two interpretations.  

A straight forward interpretation would classify the particle that 

corresponds to equation (1) as an anti-up-quark with charge -⅔ e.  

Equation (2) will then correspond to an up-quark. 

The second interpretation takes the point of view that only a 

switch of handedness can provide charge for the particle. This in-

terpretation classifies the particle as an neutrino, which is a neutral-

particle. Equation (2) will then hold for the anti-neutrino. 

 

The coupling factor    for the particle follows from: 

 

∫        
 

    ∫ 
       

 

     ∫| 
 
 
|
 
     

 

   

 

(2) 

(3) 



106  

The pairs {     }, {     } and {     } give similar re-

sults. They correspond to different colors (R,G,B) and to corre-

sponding anti-particles {     }, {     } and {     } 

 

It might be that neutrinos and up-quarks share the same elemen-

tary quantum equation. There must exist a reason why neutrinos are 

not charged, while up-quarks have charge. That reason is not obvi-

ous from the sign flavors of the participating fields. 

4.2.3 The next particle type 

We have exploited:  

 

         

 

and 

 

        
  

 

With equivalents {     }, {     } and {     }. 

The next possibility would be: 

 

        
  

 

The conjugated equation is: 

 

         
   

 

The particle is represented by the ordered pair {     }. The 

corresponding flip does switch the handedness. Again the state 

function QPAD is coupled to the general background QPAD   . 

(1) 

(2) 

(3) 

(4) 
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Like the electron, this particle will have charge, but its charge 

will be three times lower, because only one instead of three imagi-

nary base vectors cause the switch in handedness. Of course, this is 

an opportunistic interpretation, but it seems to fit when we assume 

that the particle is a down quark with charge equal to -⅓e. 

 

The formula for the coupling factor    is: 

 

∫        
 

    ∫ 
       

 

     ∫| 
 
 
|
 
     

 

   

 

The coupling that constitutes the down quark is anisotropic. This 

fact introduces a new kind of charge, which is called color charge. 

The color is related to the direction of the reflection of the state 

function QPAD. 

 

The pairs {     }, {     } and {     } give similar re-

sults. They represent the three down quark colors. The correspond-

ing antiparticles are {     }, {     } and {     }. 

 

In summary the down quarks have the following properties: 

 

 Location 

o Position 

o Momentum 

 Electric charge 

(5) 
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 Spin 

 Color charge 
 

For down quarks the color charge is relevant. This is due to 

the fact that three down quarks can combine in a baryon66. 

Without the existence of color charge the Pauli principle 

would forbid that. 

4.3 Massles bosons 

This paragraph treats the zero-level of coupling. 

4.3.1 No coupling 

The last possible form in which the state function couples to the 

background field     is: 

 

         

 

The formula for the coupling factor   is: 

 

∫        
 

   ∫          
 

  ∫|  
 
|
 
   

 

    

 

∫        
 

  ∫ | |    
 

   

 

                                                           
66 See: Hadrons 

(1) 

(2) 

(3) 
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Presence does not leak. So, 

 

   . 
 

With other words a QPAD does not couple to itself. What results 

is a free QPAD. 

   and    deliver photons. The other sign flavors deliver glu-

ons. 

4.3.2 The free QPAD 

When for sign flavor    the coupling factor   is zero then: 

 

       
 

    
   〈    〉 

 

        
     

     
 

It means that a change    
  in the speed of the current goes to-

gether with a rotation   of the current  

 

       
 

and/or a new field  : 

 

      
  

 

For comparison, in the equations of Maxwell67 the field   is de-

fined as: 

                                                           
67http://en.wikipedia.org/wiki/Maxwell%27s_equations#Potential_formulation   

(4) 

(1) 

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Maxwell%27s_equations#Potential_formulation
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In those equations   is the electric field and   is the magnetic 

field. However here these fields have a more general meaning. 

 

Thus equation (3) means: 

 

    

 

More interesting is the corollary  

 

        

 

         
            

         
 

       〈    〉            
  

 

          
    

    
 

Thus 

 

        
    

 

Or 

       
 

Further 

 

  
   
   〈     

 〉   〈      〉  〈     
 〉

      
  

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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Thus: 

 

       
 

With other words a free (= not coupled)    is either harmonic or 

it is static. The static condition corresponds to the ground state. 

This holds for all QPAD’s. 

4.3.2.1 Spin 

Free QPAD’s have spin68. 

 

       ∫ ( )   
 ( )  

 

 

 

Elementary bosons appear to have the same value. It is not clear 

why in couplings this spin reduces to half this value for elementary 

fermions. 

4.3.3 Extra freedom 

Each solution   of the restricted elementary equation is deter-

mined up to a solution    with       . 
 

 (      )       
 

This is a gauge transformation. 

                                                           
68 Bo Thidé (13-09-2011): 

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf ,formula (4.85a) 

(14) 

(1) 

(1) 

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf
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4.4 Consideration 

We have now exhausted all possibilities for coupling a QPAD 

sign flavor to the general background QPAD   . Above we could 

link the analyzed particles to electrons, down quarks and either up-

quarks or neutrinos. Their antiparticles were treated as well. The 

investigated particles are elementary fermions. (We did not state or 

explain why they are fermions.) 

We also analyzed the situation that a QPAD is coupled to itself. 

That situation leads to zero coupling factor, which means no cou-

pling. The free QPAD’s are bosons and correspond to photons or 

gluons. (We did not state or explain why these objects are bosons.) 

 

The ordered pair {ψˣ, ψʸ } represents a category of elementary 

particle types. 

For antiparticles all participating fields and the nabla operator 

conjugate. 

 

We can now try to establish the apparent rules of the game. The 

rules are: 

 

1. If the state function QPAD is coupled to the general 

background QPAD   , then the particle is a fermi-

on. Otherwise, it is a boson. For antiparticles this rule 

must be adapted. 

2. A handedness switch can have one of two conse-

quences 

o If the coupling takes place between two 

QPAD sign flavors with the same handed-

ness, then the corresponding particle may be 

electrically charged.  
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o If the coupling takes place between two 

QPAD sign flavors with the same handed-

ness, then the corresponding particle is not 

electrically charged.  

3. The electric charge depends on the number and on 

the direction of the base vectors that differ. 

4. The electric charge count for each difference is ±⅓e. 

5. The color charge depends on the direction(s) of ani-

sotropy of the coupling. 
 

The first rule indicates that it has sense to take    as the base 

sign flavor. 

 

 

From the known elementary particles members exist that are not 

yet covered. They are    and    bosons and Z bosons. We like to 

proceed in a similar way, but the coupling with the isotropic back-

ground QPAD    is used up. Now let us try other couplings.  

 

We already encountered one, the ordered pair of sign flavors 

{     } that obeys 

 

          

 

The coupling changes the handedness, so the particle is charged. 

It has much in common with the positron. Still it is not the antipar-

ticle of the electron, because its equation of motion differs. It might 

exist, but then it probably hides behind the positron. It is the shad-

ow of the positron. 

 

(1) 
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In the following we may mark particle pairs as ‘anti’. In those 

cases we may also indicate the shadow of the antiparticle. 

4.5 Anisotropic coupling fields 

We have explored all particles that make use of the isotropic 

background QPAD   . These particles appear to be fermions. 

Next we like to explore particles that couple to anisotropic back-

grounds. These particles will appear to be bosons. It means that 

they all have integer valued spin. It is not explained why these par-

ticles are bosons or have full integer spin. We derive their identity 

from their electric charge and from the fact that they are bosons. 

4.5.1 The cross-sign flavor equations 

These equations describe the situation that couples {     } 

, {     } or {     } and vice versa.  

   
 
        

 
 

 

The conjugated equation is: 

 

           
  

 

Another form is 

 

          
  

 

The conjugated equation is: 

 

           
  

 

(1) 

(2) 

(3) 

(4) 
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The sign flavor switch affects three imaginary base vectors and 

flips the handedness. As a consequence the particles have a full 

electric charge. It concerns two particle types, the    and the    

bosons. These bosons carry electrical charges. 

The    and    bosons are considered to be each other’s anti-

particle. It is also possible that they hide between each other’s anti-

particle. 

 

  
 
    
 
       

 
   
 

 

 

∫  (  
 
   
 
)    

 

     ∫ (  
 
   
 
)    

 

      

 

  
 
    
 
       

 
   
 

 

 

∫ (  
 
    
 
)    

 

     ∫ (  
 
   
 
)    

 

      

 

Similar reasoning holds for pairs {     } and {     }. 

 

4.5.2 The Z boson 

The particle that obeys: 

 

         
  

 

The handedness is kept the same. Two base vectors change di-

rection. It is a either a neutral boson or a boson with charge ⅔ e. 

 

(5) 

(6) 

(7) 

(8) 

(1) 
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The pairs {     } and {     } behave similar. Corre-

sponding antiparticles are {     }, {     } and {     }. 

 

∫  (  
 
    )    

 

    ∫ (  
 
   
 
)    

 

      

 

Another possibility is: 

 

          
  

 

The pairs {     } and {     } behave similar. Corre-

sponding antiparticles are {     }, {     } and {     }. 

4.6 Resulting particles 

Under the resulting particles fall 12 multi-color couplings.  

{     } {     } {     } {     } {     } {     }  

{     } {     } {     } {     } {     } and {     } 

With these go 12 antiparticles, which form the same set. 

The multi-color couplings are anisotropic QPAD’s that are cou-

pled to other anisotropic QPAD’s that only differ with respect to 

their color. They show great resemblance with mesons. 

Further, we have XX particles via pairs  

{     } {     } and {     }.  

They are -1/3 e charged bosons and have antiparticles  

{     } {     } and {     }. 

We have Y particles via pairs  

{     } and {     }.  

They are -1/3 e charged bosons and have antiparticles  

{     } and {     }. 

(2) 

(3) 
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We have YY particles via pairs  

{     } {     } and {     }.  

They are 1/3 e charged bosons and have antiparticles  

{     } {     } and {     }. 

 

Finally, we have ZZ particles via pairs  

{     }  and {     }.  

They are -1/3 e charged bosons and have antiparticles  

{     }  and {     }. 

4.7 Antiparticles 

Just like the universe is filled with a huge number of particles, it 

is also filled with a huge number of antiparticles. This anti-world 

has its own kind of background QPAD’s. It represents the local su-

perposition of the tails of the state functions of a category of anti-

particles in universe. Otherwise the antiparticles would not sense 

the same kind of inertia that particles do. 

4.8 Shadow particles 

Several particle types have properties and behavior that are simi-

lar to the properties and behavior of antiparticle types of other par-

ticle types. 

For example {     } is hidden behind the positron which is 

the antiparticle of the electron {     }.  

The    boson {     } hides behind the antiparticle of the    

boson {      } and vice versa. 
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4.9 Table of elementary particles 

The elementary coupling equation couples pairs of qua-

ternionic probability amplitude distributions. 64 of those ordered 

pairs exist. 56 particles and 8 waves. 

If a particle is marked as ‘anti’, it concerns the shadow of the anti-

particle. 

At many points a striking agreement with the standard model exists. 

However, also some striking disagreements exist. For example if 

neutrinos and Z-bosons are supported then up-quarks are not sup-

ported as elementary particles. 

 

nr pair type +/- R?L

? 

e-

charge 

color description 

1 {     } boson 0 RR 0 none photon 

2 {     } boson -1 RL -1/3 e   XX 

3 {     } boson -1 RL -1/3 e   XX 

4 {     } boson -1 RL -1/3 e   XX 

5 {     } boson -2 RR 0  ̅ Anti Z 

6 {     } boson -2 RR 0  ̅ Anti Z 

7 {     } boson -2 RR 0  ̅ Anti Z 

8 {     } fermion -3 RL -e none electron 

9 {     } fermion 1 LR 1.3 e   anti-down 

quark 

10 {     } boson 0 LL 0    gluon 

11 {     } boson 0 LL 0    multicolor 

12 {     } boson 0 LL 0    multicolor 

13 {     } boson 1 LR 1/3 e   ̅ YY 

14 {     } boson 1 LR 1/3 e   ̅ YY 

15 {     } boson -3 LR -e   ̅    

16 {     } fermion -2 LL 0   neutrino 
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17 {     } fermion 1 LR 1.3 e   Anti-down 

quark 

18 {     } boson 0 LL 0    multicolor 

19 {     } boson 0 LL 0    gluon 

20 {     } boson 0 LL 0    multicolor 

21 {     } boson -1 LR -1/3 e   ̅ ZZ 

22 {     } boson -3 LR -e   ̅    

23 {     } boson -1 LR -1/3 e   ̅ ZZ 

24 {     } fermion -2 LL 0   neutrino 

25 {     } fermion 1 LR 1.3 e   Anti-down 

quark 

26 {     } boson 0 LL 0    multicolor 

27 {     } boson 0 LL 0    multicolor 

28 {     } boson 0 LL 0    gluon 

29 {     } boson -3 LR -e   ̅    

30 {     } boson -1 LR -1/3 e   ̅ Y 

31 {     } boson -1 LR -1/3 e   ̅ Y 

32 {     } fermion -2 LL 0   neutrino 

33 {     } fermion 2 RR 0  ̅ Anti-

neutrino 

34 {     } boson 1 RL 1/3 e  ̅  Anti-Y 

35 {     } boson 1 RL 1/3 e  ̅  Anti-Y 

36 {     } boson 3 RL e  ̅    

37 {     } boson 0 RR 0  ̅ ̅ gluon 

38 {     } boson 0 RR 0  ̅ ̅ multicolor 

39 {     } boson 0 RR 0  ̅ ̅ multicolor 

40 {     } fermion -1 RL -1/3 e  ̅ down quark 

41 {     } fermion 2 RR 0  ̅ Anti-

neutrino 

42 {     } boson 1 RL 1/3 e  ̅  Anti ZZ 

43 {     } boson 3 RL e      
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44 {     } boson 1 RL 1/3 e  ̅  Anti ZZ 

45 {     } boson 0 RR 0  ̅ ̅ multicolor 

46 {     } boson 0 RR 0  ̅ ̅ gluon 

47 {     } boson 0 RR 0  ̅ ̅ multicolor 

48 {     } fermion -1 RL -1/3  ̅ down quark 

49 {     } fermion 2 RR 0  ̅ Anti-

neutrino 

50 {     } boson 3 RL e  ̅     

51 {     } boson 1 RL 1/3 e  ̅  Anti YY 

52 {     } boson 1 RL 1/3 e  ̅  Anti YY 

53 {     } boson 0 RR 0  ̅ ̅ multicolor 

54 {     } boson 0 RR 0  ̅ ̅ multicolor 

55 {     } boson 0 RR 0  ̅ ̅ gluon 

56 {     } fermion -1 RL -1/3  ̅ down quark 

57 {     } fermion 3 LR e none positron 

58 {     } boson 2 LL 0   Z 

59 {     } boson 2 LL 0   Z 

60 {     } boson 2 LL 0   Z 

61 {     } boson 1 LR 1/3 e  ̅ Anti XX 

62 {     } boson 1 LR 1/3 e  ̅ Anti XX 

63 {     } boson 1 LR 1/3 e  ̅ Anti XX 

64 {     } boson 0 LL 0 none photon 

 

32 zero charge particles exist, of which 12 lose their charge due 

to missing handedness switch. These twelve are neutrino and Z (an-

ti)particles. Otherwise they would have charge ± ⅔ e. Thus accord-

ing to the HBM either neutrinos and Z bosons do not exist or up 

quarks are no elementary particles. 

24 particles exist that have charge ± ⅓ e. 8 particles exist that 

have charge ± e. Eight waves exist that have zero mass. They cover 

two photons and six mono-color gluons.  
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4.10 Limits of the model 

The restricted elementary coupling scheme does not distinguish 

between generations of elementary particle types. 

 

It must be stated that the reason of being a fermion as it is ap-

plied here, differs strongly from the usual fermion/boson assign-

ment. As a consequence also the notion of spin will differ. This ap-

proach is due to the fact that the elementary particles are defined as 

a pair of coupled QPAD’s and not as a single state function QPAD. 

Only the ordered pair will define the value of the spin and the fact 

that the particle is a fermion. 

 

We adopt the existing convention that fermions go together with 

half integer valued spin. Here it will not be explained why that rela-

tion exists. With other words, having half integer spin and being a 

fermion is related on the one hand to experimental results and on 

the other hand to the ordered pair of coupled QPAD’s that repre-

sents the particle. In the HBM according to the current rules, a par-

ticle is a fermion when its state function is coupled to the general 

background QPAD. What spin actually is, is not explained in this 

model. We just accept the existing convention. The same holds for 

the electrical charges. 

 

In short, this model does not explain why particles get their elec-

tric charge or spin. The model only explains the origin and the hab-

its of the coupling factor and it explains how the values of the elec-

tric charge and spin relate with the ordered coupled QPAD pair that 

represents the particle. 

 

Later, it will be explained how the coupling factor relates to the 

mass of the particle.  
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The scheme does not provide a way to construct up-quarks from 

coupled QPAD’s. Their electric charge conflicts with the existence 

of anti-neutrinos. Instead the scheme provides some extra particles 

that do not appear in the standard model. It might be possible to 

compose up-quarks from a combination of XX particles and posi-

trons or compose up-quarks from a combination of XX particles 

and    particles. 

 

The scheme provides two photons and six mono-colored waves, 

that we called gluons. In the standard model the massless gluons 

are multicolored. The HBM scheme provides twelve multi-colored 

particles that have no charge but have mass. 

 

With this addition and by neglecting generations the scheme is 

capable to generate all known elementary particles that are con-

tained in the standard model. In fact if generations are neglected, 

then the generated set is much larger than the standard model. This 

is only partly due to the fact that color charge is considered for all 

anisotropic particles. 

 

The scheme comprises electrons, positrons, neutrinos, anti-

neutrinos, down quarks, anti-down quarks,    particles,    parti-

cles, Z particles, anti-Z particles, photons and gluons. Where appli-

cable these particles appear with color charge. Color charge is no-

ticeable for down quarks when baryons of three down quarks are 

formed. 

Extra particles are the multicolor particles, the Y-particles, the 

XX particles, the YY particles and the ZZ particles. 
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5 Origin of curvature 

The primary QPAD’s cause local pressure differences in the 

QPAD-sphere. This only occurs when the QPAD is coupled to an-

other QPAD. For a restricted elementary coupling both QPAD’s 

must be sign flavors of the same base QPAD. On its turn the local 

pressure causes a local space curvature. 

5.1 Physical fields 

In the HBM two categories of physical fields exist. The first cat-

egory is formed by free primary QPAD’s. These QPAD’s oscillate. 

Depending on their sign flavor they are photons or gluons. Primary 

QPAD’s are linked with an eigenvector of an operator in separable 

Hilbert space. For the free primary QPAD’s this is the canonical 

conjugate of the locator operator. 

 

The second category is formed by fields that represent the prop-

erties of the couplings of primary QPAD’s that correspond to ele-

mentary particles. These properties are coupling factor, electric 

charge and spin. The state functions of massive elementary parti-

cles are primary QPAD’s that are linked with an eigenvector of the 

particle locator operator in separable Hilbert space. The corre-

sponding physical fields are gravitation fields, electrostatic fields 

and magnetostatic fields. These fields move with the particles, but 

they do not oscillate like the first category does. However, in atoms 

the elementary particles may oscillate.  

 

It is assumed that in atoms only the state function QPAD part of 

the coupled QPAD pair oscillates and the other part; the back-

ground QPAD, stays stable. It implements inertia. Still it moves 

with the movement of the atom as a whole. The physical field that 
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represents the influence of a property of an elementary particle is 

assumed to be attached to the background QPAD of that elementary 

particle. Thus this second category physical field does not oscillate. 

A first category physical field is released or absorbed when the el-

ementary particle switches its oscillation status. 

 

With other words, photons and gluons are fundamentally differ-

ent from the second category of physical fields. 

 

This may be the reason that photons cannot pass the event hori-

zon of black holes, while the information of the BH’s mass, electric 

charge and spin are available to the environment of the BH. 

5.2 Curvature and inertia 

All primary couplings affect the local curvature 

Only the state function QPAD’s that couple to a background 

QPAD will experience inertia 

This holds for particles as well as for antiparticles. 

5.2.1 Inertia versus antiparticle 

Besides of the fact that all particles possess corresponding anti-

particles, each state function category seems to correspond with a 

corresponding background QPAD, which in some cases is the con-

jugate of the state function QPAD. That happens with W particles 

and leptons. Fermions and their antiparticles seem to prefer iso-

tropic background QPAD’s. Most fermions share the same (iso-

tropic) background QPAD and anti-fermions do the same with the 

conjugate. 
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5.2.2 Inertia of W and Z Bosons 

W and Z bosons use their “own” background QPAD, which is 

anisotropic. 

The background QPAD of a    boson has the form of the state 

function QPAD of a    boson, which has the form of an anti-   

boson. 

The background QPAD of a    boson has the form of the state 

function QPAD of a    boson, which has the form of an anti-   

boson. 

5.3 Effect of primary coupling 

The coupling may compress the local parameter space. 

In the table above, 56 different kinds of primary coupling are 

discerned. 

Together with the balance equations that differ for particles and 

antiparticles and shadow particles this defines a large number of 

ways of how the local parameter space is affected. 
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5.4 The HBM Palestra reviewed 

In the Hilbert Book Model all QPAD’s and the fields that are de-

rived from them or from their couplings, share the same (affine) pa-

rameter space. For that reason this common parameter space has 

been given a special name; the HBM Palestra69. This shared pa-

rameter space spreads universe wide. It is the place where universe 

is located. 

The parameter space of the QPAD can be interpreted as a qua-

ternionic distribution. It has itself a parameter space, which is 

formed by a 3D continuum. This continuum is taken from the ei-

genspace of a location operator that resides in the Gelfand triple of 

the separable Hilbert space. Only the imaginary part of the quater-

nionic distribution is used. It can be considered as a 3D Riemannian 

manifold. The local metric defines the local curvature. What occurs 

in this manifold is described by the QPAD’s. 

The Palestra is the playground of all what happens in fundamen-

tal physics. It is governed by a special kind of fluid dynamics70. 

Things like charge density distributions, current density distribu-

tions, sources, drains, compressed regions and decompressed re-

gions occur in this space71. The QPAD's are not the transporters. 

They only describe the transport process. The action takes place in 

their shared parameter space. That’s how these QPADS’s can influ-

ence each other.  

 

                                                           
69 The name Palestra is suggested by Henning Dekant’s wive Sa-

rah. It is a name from Greek antiquity. It is a public place for train-

ing or exercise in wrestling or athletics 
70 See: Quantum fluid dynamics 
71 Vortexes may also appear in the Palestra. The HBM does not 

yet treat them. 
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The sources and drains are controlled by Poisson processes72. 

The generated quanta take a probable track. The most probable 

track has preference. Thus the currents described by the QPAD’s 

are corridors rather than actual paths. Similarly the locations of the 

charges in the density distributions are places where charges may 

exist with corresponding probability. It need not be the place where 

the charges are. The phrase “is governed by a special kind of fluid 

dynamics” must be interpreted in this view. The transported quanta 

are sparsely present in the HBM Palestra. 

Nevertheless this special space may be characterized by notions 

such as temperature and entropy. Both indicate a relation with in-

formation. 

Two kinds of processes determine the dynamics in the parameter 

space. The first kind is formed by quantum generating or quantum 

annihilating Poisson processes. The second kind is caused by the 

coupling of QPAD’s. It means that the dynamics in the parameter 

space can be described by a combination of fluid dynamics and sta-

tistical mechanics.  

Since the HBM implements dynamics via a sequence of pages, 

each HBM page only shows the static status quo of the parameter 

space. The real part of the quaternionic distributions that define the 

HBM Palestra can be used to store the progression parameter.  

The Palestra is characterized by a local metric tensor. This ten-

sor and the continuity of the quaternionic distribution that defines 

the Palestra cause that what happens in the Palestra is controlled by 

a special Lie group. 

When the inertial frame of the observer moves relative to the in-

ertial frame of the observed item, then |  |  becomes the squared 

spacetime interval and this Lie group is the Einstein group73, 

                                                           
72 See: What image intensifiers reveal 
73 http://en.wikipedia.org/wiki/Einstein_group#The_Einstein_group 

http://en.wikipedia.org/wiki/Einstein_group#The_Einstein_group
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The elementary coupling equation is a continuity equation. It de-

scribes primary couplings. The coupling can be characterized by a 

small set of properties. These properties are conserved. Most of 

these properties can be considered as sources of second category 

physical fields. These second category physical fields correspond to 

physical fields that are attached to the corresponding elementary 

particle.  

The elementary coupling equation appears in 64 forms. Eight of 

these correspond to a zero coupling factor, thus these situations de-

scribe free QPAD’s. It concerns photons and gluons. The 56 result-

ing cases concern specific elementary particles. Thus, there are 56 

ways to constitute a primary coupling. This count neglects the anti-

particle equation. Thus, a very large number of different primary 

couplings are possible. 

After a coupling the resulting currents need not be exhausted 

completely. The properties of the coupling are conserved and the 

corresponding physical fields and the resulting currents can be ex-

ploited in higher order coupling. So what happens at these scales 

can become very complicated. 

At some distance from the elementary particle the dynamics can 

be described as incompressible flow. However, close to the particle, 

thus close to the coupling the dynamics must be treated as com-

pressible flow. It means that features like compression, entropy and 

temperature will start to play a role. 

In short; the HBM Palestra is the sparsely occupied internally 

moving space that is used as parameter space by all QPAD’s that 

play a role in the HBM. 

                                                                                                              

See: Symmetry in electrodynamics; M. Sachs 
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5.5 What image intensifiers reveal 

The author spent eighteen years in the development of image in-

tensifier tubes. These devices range from goggles via driver scopes 

to fourteen inch wide X-ray image intensifiers. 

The image intensifiers had one feature in common. They were 

all capable of turning the impingement of a quantum at their input 

screen into a visible light spot at their output screen. A hail storm of 

impinging quanta at the input resulted in a noisy film at the out-

put747576. 

The starlight scopes enable visibility of very low dose scenes 

under starlight conditions. They turned infrared and visible light 

quanta into light spots on a luminescent phosphor screen. 

The X-ray image intensifiers were designed to deliver a percep-

tible image of an X-ray shadow picture at the lowest possible X-ray 

dose for the diagnosed patient. 

What still astonishes me is that I never saw any indication of a 

wave entering the input of the image intensifiers. I only saw clouds 

of quanta. That does not say that these clouds cannot have the shape 

of waves, but the detected quanta did not show that relation. 

 

 

                                                           
74 See: http://en.wikipedia.org/wiki/File:Moon_in_x-rays.gif . Low dose X-ray 

image of the moon. 
75 See: http://www.youtube.com/watch?v=U7qZd2dG8uI ; Hail storm. Warning, 

this is NOT a video of an external object. 
76 Also see: http://en.wikipedia.org/wiki/Shot_noise  

http://en.wikipedia.org/wiki/File:Moon_in_x-rays.gif
http://www.youtube.com/watch?v=U7qZd2dG8uI
http://en.wikipedia.org/wiki/Shot_noise
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With other words, what we can observe are the quanta. We can-

not observe the envelop of the quantum clouds. We cannot observe 

the waves! 

This is a significant experience. Light as a wave does not exist 

as a physically observable object. It only exists as a bunch of quan-

ta. That quantum cloud may have the shape of a wave, but we can-

not discern that wave. We can only detect interferences of these 

waves because the patterns of the detected quanta take that shape, 

but we cannot observe the interferences themselves. 

What are then these quanta that impinge on the inputs of our de-

tectors? They are tiny patches of something.  

Example 
A short film of the output of an X-ray image intensifier made 

at a very low dose rate. 

Provided by Philips Healthcare 

 

 The pixel size is about 200μm 

 The number of pixels is about 500 * 600 

 The average number of X-ray quanta per pixel per 
frame in the mid gray area is circa 1 

 The range inside these picture is about 20  
 The direct radiance is about 5 quanta per pixel 

per frame 

 The dark regions get <<1 quanta per frame 

 The number of pictures is 33 

 
http://www.crypts-of-physics/QuantumLimitedLlowDoseImaging.avi 

 

file:///C:/Users/Hans/AppData/Roaming/Microsoft/Word/QuantumLimitedLlowDoseImaging.avi
file:///C:/Users/Hans/AppData/Roaming/Microsoft/Word/QuantumLimitedLlowDoseImaging.avi
file:///C:/Users/Hans/AppData/Roaming/Microsoft/Word/QuantumLimitedLlowDoseImaging.avi
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The Hilbert Book Model makes a very particular assumption 

about these quanta. 

The HBM interprets the quanta as tiny patches of the parameter 

space of the state function. Further the HBM uses state functions 

that are quaternionic probability amplitude distributions. This 

makes it possible to interpret the state functions as combinations of 

charge density distributions and current density distributions. The 

state functions may also contain sources, drains, compressed re-

gions and decompressed regions. These features all occur in the pa-

rameter space of the state function. 

This daring interpretation explains why in the neighborhood of 

particles the parameter space appears to be compressed. 

When measuring the properties of image intensifiers it appeared 

that the distribution of detected quanta can be characterized as a 

Poisson distribution. That indicated that the generators of the quan-

ta can be considered as Poisson processes. It is well known that 

Poisson processes that are attenuated by subsequent binomial pro-

cesses can be treated as a new less efficient Poisson process. Spatial 

and temporal spread can be interpreted as a binomial processes. It is 

also known that very efficient Poisson processes produce distribu-

tions that are close to Gaussian distributions. When looked upon as 

a charge distribution the Gaussian distribution produces a potential 

that approaches an Error function. At some distance from the gen-

erator the Error function takes the form of a 1/r function. On its turn 

this corresponds with a single charge source. Thus from a distance 

the generator looks as a (singular) single charge source. Of course 

the actual generator is not singular! 

This gives a particular insight in radiation sources! 
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5.6 Quantum Fluid Dynamics 

What happens in the HBM Palestra is controlled by Quantum 

Fluid Dynamics (QFD). QFD differs from conventional fluid dy-

namics in that in QFD the charge density distributions and current 

density distributions describe probable locations and paths in their 

own parameter space, while in conventional fluid dynamics these 

distributions describe actual locations and paths that occur in a con-

sidered medium such as a gas or liquid. That is why in QFD the 

charge density distributions and current density distributions are 

combined in quaternionic probability amplitude distributions, while 

in conventional fluid dynamics they are located in scalar and vector 

fields. These fields can also be combined in quaternionic distribu-

tions, but they are not probability amplitude distributions. 

 

In the Palestra    represents the derivative with respect to pro-

gression. It is not the derivative with respect to coordinate time. 

 

Already in 1927 Erwin Madelung77 published a set of equations 

that treat quantum physics in the sense of QFD. 

 

  

                                                           
77 See: http://en.wikipedia.org/wiki/Madelung_equations  

http://en.wikipedia.org/wiki/Madelung_equations
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6 Higher level coupling 

The primary QPAD’s cause a local pressure in the QPAD-

sphere. On its turn that local pressure causes the local space curva-

ture. 

 

The streams of space patches that result after the primary cou-

plings will be used in higher level interactions. It means that these 

resulting currents may still influence higher level coupling. 

 

Hypothesis: 

In these interactions the properties of the primary couplings are 

conserved 

 

All elementary particles can emit or absorb photons or gluons 

via gauge transformations. The gauge boson must have the same 

sign flavor as the quantum state function has. 

A down quark can become an up-quark by absorbing a    bos-

on of the proper color. 

6.1 Interaction 

The conventional way of treating interactions in quantum field 

theory is to apply a methodology called covariant derivation. This 

methodology works well in a complex representation, but fails in a 

quaternionic approach. With other words it works in special one-

dimensional cases but it is not well suited for multidimensional 

cases. So, the HBM must find another approach in order to imple-

ment interactions. The HBM also does not consider the existence of 

virtual particles. However, this is compensated by the availability 

of primary QPAD’s.  
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Free QPAD’s are waves. If these waves have the same sign fla-

vor as the quantum state function of an elementary particle, then 

they will couple to the elementary particle. In this way it can also 

couple particles together. Thus photons and gluons can glue appro-

priate particles together. 

 

A similar mechanism can be implemented by elementary parti-

cles that have the proper coupling capabilities. These are multi-

color, W and Z bosons. 

6.2 A quaternionic theory of general relativity 

A special quaternion based equivalent of general relativity theo-

ry (GRT) applied to the shared affine parameter space of QPAD’s 

Palestra can be put together. Some of the ingredients for that theory 

are present in the appendix chapters 13 and 14. A quaternionic ver-

sion of GRT will offer similar results as conventional GRT does. In 

the HBM this is not worked out in detail because the quaternionic 

GRT only gives information on curvature and does not give de-

tailed information on how higher level coupling works. 

6.3 The Kerr-Newman equation 

The Kerr-Newman equation is NOT part of the HBM. The Kerr-

Newman equation is a solution of conventional General Relativity 

Theory. It uses spherical coordinates as a reference frame. The 

Kerr-Newman equation describes the effects of physical fields on 

curvature for elementary particles as well as for black holes  

 

The Kerr-Newman metric equation gives only a rough impres-

sion on how the primary couplings influence curvature. This equa-

tion uses parameters that are comparable to the properties of prima-

ry couplings. The equation neglects the geometry of these 
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couplings and the resulting flow of space patches. For that reason it 

can only deliver a coarse approximation. For that reason the HBM 

only uses the Kerr-Newman equation in order to get a coarse idea 

of how GRT curvature relates to the curvature that is caused by el-

ementary couplings. 

6.4 Role of second category physical fields 

The properties that characterize primary couplings act as 

sources/drains of second category physical fields 

The primary couplings are responsible for affecting the local 

curvature, but it looks as if the second category physical fields have 

this role 

This is a false impression! 

6.5 Higgs 

This HBM does not include a Higgs particle or a Higgs field. 

However, the Hilbert Book model  uses a background field that acts 

as a partner in the coupling to the quantum state function of an ele-

mentary particle. That background field takes the role of the Higgs 

field. It implements inertia. However, the coupling not only ex-

plains the existence of inertia, it also explains the existence of cur-

vature. 

6.5.1 Inertia versus curvature 

The paper of Dennis Sciama with title “On the origin of inertia” 

is far better understandable when the fields that he considers are 

taken to be members of QPAD’s. In that case the fields relate di-

rectly to quantum state functions of (massive) particles. The back-

ground field is then better understandable as local superposition of 

the tails of the quantum state functions of distant particles.  
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In this way the explanation of inertia uses an integral balance 

equation. In contrast, the explanation of curvature in the HBM uses 

a differential balance equation. It is the elementary coupling equa-

tion. 

6.5.2 Background field versions 

In the HBM, the background field exists in several versions. The 

version depends on the categories of quantum state functions that 

are allowed to contribute to the local superposition. Fermions all 

couple to the same version of background field. This version is iso-

tropic. Anti-fermions couple to the conjugate. Bosons couple to an-

isotropic versions of the background field. 

6.5.3 The Higgs mechanism 

In complex quantum physics the Higgs mechanism is required in 

in order to explain inertia. It uses the fact that the complex quantum 

state function leaves the freedom of an arbitrary complex phase fac-

tor that has the form    . A covariant derivative in a gauge trans-

formation may use that phase factor. 

 

The Higgs mechanism differs considerable from the HBM ex-

planation of inertia. It uses a potential that poses a spontaneous 

symmetry breaking78. The considered system can continuously 

move in a region that corresponds to its ground energy. This 

movement does not consume energy. Outside that region the 

movement costs energy and the system is forced back to its ground 

state. As an example, a potential  ( ) in the form of a Mexican hat 

can do this. It represents a U(1) symmetry. Be aware, the parameter 

is   and not a spatial location.  

                                                           
78 http://en.wikipedia.org/wiki/Spontaneous_symmetry_breaking 

http://en.wikipedia.org/wiki/Spontaneous_symmetry_breaking


137 

 

 
 

This situation gives rise to massless particles that are called 

Goldstone bosons. They can perform movements that cross low 

gradients and therefore use low energy. In complex number based 

quantum physics the corresponding quantum state function can be 

described by  

 

 (   )   ( )      
 

In the example   represents the values of   that represent the 

ground energy in  ( ). At the same time  ( ) represents a Higgs 

boson and when   is varied uniformly over space then      repre-

sents a Goldstone boson. The symmetry that is represented by po-

tential  ( )  is spontaneously broken. 

 

If   is varied non-uniformly, then the derivative of the quantum 

state function equals 

 

    (         ) 
   

 

(1) 

(2) 
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  (   

        ) 
    

 

The corresponding Lagrangian depends on    . 

 

        
  

 

 (   )
 
      [    

       ]   
 (   )

 
 

 

This means that     does not represent a symmetry. The varying 

Goldstone boson can be made the subject of a covariant derivative 

   . This introduces a new vector potential    that can be inter-

preted as a gauge boson. 

 

              

 

 (      )   
   

 

Via a gauge transformation the term between brackets can be 

transformed in another vector field: 

 

  
         

 

The term  ( )  is nearly equal to  . The new Lagrangian is 

 

        
    (      )

      
   

 

This reveals that an extra term     
   adds mass to the Lagran-

gian. This replacement removes   from the Lagrangian and ex-

changes the Goldstone boson against a vector potential   
  and a 

representative of mass  . 

(3) 

(4) 

(5) 

(6) 

(7) 
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The Lagrangian    of    is not affected by the gauge transfor-

mation. 

 

    
      

 

       
       

 

In quaternionic quantum physics the complex number based 

strategy that uses a gauge transformation does not work properly. In 

quaternion based quantum physics the imaginary base number   has 

a spatial direction and in general for quaternionic distributions   
and   holds79 

 

 (   ) ≠          (  )   
 

Thus in quaternionic quantum physics the Higgs mechanism on-

ly works in one dimensional situations. However, in quaternionic 

quantum physics the quantum state function already contains a (re-

al) scalar field and an extra vector field in the form of its real and 

imaginary parts. As a consequence the included fields can be su-

perposed. Further, it is possible to add a free QPAD to the balance 

equation. Via these fields, quaternion quantum physics has its own 

method for applying mass to the particles. That method explains in-

ertia as well as the influence of particles on the local curvature. 

  

                                                           
79 Appendix; Covariant derivative 

(8) 

(9) 
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7 HADRONS 

The HBM cannot discern generations of elementary particles. 

For that reason the elementary fermions are treated per category. 

Symbol e or    means electron 

Symbol p or    means positron 

Symbol n means neutrino 

Symbol d means down-quark 

Symbol u means up-quark. But in the HBM up-quarks are no el-

ementary particles. 

7.1 Second level coupling 

This chapter treats the second level of coupling. It treats cou-

plings between elementary particles. This coupling uses the second 

category physical fields that are generated by the properties of the 

first level coupling. The Hilbert Book Model delivers the reason of 

existence of these properties; coupling factor, electric charge, angu-

lar momentum (spin) and possibly color charge of elementary parti-

cles. In higher level couplings these properties are conserved. 

Higher level coupling might also use what is left of primary 

QPAD’s after primary coupling. 

 

The primary couplings influence the local curvature. However, 

the primary QPAD’s are not observable. Only the second category 

physical fields become observable. Thus, it looks as if the second 

category physical fields or their sources/drains are responsible for 

affecting curvature. This, of course, is a false impression.  

The currents in the coupled primary QPAD’s that remain after 

coupling may still influence higher level coupling. 
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The curvature is also a binding ingredient for the next levels of 

coupling. The formulas that describe the influence of the conserved 

properties on the curvature inform what will happen. Currently the 

best available formula is the Kerr-Newman metric formula, which 

is taken from GRT. The Kerr-Newman equation works on the base 

of locally existent properties (the sources or drains of the second 

category physical fields). It must be reckoned that the Kerr-

newman equation gives only a rough indication of what happens. In 

order to know what happens in detail the full Quantum Fluid Dy-

namic situation must be analyzed. 

At a fixed instant of proper time, thus inside a single page of the 

Hilbert Book Model, the Kerr-Newman equation is a static equa-

tion. 

If in a subsequent HBM page the controlling properties have 

changed, then those new properties define the new configuration. 

 

The first level coupling that constitutes elementary fermions us-

es a background field that is the partner in the coupling of that 

background field to the state function of the elementary fermion. 

The background field represents the superposition of the tails of 

the state functions of all massive particles that exist in the universe. 

In this way inertia gets its implementation. 

 

Free QPAD’s and fitting bosons act in interactions. They glue 

particles together. 

 

If particles couple, then their background QPAD’s will super-

pose. Thus their inertia will combine. 

 

Hadrons are the first of the next levels of binding products. 
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The Kerr-Newman equation shows an abnormality at the place 

where black holes get their horizon. Whether or not a hadron pos-

sesses a horizon is in this respect unimportant. The properties of the 

elementary particles that are bound together in order to form the 

hadron are sources of second category physical fields. The static 

versions of these second category physical fields reach beyond a 

possible horizon. To the outside world the superposition of these 

fields signal the properties of the hadron.  

The primary QPAD’s that constitute the elementary particles and 

that on their turn constitute the hadron also reach beyond the poten-

tial horizon. 

 

7.2 Rules 

The second level of coupling has its own set of rules. 

 

 The total color of the composite must be white80. 

 The properties of the constituting particles will be 

conserved.  

 However, mass (coupling factor) may be ex-

changed against field energy. 

 Field energy is transported via oscillating 

QPAD’s. 

 Like the fermions, hadrons exist in generations. 
 

                                                           
80 In observable particles, which are particles that may be detect-

ed in measuring machines like the LHC, the color is always white. 
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The properties of the elementary particles, including color, play 

a significant role in the Pauli principle. (The HBM does not ex-

plain the Pauli principle). 

Coupling factor, electric charge, angular momentum (spin) and 

may be color charge are sources of second category physical 

fields. 

Location (position or momentum) are not sources of second cat-

egory physical fields. 

7.3 Up-quarks 

In the HBM the up-quarks cannot be constructed from a primary 

coupling of QPAD sign flavors. Therefore the HBM does not con-

sider them to be elementary particles. Instead up-quarks are com-

posed of down-quarks or XX particles and W+ particles or from 

down-quarks or XX particles, positrons and neutrinos. May be YY 

particles or ZZ particles are also involved. Further, the up-quarks 

annihilate into these constituents.  

Like down-quarks the up-quarks have color. This attribute re-

lates to the direction of the reflection of the constituting down-

quark. 

Apart from up-quarks also anti-up-quarks exist. 

7.4 Mesons 

Mesons are composed out of quarks and anti-quarks. The fol-

lowing meson categories exist. 

 

 (dd+uu)/√2 

 (dd-uu)/√2 

 ud 

 du 
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The mixed color elementary particles resemble mesons. 

7.5 Baryons 

Baryons are composed out of triples of quarks. The following 

baryons exist81. 

 

Symbol configuration name Isospin I3 

    ddd delta    ⁄  

   ddu neutron    ⁄  

   uud proton  
 ⁄  

    uuu delta  
 ⁄  

 

For the anti-baryons the possibilities are: 

 

 ddd 

 ddu 

 uud 

 uuu 
 

I relation to the Pauli principle the versions with multiple u or mul-

tiple d can only exist due to the fact that the constituting quarks 

have different spin and/or different color charge.  

                                                           
81 The generations are ignored! 
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8 THE BUILDING 

The building consists of everything that can be assembled from 

elementary particles, hadrons and fields. 

8.1 Natures Music 

In atoms electrons oscillate around a central point that acts as the 

location of the atom82. In molecules the same features occur in an 

even more complicated configuration.  

The oscillations are harmonic. The most basic harmonic oscilla-

tions are, apart from a scalar factor, invariant under Fourier trans-

formation83. These oscillations have modes and usually several of 

these modes exist in parallel. These modes can be generated and 

annihilated. Generation goes together with the absorption of a more 

elementary particle or elementary wave and annihilation goes to-

gether with a corresponding emission.  

8.2 Hydrogen atom 

In the hydrogen atom84 one electron encircles the nucleus. The 

oscillation of the electron can be described as a quantum spherical 

harmonic oscillation. It can have different oscillation modes. These 

modes are characterized by quantum numbers. Mode switching is 

activated by creation and annihilation operators. The speed of the 

electrons is high enough such that relativity effects must be consid-

ered. Also the spin of the electron plays a role and causes magnetic 

effects. 

                                                           
82 Appendix; Oscillations 
83 Appendix; Functions invariant under Fourier transformation. 
84 http://en.wikipedia.org/wiki/Hydrogen_atom  

http://en.wikipedia.org/wiki/Hydrogen_atom
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8.3 Helium atom 

In the helium atom85 two electrons encircle the nucleus. In prin-

ciple the electrons behave similarly as in the hydrogen atom, how-

ever due to the Pauli principle they cannot both occupy the same 

oscillation mode. The electrons not only interact with the nucleus, 

but they also interact with each other.  

   

8.4 Modularization 

Hadrons, atoms and molecules are products of a modularization 

process.  

Modularization86 encapsulates properties in a higher order indi-

vidual and renders the resulting individual a specific behavior. Its 

main purpose is that the number of relations to the outside world is 

reduced. Usually the module can be accessed via a series of well-

defined interfaces. The whole keeps the integrity of the individual 

intact. 

Modularized systems are far simpler than their monolithic 

equivalents. Modularization exploits reuse. The modularization can 

have far reaching consequences. That is especially the case when 

modules can be used to create a new kind of modules. In this way 

nature is capable of constructing very complicated systems. On 

earth nature achieved the stage to be able to generate intelligent 

species. This tendency goes straightly against the tendency that is 

set by the second law of thermodynamics. These laws prescribe that 

disorganization, randomness and chaos will increase continuously.  

                                                           
85 http://en.wikipedia.org/wiki/Helium_atom  
86 http://vixra.org/abs/1101.0064  

http://en.wikipedia.org/wiki/Helium_atom
http://vixra.org/abs/1101.0064
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8.5 Black hole 

8.5.1 Classical black hole 

According to classical mechanics the no-hair theorem87 states 

that, once a black hole achieves a stable condition after formation, 

it has only three independent physical properties:  

 mass,  

 charge, and  

 angular momentum.  
 

The surface gravity88   may be calculated directly from New-

ton's Law of Gravitation89, which gives the formula 

 

  
 m

r 
 

 

where m is the mass of the object, r is its radius, and   is the 

gravitational constant90. If we let         denote the mean densi-

ty of the object, we can also write this as 

 

  
  

 
  r 

 

For fixed mean density  , the surface gravity   is proportional 
to the radius  . 

                                                           
87 http://en.wikipedia.org/wiki/No-hair_theorem  
88 http://en.wikipedia.org/wiki/Surface_gravity  
89 http://en.wikipedia.org/wiki/Newton%27s_Law_of_Gravitation  
90 http://en.wikipedia.org/wiki/Gravitational_constant  

(2) 

(3) 

http://en.wikipedia.org/wiki/No-hair_theorem
http://en.wikipedia.org/wiki/Newton%27s_Law_of_Gravitation
http://en.wikipedia.org/wiki/Newton%27s_Law_of_Gravitation
http://en.wikipedia.org/wiki/Gravitational_constant
http://en.wikipedia.org/wiki/No-hair_theorem
http://en.wikipedia.org/wiki/Surface_gravity
http://en.wikipedia.org/wiki/Newton%27s_Law_of_Gravitation
http://en.wikipedia.org/wiki/Gravitational_constant
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Sciama91 relates   to the potential that is raised by the communi-

ty of particles. For fixed mean density   this is shown by 

 

    ∫
 

 
  

 

    ∫
  

  
       

 

  
   

 
 
   

     
 

 

Here   is the current radius of the universe. 

8.5.2 Simple black hole 

The Schwarzschild radius    for a non-rotating spherical black 

hole is 

 

   
   

  
 

 

8.5.3 General black hole 

More generally holds 

 

   
 

  
           

 

where  

   is the mass/energy,  

   is the horizon area, 

   is the angular velocity,  

                                                           
91 Influence;Inertia 

(4) 

(5) 

(1) 

(1) 
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   is the angular momentum,  

   is the electrostatic potential,  

   is the surface gravity,  

   is the electric charge. 
 

For a stationary black hole, the horizon has constant surface 

gravity. 

It is not possible to form a black hole with surface gravity. 

   . 

8.5.4 Quantum black hole 

When quantum mechanical effects are taken into account, one 

finds that black holes emit thermal radiation (Hawking radiation) at 

temperature 

 

   
 

  
 

 

A quantum black hole is characterized by an entropy   and an 

area  . 

The entropy of a black hole is given by the equation: 

 

  
    

   
 

 

The Bekenstein-Hawking Entropy of three-dimensional black 

holes exactly saturates the bound 

 

  
   
 

 

 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Angular_momentum
http://en.wikipedia.org/wiki/Surface_gravity
http://en.wikipedia.org/wiki/Hawking_radiation
http://en.wikipedia.org/wiki/Black_hole_thermodynamics#Black_hole_entropy
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where    is the two-dimensional area of the black hole's event 

horizon in units of the Planck area,  

 

     
  

  

  
. 

 

In the Hilbert book model this equals the number of granules 

that covers the horizon of the black hole. 

The horizon of the black hole is an event horizon because infor-

mation cannot pass this horizon. (Near the horizon the speed of 

light goes to zero.) 

8.5.5 Holographic principle 

The holographic principle92 states that the entropy contained in a 

closed surface in space equals the entropy of a black hole that has 

absorbed everything that is contained in this enclosure.  

In the Hilbert book model it means that if the surface is consid-

ered as a sparsely covered horizon, then that sparse horizon con-

tains as many granules as the densely covered horizon of the corre-

sponding black hole. 

It also means that the maximum entropy that can be contained 

inside a surface corresponds to a dense coverage with granules of 

that surface. 

In this model, any dense or sparse horizon reflects via its con-

tained entropy the number of granules that are contained in the cor-

responding volume. 

 

We might extend this picture by stating that the number of gran-

ules in a volume corresponds with the entropy in the volume. In the 

Hilbert book model the number of granules corresponds to the 

                                                           
92 http://en.wikipedia.org/wiki/Holographic_principle  

(4) 

http://en.wikipedia.org/wiki/Holographic_principle
http://en.wikipedia.org/wiki/Holographic_principle
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number of Hilbert vectors that are attached to a QPAD. It also cor-

responds to the number of anchor points of the primary physical 

fields. 

 

The eigenvectors of the particle locator operator 𝔖 correspond to 

quantum logical propositions that represent the location of physical 

particles. These propositions have a binary yes/no value. In the ex-

tended model these propositions get extra content via the attached 

QPAD’s. 

8.5.6 Black hole as a subspace of the Hilbert space 

The coupling between the eigenvectors of the particle locator 

operator and the Palestra is not precise. It is stochastic and its min-

imal size is of the order of the Planck-length. This granularity is 

due to the fact that the Hilbert space is separable and as a conse-

quence the set of eigenvalues is countable. That is why the granules 

in the surface of a black hole have this size. The surface of a black 

hole is an image of the unit sphere of a subspace of the Hilbert 

space where the eigenvectors of the particle location operator form 

an orthogonal base and all attached QPAD’s pack the eigenvalues 

together in an optimal way.  

The eigenvectors of the particle locator operator all touch such a 

granule. The relation with quantum logic means that the Hilbert 

vector stands for a proposition that has a yes/no value. In case of 

the Hilbert vectors that are attached to the granules the yes/no value 

represents group membership. Thus each granule represents a bit of 

information. 

 

For the eigenvectors of the particle locator operator a densest 

packaging exists. It means that in that condition the QPAD’s have 

shrunk to their smallest possible location difference. 
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Assumption 1: In that condition, due to the properties of the 

QPAD’s, the mutual tension works asymmetrically.  

 

This asymmetry means that in a surface that is formed by a set 

of densely packed granules the tension on one side is stronger than 

the surface tension at the other side. As a consequence the final 

configuration of a densest packaging becomes an empty bubble. 

 

8.5.7 HBM interpretation of black hole 

Three dimensional granular structures do not occur in nature 

other than in composites that have a regular structure. A regular 

granular structure of space would immediately cause anisotropy of 

that space. Still space includes two dimensional regular granular 

structures. They form the surfaces of black holes. They also repre-

sent the most densely form of packaging of entropy. 

The surface patches can be seen as to represent Hilbert eigenvec-

tors of the particle location operator. For these eigenvectors the cor-

responding eigenvalues are packed densely together into a surface. 

The packed eigenvectors all carry the properties of their mutual 

coupling. (mass, electric charge, spin). Together these data form the 

properties of the BH. 

The coupling of the QPAD’s that are attached to the packed ei-

genvectors is a special type that is not treated before. Its character-

istics are such that the coupled particles form a stable bubble 

shaped body. This body can still absorb extra particles. 

 

Black holes feature seemingly contradictory properties. On the 

one hand information cannot pass their event horizon. On the other 

hand it is possible to follow their history from occurrences in their 

environment. This history follows from the values of their proper-

ties. These properties are represented by second category physical 
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fields. Thus the second category physical fields CAN pass event 

horizons, while first category physical fields are blocked. This indi-

cates that the two categories are fundamentally different. 

8.5.8 Chandrasekhar limit 

The Chandrasekhar limit93 is an upper bound on the mass of a 

stable white dwarf star: 

 

       
  
 √  

 
(
  

 
)

 
 ⁄  

(    )
 
 

 

where: 

 is the reduced Planck constant 

 c is the speed of light 

 G is the gravitational constant 

 μe is the average molecular weight per electron, 

which depends upon the chemical composition of 

the star. 

 mH is the mass of the hydrogen atom. 

   
   .       is a constant connected with the solu-

tion to the Lane-Emden equation. 

Approximately: 

 

       
  
 

  
 . 

 

                                                           
93 http://en.wikipedia.org/wiki/Chandrasekhar_limit  

(1) 

(2) 

http://en.wikipedia.org/wiki/Chandrasekhar_limit
http://en.wikipedia.org/wiki/Lane-Emden_equation
http://en.wikipedia.org/wiki/Chandrasekhar_limit
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Where 

 

   √
 c
 ⁄  is the Planck mass 

8.5.9 Similarity between black hole and massive fermi-

on 

According to the no hair theorem a black hole shows only a few 

properties to the outside world. These properties are sources of se-

cond category physical fields. 

Massive fermions have a similar behavior. 

Apart from the exposed features it is impossible to observe what 

goes on inside the black hole. 

It is possible that the internals of a black hole are to a certain ex-

tent similar to the construction of a massive fermion. It would mean 

that the BH is based on a set of QPAD’s that each are coupled to a 

background QPAD. 

8.6 Birth of the universe 

For the eigenvectors of the particle locator operator a densest 

packaging exists. It means that in that condition the QPAD’s have 

shrunk to their smallest possible location difference. 

 

Assumption 1: In that condition, due to the properties of the 

QPAD’s, the mutual tension works asymmetrically.  

 

This asymmetry means that in a surface that is formed by a set 

of densely packed granules the tension on one side is stronger than 

the surface tension at the other side. As a consequence the final 

configuration of a densest packaging becomes an empty bubble. 

 

(3) 
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In the starting condition of the universe all eigenvectors of the 

particle locator operator are densely packed in one assembly.  

 

Assumption 2: At an instant after that moment the packaging 

density suddenly relaxes.  

 

Even when the chance is very low, which means that the start 

bubble is very stable, given enough time the occasion will certainly 

happen. (It means that black holes may collapse.) 

 

The number of granules does not change. Thus, during this 

spreading the total entropy does not change.  

 

The package may fall apart in several separated subassemblies 

and a large series of single or more loosely packed granules. For the 

single and the more loosely packed granules the corresponding 

QPAD’s fold out. The densely packed subassemblies take again a 

bubble shape.  

 

This process may occur instantly or gradually, but most probably 

it will be done in a sequence of these two possibilities.  

 

First occurs a sudden change of scale between the particle loca-

tor operator in the separable Hilbert space Ң and the GPS operator 

that delivers the background coordinate system and that resides in 

the rigged Hilbert space Ħ. It is possible that originally the bubble 

covered the whole of the unit sphere of the Hilbert space Ң, or it 

may just cover a finite dimensional subspace of Ң. This means that 

the bubble contains an infinite or a finite amount of granules, which 

suddenly get diffused in a much larger space. That space is affine 

like the unit sphere of the Hilbert space Ң. The diffusion takes 
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place at every occupied location in the background coordinate sys-

tem.  

 

This kind of universe has no spatial origin or it must be the cen-

ter of the outer horizon. With the aid of the background coordinate 

system, it will be possible to indicate a center of that universe. Each 

item in this universe has its own private information horizon. This 

horizon is set by the reach of the light that has been travelling since 

the birth of the universe. As long as this light does not reach the 

outer horizon that sub-universe looks isotropic. A multitude of such 

sub-universes exist that need not overlap. However, they all look at 

their border at an image of part of the start horizon. Such, sub-

universes obey the cosmological principle94. 

 

In the next phase the further expansion occurs gradually. Be-

cause the QPAD’s that are attached to the granules install a tenden-

cy for the granules to stay together, a different motor must be pre-

sent behind this expansion. This motor can be found in the fact that 

with increasing radius the number of pulling granules grows faster 

than the decrease of the forces that are executed by the fields of 

these granules that is caused by the increasing distance. In an affine 

space this is always and everywhere true. This effect is also the 

source of inertia. 

 

Due to local attraction, loosely packed and single granules may 

reassemble in bubble shaped subassemblies. These subassemblies 

are known as black holes. Single granules and small aggregates of 

granules are known as elementary particles, nuclei or atoms.  

 

                                                           
94 http://en.wikipedia.org/wiki/Cosmological_principle  

http://en.wikipedia.org/wiki/Cosmological_principle
http://en.wikipedia.org/wiki/Cosmological_principle
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Much larger aggregates may be formed as well but these are not 

densely packed. Elementary particles can be categorized according 

to the configuration of their constituting QPAD’s. The coupled 

QPAD’s determine how massive the particle is. 

 

Inside the bubble the fact that the granule represents matter is 

not recognizable. It is only recognizable when the attached QPAD 

gets the chance to unfold. That condition is true when the granule is 

not part of a densely packed subassembly. 

 

The requirements for the birth of the universe are: 

1. The existence of a particle locator operator 

2. The existence of QPAD’s that install the tendency to 

keep these eigenvectors of the particle locator opera-

tor together 

3. When the large numbers of eigenvectors are densely 

packed, then the assembly forms a bubble, because 

due to the properties of the QPAD’s, the mutual ten-

sion works asymmetrically 

4. In advance the eigenvectors of the particle locator 

operator are densely packed in one bubble. 

5. A non-zero probability exists that the package densi-

ty will be relaxed and the package falls apart. This 

may happen in a two stage process 

a. A sudden reduction of scale occurs 

b. Next a force that pulls the granules further 

away from each other exists 
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In the first episode of the universe the sudden scale change took 

place. This ripped the original bubble apart. Next a gradual further 

expansion took place.  

 

The granules that move freely can at the utmost take one space 

step at every progression step. When the ratio of the space step and 

the progression step is fixed, then this determines a maximum 

speed of granules. A certain type of granules takes a space step at 

every progression step. That type transports information at the max-

imum possible speed.  

 

When the path of these information transmitting particles is a 

straight line, then after a while, the other types of granules no long-

er get messages from the birth episode of the universe. But this 

need not be the case. 

 

Since the messenger has a finite speed, it brings information 

from the past. First of all the speedy messenger and the slow ad-

dressee may have started from different locations. Further, due to 

curvature of space the path of the speedy messenger may take much 

longer than the duration of the much straighter path that the much 

slower addressee has taken. The information about the past that is 

included in the message might be close to the episode in which the 

granules were combined in one large bubble. 

 

Thus despite the fact that most of the information that is gener-

ated during the birth of the universe is long gone, still some of that 

information may reach particles long after the instance of birth. 

When this information is interpreted it gives the impression of a 

metric expansion of the universe95.  

                                                           
95 http://en.wikipedia.org/wiki/Metric_expansion_of_space 

http://en.wikipedia.org/wiki/Metric_expansion_of_space
http://en.wikipedia.org/wiki/Metric_expansion_of_space
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9 COSMOLOGY 

Cosmology concerns all particles with a mass above the limiting 

mass 𝔐. 

9.1 Higher order couplings 

It is assumed that during higher order couplings the constituting 

elementary particles keep their basic properties; 

 coupling factor,  

 electric charge  

 angular momentum 

 color charge. 
 

The properties that characterize the coupling event in elementary 

particles are sources of second category physical fields. These 

fields are known as physical fields. For example the electric charge 

is a source for electromagnetic fields. The coupling factor is a 

source for the gravitation field. The spin also causes a field. 

 

A secondary field is a specialized QPAD that has one of the 

properties of the elementary particle as its isolated source. The se-

cond category physical fields may still overlap (superpose). 

 

These second category physical fields play a major role in the 

higher order couplings. The reason for this fact is that the sources 

of the second category physical fields influence the curvature of the 

parameter space. In fact this is a misconception, because the real 

cause of curvature is formed by the primary couplings. 

 

In this respect a more complicated effect also plays a role. The 

currents of the primary QPAD’s that result after the primary cou-
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pling may also influence the higher order coupling. This effect is 

not covered by formulas like the Kerr-Newman metric formula. 

 

The composite particles can be considered to have state func-

tions that are formed by the superposition of the state functions of 

the constituting particles. However, at least part of these particles 

consist of coupled pairs of QPAD’s in which one is a state function 

QPAD  and the other is a background QPAD. With other words, a 

composite particle is a coupling between a superposition of a num-

ber of state function QPAD’s and a superposition of a number of 

background QPAD’s. Not only the charge density distributions su-

perpose, but also the current density distributions superpose. Thus 

the flows intermix. 

 

It means that the state function of the composite is a superposi-

tion of a set of QPAD’s that have different sign flavors. However, 

the same holds for the superposition of the background QPAD’s. 

This fact would mean that higher order coupling is not well de-

scribed by simple wave equations as those that describe elementary 

particles. Instead it may be better described by an equation that de-

scribes the dependence of the local curvature on the locally existing 

coupling properties.  

 

The Kerr-Newman equation produces an abnormality when the 

limit96  

 

  √  
   (    )  

 

                                                           
96 Appendix; Kerr-Newton limit 
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is passed. Above that limit the particle is encapsulated and 

guarded by a skin in the form of a horizon. Below that limit the en-

closed particles are naked. 

9.2 Curvature 

9.2.1 Hilbert Book Model ingredients 

Each page of the Hilbert Book Model consists of three quite in-

dependent ingredients. 

 

Ingredient 1: The quantum logic, or equivalently, its 

lattice isomorphic companion; the set of closed subspac-

es of an infinite dimensional separable Hilbert space 

 

Ingredient 2: A background coordinate system, called 

Palestra that is taken from the continuum eigenspace of 

an operator that resides in the Gelfand triple of the sepa-

rable Hilbert space. 

 

Ingredient 3: A set of QPAD’s that each couple an ei-

genvector of a particle locator operator that resides in the 

Hilbert space to a value in the Palestra. 

 

Couplings between QPAD’s that lead to elementary particles are 

characterized by four categories of properties: 

 

 Coupling factor 

 Electric charge 

 Angular momentum 

 Color charge 
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These primary couplings influence the curvature in the second 

ingredient that affects the third ingredient. It looks as if physical 

fields in the form of second category physical fields that relate to 

the primary couplings influence the curvature. This is a misconcep-

tion. However, this view can deliver a coarse indication of what 

happens. The way that these properties influence curvature is de-

scribed by metric equations, such as the Kerr-Newman metric for-

mula. 

The first category physical fields are restricted by the maximum 

speed at which information can be transported. The influence of 

primary couplings on curvature seems not to be restricted by this 

limit. Second category physical fields are not restricted by the max-

imum speed at which information can be transported 

For example the properties (mass, electric charge, spin and sur-

face area) of a black hole change in an observable way when matter 

is absorbed while in the neighborhood of the event horizon the 

transport speed of information by first category physical fields is 

known to reduce to zero. 

9.2.2 Coordinate system 

The coordinate system that is taken from the eigenspace of an 

operator that resides in the Gelfand triple is not applied directly. In-

stead a quaternionic distribution that uses the values of the flat co-

ordinate system that is taken from the Gelfand triple as its parame-

ters is used as the observed coordinate system. 

 

Curvature can be described by the combination of a preselected 

coordinate system that defines location in a non-curved space and a 

local metric that describes the curvature in terms of that coordinate 

system. As is described above, both the flat and the curved coordi-

nate system are based on eigenspaces of corresponding operators 

that reside in the Gelfand triple. 
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Several coordinate systems are possible. The most common co-

ordinate systems for a non-curved three dimensional space are: 

 

 Cartesian coordinates 

 Spherical coordinates 
 

Alternatives for spherical coordinates are: 

 

 Schwarzschild coordinates97 

 Kruskal-Szekeres coordinates98 

 Lemaitre coordinates99 

 Eddington–Finkelstein coordinates100 
 

The advantage of the alternative coordinates is that they avoid 

unnecessary singularities. However, these alternatives are only rel-

evant for situations in which the Schwarzschild radius plays a sig-

nificant role. This is certainly the case for black holes and their en-

vironment, but it becomes irrelevant in the realm of some 

elementary particles. 

9.2.3 Metric 

The currently best suitable local metric equation for our purpos-

es is the Kerr-Newman metric101. It uses three local properties. 

These properties are: 

                                                           
97 http://en.wikipedia.org/wiki/Schwarzschild_coordinates  
98 http://en.wikipedia.org/wiki/Kruskal-Szekeres_coordinates  
99 http://en.wikipedia.org/wiki/Lemaitre_coordinates  
100 http://en.wikipedia.org/wiki/Eddington%E2%80%93Finkelstein_coordinates  
101 Appendix;Metric tensor field;Local metric equation 

http://en.wikipedia.org/wiki/Schwarzschild_coordinates
http://en.wikipedia.org/wiki/Kruskal-Szekeres_coordinates
http://en.wikipedia.org/wiki/Lemaitre_coordinates
http://en.wikipedia.org/wiki/Eddington%E2%80%93Finkelstein_coordinates
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 The coupling factor   

 The electric charge   

 The angular momentum   
 

The angular momentum   includes the spin  . 
 

As stated before the Kerr-Newman can only give a coarse ap-

proximation because in fact the primary couplings determine the 

local situation and the properties represent only abstractions of 

these primary couplings.  

 

This Kerr-Newman metric uses the sum of a category of proper-

ties that are collected within the observed sphere. However, in prin-

ciple the summation produces different centers of activity for dif-

ferent property categories. Thus, these centers need not be at the 

same location. However, for large enough selected radius   and ap-

plied to black holes or single particles, these centers coincide.  

 

The simplest interpretation of the Kerr-Newman metric can be 

taken on the surface of a sphere that has a selected radius  . 
 

The formula uses three characteristic radii. The largest charac-

teristic radius plays the most prominent role.  

 

This fact introduces the notion of geo-cavity. 
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9.2.4 Scales 

The charge-to-mass ratio     is typically larger in smaller sys-

tems102. For most astrophysical systems, 

 

     ,  
 

while for a Millikan oil drop,  

 

       .  
 

Going all the way down to elementary particles, the value for the 

electron is  

 

        .  
 

To achieve balance we require that Newton's gravitational force 

   has the same magnitude as Coulomb's force   , that is 

 

|  |  |  |  
 

To be more specific, let us assume that       where   is the el-

ementary charge. We then adjust the mass   to the value for which 

the forces are balanced. This gives the Stoney mass103  

 

        
 

√     
  .            g         

 

It is only one order of magnitude lower than the Planck mass  

 

                                                           
102 For deeper investigation, see: http://arxiv.org/abs/0802.2914  
103 http://en.wikipedia.org/wiki/Natural_units  

(1) 

(2) 

(3) 

(4) 

(5) 

http://www.linkedin.com/redirect?url=http%3A%2F%2Farxiv%2Eorg%2Fabs%2F0802%2E2914&urlhash=-sLQ&_t=tracking_disc
http://en.wikipedia.org/wiki/Natural_units
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   √
 c
 ⁄   .     (  )    

    g         

 

The ratio between them is given by the square root of the fine 

structure constant,  

 

α  
e 

c     
 (   .         )    

 
  
  
 √   .  

 

Thus, in case of electric charges, the Coulomb forces are nearly 

in balance with the gravitational forces at the Planck scale. Howev-

er, at subatomic scale this picture is disturbed by the spin. 

 

For subatomic systems there is an additional phenomenon which 

comes into play. In fact, according to general relativity, the gravita-

tional field tends to become dominated by the spin at distances of 

the order of the Compton wavelength. The relevant quantity which 

governs this behavior is the ratio      where   is the (spin) angu-

lar momentum. For an electron, 

 

         .  
 

As a consequence, the gravitational field becomes dominated by 

gravitomagnetic effects in the subatomic domain. This fact has im-

portant consequences for the electromagnetic fields of spinning 

charged particles. 

 

The four known gravitational and electromagnetic multi-pole 

moments of the electron are:  

(6) 

(7) 

(8) 

(9) 
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 the mass   ,  

 the spin       ,  

 the charge    

 the magnetic moment   
   

   
 

The spin is a gravitomagnetic dipole moment, i.e. a gravitational 

analogue of the magnetic dipole moment. 

 
  
   
      

 

The corresponding Kerr-Newman field is therefore dominated 

by the spin in the subatomic domain. In particular, it has no event 

horizon and it has no ergo-region. (The ergo-region is a region of 

space-time located outside the event horizon of a rotating black 

hole where no object even if traveling at the speed of light, can re-

main stationary.) 

 

An important conclusion is that gravity tends to become spin 

dominated in the subatomic domain. 

 

The Kerr-Newman metric formula indicates that small particles 

that are encapsulated by a horizon are restricted by the limit: 

 

  √    (    )
  

 

Where m is the particle mass,   is the elementary charge and    
is the elementary spin. 

(10) 

(11) 
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9.3 Inside black holes 

Objects that fulfill the rules for the existence of a BH horizon 

hide their internals. Their virtual construction is similar to that of a 

massive elementary particle. That means that nothing is inside that 

horizon than a set of coupled QPAD’s. One of these is a back-

ground QPAD. The others form a superposition. This superposition 

is a kind of super QPAD. It lets the BH act as one particle that has 

the properties of the combination of the gathered fields. 

9.4 Hadrons 

The Hilbert Book Model delivers the reason of existence of the 

properties; coupling factor, electric charge and angular momentum 

(spin) of elementary particles. In higher level couplings these prop-

erties are conserved. These properties influence the local curvature. 

The curvature is the binding ingredient for this next level. The for-

mulas that describe the influence of the conserved properties on the 

curvature control what is happening. Currently the best available 

formula is the Kerr-Newman metric formula. 

This story does not include a Higgs particle or Higgs fields. 

However, the Hilbert Book model uses a background field that is 

one partner in the coupling of that background field to the state 

function of an elementary fermion. The background field represents 

the superposition of the tails of the state functions of all massive 

particles that exist in the universe. In this way inertia gets its im-

plementation. The coupling event is characterized by a set of prop-

erties. These are the mentioned properties of the elementary parti-

cles. 

Hadrons are the first of the next levels of binding products. 

 

The Kerr-Newman equation shows an abnormality at the place 

where black holes get their horizon. Whether or not a hadron pos-
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sesses a horizon is in this respect unimportant. The properties of the 

elementary particles that are bound together are sources of second 

category physical fields. These fields reach beyond a possible hori-

zon. To the outside world the superposition of these fields signal 

the properties of the hadron.   
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10 CONCLUSION 

It is quite possible to build a model of physics on a solid axio-

matic foundation. It has the advantage that from the beginning the 

model stays consistent and trustworthy. For the Hilbert Book Mod-

el this inroad has brought some rather revolutionary deviations 

from contemporary physics. The way that fields are treated and 

how dynamics is implemented differs strongly from the ordinary 

course of physics. Through the switch from complex Hilbert spaces 

to quaternionic Hilbert spaces and the attention that is given to sign 

flavors of quaternionic probability amplitude distributions it be-

comes possible to derive unique continuity equations rather than 

equations of motion. The elementary coupling equations reveal the 

properties and habits of all known elementary particles.  

 

This step only reaches to the first level of binding. The proper-

ties of the coupling that occurs inside elementary particles form the 

factors that influence the local curvature. The current status of the 

model already indicates that the next level of particle binding will 

use the effects of the coupling properties on the curvature of the lo-

cal geometry besides the coupling of sign flavors of quaternionic 

probability amplitude distributions. It means that in the higher level 

binding for a coarse view the role of the metric equation will be 

greater than the role of the wave equation. This step is rather de-

terministic, while the first level of coupling is afflicted with inde-

terminism.  
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PART 
III 
Appendix 

The appendix is a toolbox and a grab bag that contains everything 

that the author has collected that can be used to build or analyze the 

Hilbert Book Model  
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1 Logic 

1.1 History of quantum logic 

Around 1930 John von Neumann and Garrett Birkhoff were 

searching for an acceptable explanation of the results of experi-

ments that showed that the execution of an observation of a very 

small object can completely destroy the validity of an earlier obser-

vation of another observable of that object. The Schrödinger equa-

tion that agreed with the dynamic behaviour of the particles already 

existed. Not much later Heisenberg’s matrix formulation became 

popular as well. Quite soon the conclusion was made that some-

thing was fundamentally wrong with the logic behind the behaviour 

of small particles. These small objects show particle behaviour as 

well as wave behaviour and they show quantization effects. It was 

found that the distribution axiom of classical logic had to be 

changed. Soon it became apparent that the lattice structure of clas-

sical logic must be weakened from an ortho-complementary modu-

lar form to an ortho-complementary weakly modular lattice. The 

quantum logic was born. The next step was to find a useful mathe-

matical presentation of this new logic. A historic review of what 

happened can be found in: “Quantum Theory: von Neumann” vs. 

Dirac; http://www.illc.uva.nl/~seop/entries/qt-nvd/. It includes ex-

tensions of the concept of Hilbert space and application of these 

concepts to quantum field theory. Another source is: 

http://www.quantonics.com/Foulis_On_Quantum_Logic.html.  

1.2 Quantum logic 

Elementary particles behave non-classical. They can present 

themselves either as a particle or as a wave. A measurement of the 

particle properties of the object destroys the information that was 

http://www.illc.uva.nl/~seop/entries/qt-nvd/
http://www.quantonics.com/Foulis_On_Quantum_Logic.html
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obtained from an earlier measurement of the wave properties of that 

object.  

With elementary particles it becomes clear that that nature obeys 

a different logic than our old trusted classical logic. The difference 

resides in the modularity axiom. That axiom is weakened. The clas-

sical logic is congruent to an orthocomplemented modular lattice. 

The quantum logic is congruent to an orthocomplemented weakly 

modular lattice. Another name for that lattice is orthomodular lat-

tice. 

  

1.2.1 Lattices 

A subset of the axioms of the logic characterizes it as a half or-

dered set. A larger subset defines it as a lattice. 

A lattice is a set of elements        that is closed for the con-

nections ∩ and ∪. These connections obey: 

  

 The set is partially ordered. With each pair of elements 

    belongs an element  , such that       and      .  
 The set is a ∩half lattice if with each pair of elements     

an element   exists, such that       ∩   .  
 The set is a ∪half lattice if with each pair of elements     

an element   exists, such that       ∪   .  
 The set is a lattice if it is both a ∩half lattice and a ∪half 

lattice. 

 

The following relations hold in a lattice:  

 

  ∩        ∩    
 

(1) 
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(  ∩   )  ∩        ∩  (  ∩   ) 
 

  ∩ (  ∪   )      

 

  ∪        ∪    
 

(  ∪   )  ∪        ∪  (  ∪   ) 
 

  ∪ (  ∩   )      

 

The lattice has a partial order inclusion  : 

 

a   b ⇔ a   b = a 

 

A complementary lattice contains two elements   and   with 

each element a an complementary element a’ such that: 

 

  ∩   ’     
 

  ∩        
 

  ∩        

 

  ∪   ’     
 

  ∪        
 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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  ∪        

 

An orthocomplemented lattice contains two elements   and   
and with each element   an element    such that: 

 

  ∪         
 

  ∩         
 

(  )      
 

                
 

  is the unity element;   is the null element of the lattice 

 

A distributive lattice supports the distributive laws: 

 

  ∩ (  ∪   )    (  ∩   )  ∪  (   ∩   ) 
 

  ∪ (  ∩   )    (  ∪   )  ∩  (  ∪   ) 
 

A modular lattice supports: 

 

(  ∩   )  ∪ (  ∩   )  
    ∩  (  ∪ (  ∩   )) 

 

A weak modular lattice supports instead: 

 

There exists an element   such that 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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      ⇔  (  ∪   ) ∩    
     ∪ (  ∩   )  ∪ (  ∩   ) 

 

where   obeys: 

 

(  ∪   )  ∩        
 

  ∩        
 

  ∩        
 

[(     )     (     )  ⇔        

 

In an atomic lattice holds  

 

              {      ⇒       } 

 

              {(          ∩   ) 
 

 ⇒  (               ∩   )} 
 
  is an atom 

 

Both the set of propositions of quantum logic and the set of sub-

spaces of a separable Hilbert space Ң have the structure of an or-

thomodular lattice. In this respect these sets are congruent. 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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In Hilbert space, an atom is a pure state (a ray spanned by a sin-

gle vector). 

 

Classical logic has the structure of an orthocomplemented dis-

tributive modular and atomic lattice. 

Quantum logic has the structure of an orthomodular lattice. That 

is an orthocomplented weakly modular and atomic lattice. The set 

of closed subspaces of a Hilbert space also has that structure.  

1.2.2 Proposition 

In Aristotelian logic a proposition is a particular kind of sen-

tence, one which affirms or denies a predicate of a subject. Proposi-

tions have binary values. They are either true or they are false. 

Propositions take forms like "This is a particle or a 

wave". In quantum logic "This is a particle." is not a 

proposition. 

In mathematical logic, propositions, also called 

"propositional formulas" or "statement forms", are 

statements that do not contain quantifiers. They 

are composed of well-formed formulas consisting 

entirely of atomic formulas, the five logical connec-

tives104, and symbols of grouping (parentheses etc.). 

Propositional logic is one of the few areas of math-

                                                           
104 http://en.wikipedia.org/wiki/Logical_connective  

http://en.wikipedia.org/wiki/Logical_connective
http://en.wikipedia.org/wiki/Logical_connective
http://en.wikipedia.org/wiki/Logical_connective
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ematics that is totally solved, in the sense that it 

has been proven internally consistent, every theo-

rem is true, and every true statement can be 

proved. Predicate logic is an extension of proposi-

tional logic, which adds variables and quantifiers. 

In Hilbert space a vector is either inside or not in-

side a closed subspace. A proper quantum logical 

proposition is “Vector |f> is inside state s”. 

In Hilbert space, an atomic predicate corresponds 

with a subspace that is spanned be a single vector. 

Predicates may accept attributes and quantifiers. 

The predicate logic is also called first order logic. A 

dynamic logic can handle the fact that predicates 

may influence each other when atomic predicates 

are exchanged. 

1.2.3 Observation 

In physics, particularly in quantum physics, a system observable 

is a property of the system state that can be determined by some se-

quence of physical operations. This paper distinguishes between 

measurements and observations. 
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 With an observation the state is considered as a line-

ar combination of eigenvectors of the observable. An 

observation returns the statistical expectation value 

of the eigenvalue of the observable.  

 A measurement transforms the observed state to one 

of the eigenvectors of the observable. What happens 

depends on the characteristics of the measuring 

equipment. The measurement can be seen as a com-

bination of a transformation and an observation. 
 

Depending on the characteristics of the measuring equipment a 

measurement and a clean observation can give the same result. 

 

With this interpretation of the concept of observation it is possi-

ble to let states observe other states. A state might do a transfor-

mation before doing an observation but in general it fails the 

equipment to arrange that transformation. In nature observations are 

far more common than measurements. 

 

2 Numbers 

2.1 Cayley-Dickson onstruction 

The Cayley-Dickson construction formula enables the genera-

tion of a quaternion from two complex numbers: 

 

p = a0 + a1k + i(b0 + b1k) 

 

q = c0 + c1k + i(d0 + d1k) 

 

 (a, b) (c, d) = (ac – db
*
; a

*
d + cb) 

(1) 

(2) 

(3) 
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r = pq 

 

r0= a0c0 – a1c1 – b0d0 – b1d1 

 

rk= a0c1 – a1c0 – b0d1+ b1d0 

 

ri= a0d0 + a1d1 + b0c0 – b1c1 

 

rj= –a1d0 + a0d1 + b0c1+ b1c0 

 

2.2 Warren Smith’s numbers 

All hyper-complex numbers are based on real numbers. Two 

main construction formulas for hyper-complex numbers exist. The 

Cayley-Dickson construction is the most widely known. The War-

ren-Smith construction gives best algorithmic properties at higher 

dimensions. Until the octonions both construction formulas deliver 

the same results. 

The quaternions are the highest dimensional hyper-complex 

numbers that deliver a division ring. 

2.2.1 2
n
-on construction 

The 2
n
-ons use the following doubling formula 

 

(   )(   )  
 (     (    )  (    ) 

 (  (  ((   )   ) ) ) ) 

 
Up until the 16-ons the formula can be simplified to 

(4) 

(5) 

(6) 

(7) 

(8) 

(1) 
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(   )(   )    (                 (      ) (   )) 

 
Up to the octonions the Cayley Dickson construction delivers 

the same as the 2
n
-on construction. From n>3 the 2

n
-ons are ‘nicer’. 

2.2.1.1 2
n
-ons 

Table of properties of the 2nons.  

See scorevoting.net/WarrenSmithPages/homepage/nce2.ps.  

Type name Lose 

1ons Reals.    

2ons Complex 

numbers 

z
*
 = z (the * denotes conjugating);   

the ordering properties that both {z > 0, -z 

> 0, or z = 0}  

and {w > 0, z > 0 implies w + z > 0, wz > 

0}. 

4ons Quater-

nions 

commutativity ab = ba;  

the algebraic closedness property that every 

univariate polynomial  equation has a root.   

8ons Octo-

nions 

associativity ab · c = a · bc.  

16ons (not Sed-

enions!) 

rightalternativity x · yy = xy · y;  

rightcancellation x = xy · y
-1

 ;  

flexibility x · yx = xy · x; leftlinearity  (b 

+ c)a = ba + ca;  

antiautomorphism ab = ba, (ab)
-1

 = b
-1

 a
-1

 ;  

leftlinearity (b + c)a = ba + ca;  

continuity of the map x → xy;  

Moufang and Bol identities;  

diassociativity  

32ons  generalizedsmoothness of the map x → 

(2) 

file:///C:/web/NewWebSite/English/Science/scorevoting.net/WarrenSmithPages/homepage/nce2.ps
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xy;  

rightdivision properties that xa = b has 

(generically) a solution x, and the uniqueness 

of such an x;  

the “fundamental theorem of algebra” that 

every polynomial having a unique “asymptoti-

cally  dominant monomial” must have a root; 

Trotter's formula: 

 lim   [ 
       ]

 
  lim   (  

   

 
)
 

       

 

Type Retain 

2nons Unique 2sided multiplicative & additive identity elements 

1 & 0; 

Normmultiplicativity |xy|
2
 = |x|

2
·|y|

2
 ;  

Normsubadditivity |a + b| ≤ |a| + |b|; 

2sided inverse a
-1

 = a
*
/|a|

2
 (a # 0);  

a
**

 = a;  

(x ± y)* = x
*
 ± y

*
; 

(a
-1

) 
-1

 = a;  

(a
*
) 

-1
 = (a

-1
)

*
 ;  

|a|
2
 = |a|

2
 = a

*
a;  

Leftalternativity yy · x = y · yx;  

Leftcancellation x = y
-1

 · yx;  

Rightlinearity a(b + c) = ab + ac;  

r
th

 powerassociativity a
n
 a

m
 = a

n+m 
;  

Scaling s · ab = sa · b = as · b = a · sb = a · bs = ab · s (s 

real); Powerdistributivity  (ra
n
 + sa

m
)b = ra

n
 b + sa

m
 b (r, s re-

al);  

Vector product properties of the imaginary part: ab - re(ab) 

of the product for pureimaginary 2
n
ons a,b regarded as  (2

n
  - 
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1)vectors; 

xa,b = a,x*b, xa,xb = |x|2·a,b and 

x,y = x*,y* 

Numerous weakened associativity, commutativity, distribu-

tivity, antiautomorphism, and Moufang and Bol  properties in-

cluding 9coordinate ``niner'' versions of most of those proper-

ties; contains 2
n-1

ons as subalgebra. 

 

2.2.1.1.1 The most important properties of 2n-ons 

If a,b,x,y are 2
n
-ons, n ≥ 0, and s and t are scalars (i.e. all coordi-

nates are 0 except the real coordinate) then 

unit: A unique 2
n
-on 1 exists, with 1·x = x·1 = x. 

zero: A unique 2
n
-on 0 exists, with 0 + x = x + 0 = x and 0·x = 

x·0 = 0. 

additive properties: x+y = y+x, (x+y)+z = x+(y+z); 

 x exists with x + ( x) = x   x = 0. 

norm: |x|
2
 = xx

*
 = x

*
x. 

norm-multiplicativity: |x|
2
·|y|

2
 = |x·y|

2
. 

scaling: s · x·y = s·x · y = x·s · y = x · s·y = x · y·s. 

weak-linearity: (x + s)·y = x·y + s·y and x·(y + s) = x·y + x·s. 

right-linearity: x·(y + z) = x·y + x·z. 

inversion: If x ≠ 0 then a unique x
-1

 exists, obeying x
-1

·x = x·x
-1

 

= 1. It is x
-1

 = x·|x|
-2

. 

left-alternativity: x · xy = x
2
·y. 

left-cancellation: x · x
-1

·y = y. 

effect on inner products: x·a,b = a, x
*
·b, x,y = x

*
, y

*
,  

x
*
·a, x

-1
·b = a,b,  

and x·a,x·b = |x|
2
·a,b. 

Conjugate of inverse: (x
-1

)
*
 = (x

*
)
-1

. 
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Near-anticommutativity of unequal basis elements: ek
2
 =  1 

and ek·el
* 
=  el·ek

*
  if k ≠ l.  

(Note: the case k; l > 0 shows that unequal pure-imaginary basis 

elements anticommute.) 

Alternative basis elements: ek·el · ek = ek · el·ek, el·ek · ek = el · 

ek·ek, and ek·ek ·el = ek · ek·el. (However, when n ≥ 4 the 2
n
-ons are 

not flexible i.e. it is not generally true that x·y · x = x · y·x if x and 

y are 16-ons that are not basis elements. They also are not right-

alternative.) 

Quadratic identity: If x is a 2
n
-on (over any field F with charF 

≠ 2), then x
2
 + |x|

2
 = 2·x re x 

Squares of imaginaries: If x is a 2
n
-on with re x = 0 (“pure im-

aginary”) then x
2
 =  |x|

2
 is nonpositive pure-real. 

Powering preserves imx direction 

2.2.1.1.2 Niners 

Niners are 2n-ons whose coordinates with index > 8 are zero. 

The index starts with 0. 

9-flexibility xp · x = x · px, px · p = p · xp. 

9-similitude unambiguity xp · x-1 = x · px
-1

, px · p
-1

 = p · xp
-1

. 

9-right-alternativity xp · p = x · p
2
, px · x = p · x

2
. 

9-right-cancellation xp
-1

 · p = x, px
-1

 · x = p. 

9-effect on inner products x, yp = xp, y, xp, yp = |p|
2
x, y. 

9-left-linearity (x + y)p = xp + yp, (p + q)x = px + qx. 

9-Jordan-identity xp · xx = x(p · xx), py · pp = p(y · pp). 

9-coordinate-distributivity ([x + y]z)0;:::;8 = (xz + yz)0;:::;8. 

9-coordinate-Jordan-identity [xy · xx]0;:::;8 = [x(y · xx)]0;:::;8. 

9-anticommutativity for orthogonal imaginary 2
n
-ons 

If p, x = re p = re x = 0 then px =  xp. 
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9-reflection If |a| = 1 and the geometric reflection operator is de-

fined below then  (refl[a](y))0;:::;8 = (a · y
*
a)0;:::;8, and  

{refl[a](y)}
*
0;:::;8 = (a

*
y · a

*
)0;:::;8, and 

if either a or y is a niner then  refl[a](y) = a · y
*
a and 

 refl[a](y) = a*y · a*. 

 

refl[ ⃗]( ⃗)     ⃗   
 〈 ⃗  ⃗〉

| ⃗| 
 ⃗ 

What holds for the niners, also holds for the octonions. 

2.3 Quaternions 

2.3.1 Sign flavors 

The quaternions that form the 

values of a continuous quaterni-

onic distribution must all feature 

the same set of sign selections. 

This fact attaches a sign flavor to 

each quaternionic distribution. 

Quaternionic distributions come 

in eight sign flavors
[1]

. We indicate 

color by an extra index: 

. are anti-

colors. See figure.  

In the right column the sym-

bols R and L stand for the right or 

left handedness of the quaternion 

product. We will use the symbol 

or for the sign flavor of 

the quaternionic distribution that 

(1) 

http://www.scitech.nl/English/e_physics/#_ftn1
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has the same sign flavor as its parameter space. However, selecting 

as base instead of may work as well. Since acts as 

background QPAD for fermions, it might be a better choice. 

We will use 

 

 

Often the symbols will be used instead of the sym-

bols and . 

2.3.1.1 Sign selections and quaternionic distributions 

Quaternionic distributions are supposed to obey a distribution 

wide sign selection. Thus, the distribution is characterized by one 

of the eight quaternionic sign flavors.  

 

                        

 

Many of the elementary particles are characterized by an ordered 

pair of two field sign flavors. These fields are coupled with a cou-

pling strength that is typical for the particle type. These particles 

obey a characteristic continuity equation105. 

2.3.1.2 Product rule 

We use the quaternionic product rule.  

        〈   〉              

 

〈   〉                 
 

                                                           
105 Hilbert field equations; Continuity equation for charges 

(1) 

(1) 

(2) 
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     (         )   (         )
  (         ) 

2.3.1.3 Operators 

The sign selections of operator    (    ) depend on the sign 

selections of position operator Q, which determines the sign selec-

tions for its eigenvalues    (    ).  
 

Normally we consider the sign selection for operators Q and   

fixed to operators    and  
 . Sometimes we chose  

  instead of 

operator  . 
 

Quaternionic sign selection are directly connected with the con-

cepts of parity and spin. 

 

For quaternionic functions symmetry reduces the differences 

that are produced by conjugation and anti-symmetry stresses the 

differences. The same holds for operators. 

2.3.1.4 Matrices 

Another possibility is to present sign selections by matrices106. 

 

   [
    
  
]     [ 

   
  

]     [
  
   

] 

 

The    matrix switches the complex fields that together form the 

quaternion field. 

 

                                                           
106 http://www.vttoth.com/qt.htm  

(3) 

(1) 

(2) 

http://www.vttoth.com/qt.htm
http://www.vttoth.com/qt.htm
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[
  
    
]  [
  
  
] [
  
    
] 

 

The    matrix switches the real parts and the imaginary parts of 

the complex fields that together form the quaternion field and it 

switches both fields. 

 

 [
   
    
]  [
   
  

] [
  
    
] 

 

The    matrix switches the sign of the first complex field. 

 

[
   
    
]  [
   
  

] [
  
    
] 

 

  
             

 

The Pauli matrices are involutory. 

The determinants107 and traces108 of the Pauli matrices are: 

 

det(  )     
 

Tr(  )    
 

   [
   
    

] 

 

   [
  
   

] 

 

                                                           
107 http://en.wikipedia.org/wiki/Determinant  
108 http://en.wikipedia.org/wiki/Trace_of_a_matrix  

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Trace_of_a_matrix
http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Trace_of_a_matrix
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   [
  
   

] 

 

   [
  
   

] 

 

  [
  
  
] 

 

The    matrices together select the imaginary base vectors. The 

  matrix exchanges the sign of all imaginary base vectors. Thus the 

  matrix implements the quaternionic conjugate. The conjugation 

also exchanges right handedness against left handedness. 

 

Another way of exchanging right handedness against left hand-

edness is the exchange of the sign of one of the imaginary base vec-

tors. 

 

[
  
    
]  [
  
  
] [
  
    
] 

 

   [
  
  
]  

 

The gamma matrices109 translate directly from complex fields to 

fully featured quaternionic fields. In this way four sign flavors of 

quaternionic fields are constructed from four complex fields. This 

is represented by four dimensional matrices and four dimensional 

spinors. The equivalent of the   matrix is the    matrix. 

 

                                                           
109 Appendix; Gamma matrices 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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[

   
    
   
    

]  [

    
    
    
    

] [

   
    
   
    

] 

 

It is false to interpret the matrices as vectors. They form a short-

hand for handling spinors. 

 

The Pauli matrix    represents the sign selection a→a⊗ (⊗        

          ), while the   matrix represents the sign selection a→a . 

The other Pauli matrices and the   matrices implement the resulting 

part of the quaternion behavior for spinors. 

2.3.2 Waltz details 

The 16-ons lose the continuity of the map   ⇒    . Also, in 

general holds (   )  ≠    (   ) for 16-ons. However, for all 2
n
-

ons the base numbers fulfill (     )         (     ). All 2
n
-ons fea-

ture a conjugate and an inverse. The inverse only exists for non-

zero numbers. The 2
n
-ons support the number waltz  

 

         . 
 

Often the number waltz appears as a unitary number waltz 

 

          
 

where   is a unit size number and    is its conjugate      = 1. 

 

In quaternion space the quaternion waltz       can be written 

as 

 

            (       )      (        ) 

(1) 

(2) 

(3) 
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              (       )       (        ) 
 

              (       )   
 

     (   (       )   )   
 

  (   (     )        (     )   )    
 

     (       )          (     )    
 

‖  ‖    ‖     (     )   ‖ 
 

(4) 

(5) 



193 

a

b||

2Φ

ab#a
-1

b

b#

aa

aτΦ

aba-1

The transform aba-1 rotates the 

imaginary part b of b around an 

axis along the imaginary part a of 

a over an angle 2Φ that is twice 

the argument Φ of a in the 

complex field spanned by a and 11

a = ||a||exp(2πiΦ)

Δb

# means perpendicular

||  means parallel 

 

 

Figure 6. The rotation of a quaternion by a second quaternion. 

 

Another way of specifying the difference is:  
 

     (         )       (   )   
 

‖  ‖     ‖   ‖  ‖ ‖  
 

(6) 

(7) 
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b#

2Φ

Δb

ab#a
-1

b#2sin2(2πΦ))

b#isin(4πΦ) 

Δb = (-2sin2(2πΦ) + isin(4πΦ))b#

 

Figure 7: The difference after rotation 
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2.3.2.1.1 Infinitesimal number transformation 

The number   is close to 1. Thus       . Let us investigate 

the transform         .  
 

    (      )   (     )  
 

                              
 

                   
 

                  
 

                  
 

 

This comes close to the effect of an infinitesimal number waltz, 

especially when       In that case       and    is perpen-

dicular      . 
For 2

n
-ons with               in general does not equal  . This 

effect stays unnoticed when quantum mechanics sticks to a com-

plex Hilbert space. 

 

 

2.4 Quaternion coordinates 

This part of the appendix describes candidates for the coordi-

nates on the coordinate sphere. 

(1) 

(2) 
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2.4.1 Polar coordinates  

The equivalent to rectangular coordinates in quaternion space is 

(aτ, ax, ay, az) 

 

                               

 

The equivalent to polar coordinates in quaternion space is 

 

 

a    ‖a‖ cos(ψ)  
 

a    ‖a‖ sin(ψ) sin( ) cos(φ)  
 

a    ‖a‖ sin(ψ) sin( ) sin(φ)  

 

     ‖ ‖    ( )    ( ) 
 

   ( ), where   (   ), is known as the (imaginary) ampli-

tude of the quaternion.  

Angle   (   ) is the (co-)latitude and angle   (    ) is the 

longitude.  

For any fixed value of     and   parameterize a 2-sphere of ra-

dius    ( ), except for the degenerate cases, when   equals   or  , 

in which case they describe a point. 

 

This suggests the following structure of the argument   

 

    ‖ ‖    (    )  
 

  ‖ ‖ (   ( )         ( )) 
 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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     ‖ ‖      ( )        
 

The imaginary number   may take any direction.  

2.4.2 3 sphere 

A 3-sphere is a compact, connected, 3-dimensional manifold 

without boundary. It is also simply-connected. What this means, 

loosely speaking, is that any loop, or circular path, on the 3-sphere 

can be continuously shrunk to a point without leaving the 3-sphere. 

The Poincaré conjecture110 proposes that the 3-sphere is the only 

three dimensional manifold with these properties (up to homeo-

morphism)111. 

The round metric on the 3-sphere in these coordinates is given 

by 

 

             ( ) (         ( )   ) 
 

The volume form is given by 

 

       ( )    ( )              
 

The 3-dimensional volume (or hyperarea) of a 3-sphere of radi-

us r is 

 

         
 

The 4-dimensional hypervolume (the volume of the 4-

dimensional region bounded by the 3-sphere) is 

 

                                                           
110 http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture  
111 http://en.wikipedia.org/wiki/3-sphere  

(8) 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
http://en.wikipedia.org/wiki/3-sphere
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The 3-sphere has constant positive sectional curvature equal to 

    . 
The 3-sphere has a natural Lie group structure SU(2) given by 

quaternion multiplication. 

The 3-sphere admits non-vanishing vector fields (sections of its 

tangent bundle). One can even find three linearly-independent and 

non-vanishing vector fields. These may be taken to be any left-

invariant vector fields forming a basis for the Lie algebra of the 3-

sphere. This implies that the 3-sphere is parallelizable. It follows 

that the tangent bundle of the 3-sphere is trivial. 

There is an interesting action of the circle group   on    giving 

the 3-sphere the structure of a principal circle bundle known as the 

Hopf bundle. If one thinks of     as a subset of   , the action is 

given by 

 

(     )     (         )       . 
 

The orbit space of this action is homeomorphic to the two-sphere 

  . Since    is not homeomorphic to      , the Hopf bundle is 

nontrivial. 

2.4.3 Hopf coordinates 

Another choice of hyperspherical coordinates, (       ), makes 

use of the embedding of    in   . In complex coordinates 

(     )    
  we write 

 

      (    )    ( ) 
 

        (    )    ( ) 
 

(4) 

(5) 

(1) 

(2) 
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Here   runs over the range 0 to    , and    and    can take any 

values between 0 and   . These coordinates are useful in the de-

scription of the 3-sphere as the Hopf bundle 

 

   →   →    
 

For any fixed value of η between 0 and    , the coordinates 

(     ) parameterize a 2-dimensional torus. In the degenerate cas-

es, when   equals 0 or    , these coordinates describe a circle. 

The round metric on the 3-sphere in these coordinates is given 

by 

 

            ( ) (   
      ( )     

 )  
and the volume form by 

 

        ( )    ( )            

2.4.4 Group structure 

Because the set of unit quaternions is closed under multiplica-

tion,    takes on the structure of a group. Moreover, since quaterni-

onic multiplication is smooth,    can be regarded as a real Lie 

group. It is a non-abelian, compact Lie group of dimension 3. When 

thought of as a Lie group    is often denoted   ( ) or  (   ). 
It turns out that the only spheres which admit a Lie group struc-

ture are   , thought of as the set of unit complex numbers, and   , 
the set of unit quaternions. One might think that   , the set of unit 

octonions, would form a Lie group, but this fails since octonion 

multiplication is non-associative. The octonionic structure does 

give    one important property: parallelizability112. It turns out that 

the only spheres which are parallelizable are   ,   , and   . 

                                                           
112 http://en.wikipedia.org/wiki/Parallelizability  

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Parallelizability
http://en.wikipedia.org/wiki/Parallelizability
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By using a matrix representation of the quaternions,  , one ob-

tains a matrix representation of   . One convenient choice is given 

by the Pauli matrices: 

 

(                       )

 [
                  
                   

] 

 

This map gives an injective algebra homomorphism from H to 

the set of 2×2 complex matrices. It has the property that the abso-

lute value of a quaternion q is equal to the square root of the deter-

minant of the matrix image of q. 

The set of unit quaternions is then given by matrices of the 

above form with unit determinant. This matrix subgroup is precise-

ly the special unitary group SU(2). Thus,    as a Lie group is iso-

morphic to SU(2). 

Using our hyperspherical coordinates (       ) we can then 

write any element of SU(2) in the form 

 

[
e p(    )  sin( ) e p(    )  cos( )
 e p(    )  cos( ) e p(     )  sin( )

] 

 

Another way to state this result is if we express the matrix repre-

sentation of an element of SU(2) as a linear combination of the 

Pauli matrices. It is seen that an arbitrary element U   SU(2) can 

be written as 

 

          ∑      
       

 

The condition that the determinant of U is +1 implies that the 

coefficients     are constrained to lie on a 3-sphere. 

(1) 

(2) 

(3) 
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2.4.5 Versor 

Any unit quaternion   can be written as a versor: 

 

     (    )     ( )         ( ) 
 

This is the quaternionic analogue of Euler's formula. Now the 

unit imaginary quaternions all lie on the unit 2-sphere in Im   so 

any such ĩ can be written: 

 

         ( )    ( )        ( )    ( )        ( )  

2.4.6 Symplectic decomposition 

Quaternions can be written as the combination of two complex 

numbers and an imaginary number k with unit length. 

  

(1) 

(2) 
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3 The separable Hilbert space Ң 

3.1 Notations and naming conventions 

{fx}x means ordered set of fx . It is a way to define functions. 

  

The use of bras and kets differs slightly from the way Dirac uses 

them. 

  

|f> is a ket vector, f> is the same ket 

<f| is a bra vector, <f is the same bra 

  

A is an operator. |A is the same operator 

A† is the adjoint operator of operator A. A| is the same operator 

| on its own, is a nil operator 

|A| is a self-adjoint (Hermitian) operator 

  

We will use capitals for operators and lower case for quaterni-

ons, eigenvalues, ket vectors, bra vectors and eigenvectors. Quater-

nions and eigenvalues will be indicated with italic characters. Im-

aginary and anti-Hermitian objects are often underlined and/or 

indicated in bold text. 

  

∑k means: sum over all items with index k. 

∫x means: integral over all items with parameter x. 

3.2 Quaternionic Hilbert space 

The Hilbert space is a linear space. That means for the elements 

|f>, |g> and |h> and numbers a and b: 
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3.2.1 Ket vectors 

For ket vectors hold 

 

|f> + |g> = |g> + |f> = |g + f> 

 

(|f> + |g>) + |h> = |f> + (|g> + |h>) 

 

|(a + b) f > = |f>·a + |f>·b 

 

(|f> + |g>)·a = |f>·a + |g>·a 

 

|f>·0 = |0> 

 

|f>·1 = |f> 

 

Depending on the number field that the Hilbert space supports, a 

and b can be real numbers, complex numbers or (real) quaternions. 

3.2.2 Bra vectors 

The bra vectors form the dual Hilbert space Ң
†
 of Ң

 
. 

  

<f| + <g| = <g| + <f| = |g + f> 

 

 (<f| + <g|) + <h| = <f| + (<g| + <h|) 

 

<f (a + b)> = <f|·a + <f|·b = a
*
·<f| + b

*
·<f| 

 

 (<f| + <g|)·a = <f|·a + <g|·a = a
*
·<f| + a

*
·<g| 

 
0·<f| = <0| 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 

(3) 

(4) 

(5) 
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1·<f| = <f| 

3.2.3 Scalar product 

The Hilbert space contains a scalar product, also called inner 

product, <f|g> that combines Ң
 
and

 
Ң

† 
in a direct product that we 

also indicate with Ң. 

The scalar product <f|g> satisfies: 

 

<f|g + h> = <f|g> + <f|h> 

 

<f|{|g>·a}g = {<f|g>}g·a 

  

With each ket vector |g> in Ң belongs a bra vector <g| in Ң
†
 

such that for all bra vectors <f| in Ң
†
 

 

<f|g> = <g|f>
* 

 

<f|f> = 0 when |f> = |0> 

 

<f|a g> = <f|g>·a = <g|f>
*
·a = <g a|f>

*
 = (a

*
·<g|f>)

*
 = 

<f|g>·a 

 

In general is <f|a g> ≠ <f a|g>. However for real numbers r holds 

<f|r g> = <f r|g> 

 

Remember that when the number field consists of quaternions, 

then also <f|g> is a quaternion and a quaternion q and <f|g> do in 

general not commute. 

 

The scalar product defines a norm: 

 

(6) 

(1) 

(2) 

(3) 

(4) 

(5) 
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||f|| = √(<f|f>) 

 

And a distance: 

 

D(f,g) = ||f – g|| 

 

The Hilbert space Ң is closed under its norm. Each converging 

row of elements of converges to an element of this space. 

3.2.4 Separable 

 In mathematics a topological space is called separable if it con-

tains a countable dense subset; that is, there exists a sequence 

{  }   
  of elements of the space such that every nonempty open 

subset of the space contains at least one element of the sequence. 

Every continuous function on the separable space Ң is deter-

mined by its values on this countable dense subset. 

3.2.5 Base vectors 

The Hilbert space Ң is separable. That means that there exist a 

countable row of elements {fn>} that spans the whole space. 

  

If <fn|fm> = δ(m,n) = [1 when n = m; 0 otherwise]  

then {|fn>} forms an orthonormal base of the Hilbert space. 

A ket base {|k>}of Ң is a minimal set of ket vectors |k> that to-

gether span the Hilbert space Ң. 

Any ket vector |f> in Ң can be written as a linear combination of 

elements of {|k>}. 

  

|f> = ∑k (|k>·<k|f>) 

  

(6) 

(7) 

(1) 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Topological_space
http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Dense_(topology)
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Open_subset
http://en.wikipedia.org/wiki/Open_subset
http://en.wikipedia.org/wiki/Continuous_function
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A bra base {<b|}of Ң
†
 is a minimal set of bra vectors <b| that to-

gether span the Hilbert space Ң
†
. 

Any bra vector <f| in Ң
†
 can be written as a linear combination 

of elements of {<b|}. 

  

<f| = ∑b (<f|b>·<b|) 

  

Usually base vectors are taken such that their norm equals 1. 

Such a base is called an othonormal base. 

 

3.2.6 Operators 

Operators act on a subset of the elements of the Hilbert space.  

3.2.6.1 Linear operators 

An operator Q is linear when for all vectors |f> and |g> for 

which Q is defined and for all quaternionic numbers a and b: 

 

|Q·a f> + |Q·b g> = |a·Q f> + |b·Q g> = |Q f>·a + |Q 

g>·b = 

  
Q (|f>·a + |g>·b) = Q (|a f> + |b g>) 

 

B is colinear when for all vectors |f> for which B is defined and 

for all quaternionic numbers a there exists a quaternionic number c 

such that: 

 

|B·a f> = |a·B f> = |B f> c·a·c
-1

 

(2) 

(1) 

(2) 

(3) 
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If |f> is an eigenvector of operator A with quaternionic eigen-

value a, then is |b f> an eigenvector of A with quaternionic eigen-

value b·a·b
-1

. 

A| = A
†
 is the adjoint of the normal operator A. |A is the same 

as A. 

  

<f A| g> = <fA
†
|g>

* 

 

A
† †

 = A 

 

(A·B)
 †
 = B

†
·A

†
 

  

|B| is a self adjoint operator. 

| is a nil operator.  

 

The construct |f><g| acts as a linear operator. |g><f| is its adjoint 

operator. 

 

∑n {|fn>·an·<fn|}, 

 

 where a n is real and acts as a density function. 

 

The set of eigenvectors of a normal operator form an orthonor-

mal base of the Hilbert space. 

A self adjoint operator has real numbers as eigenvalues. 

 

{<q|f>}q is a function f(q) of parameter q.  

{<g|q>}q is a function g(q) of parameter q. 

  

When possible, we use the same letter for identifying eigenval-

ues, eigenvalues and the corresponding operator. 

(4) 

(5) 

(6) 

(7) 
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So, usually |q> is an eigenvector of a normal operator Q with ei-

genvalues q.  

  

{q} is the set of eigenvalues of Q.  

{q}q is the ordered field of eigenvalues of q. 

{|q>}q  is the ordered set of eigenvectors of Q. 

{<q|f>}q is the Q view of |f>. 

3.2.6.2 Normal operators 

The most common definition of continuous operators is: 

  

A continuous operator is an operator that creates imag-

es such that the inverse images of open sets are open.  

  

Similarly, a continuous operator creates images such 

that the inverse images of closed sets are closed. 

  

A normal operator is a continuous linear operator. 

A normal operator in Ң creates an image of Ң onto Ң. It trans-

fers closed subspaces of Ң into closed subspaces of Ң.  

  

Normal operators represent continuous quantum logical observ-

ables.  

  

The normal operators N have the following property. 

  

N: Ң  Ң 

  

N commutes with its (Hermitian) adjoint N
†
 

  

N·N
†
 = N

†
·N 

  

(1) 

(2) 
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Normal operators are important because the spectral theorem 

holds for them.  

Examples of normal operators are 

  

 unitary operators: U
†
 = U

−1
 , unitary operators are bound-

ed; 

 Hermitian operators (i.e., self-adjoint operators): N
†
 = N;  

 Anti-Hermitian or anti-self-adjoint operators: N
†
 = −N;  

 Anti-unitary operators: I
†
 = −I = I

−1 
, anti-unitary opera-

tors are bounded;  

 positive operators: N = MM
†
  

 orthogonal projection operators: N = N
†
 = N

2
  

3.2.6.3 Spectral theorem 

For every compact self-adjoint operator T on a real, complex or 

quaternionic Hilbert space Ң, there exists an orthonormal basis of 

Ң consisting of eigenvectors of T. More specifically, the orthogonal 

complement of the kernel (null space) of T admits, either a finite 

orthonormal basis of eigenvectors of T, or a countable infinite or-

thonormal basis {en} of eigenvectors of T, with corresponding ei-

genvalues {λn}   R, such that λn → 0. Due to the fact that Ң is sep-

arable the set of eigenvectors of T can be extended with a base of 

the kernel in order to form a complete orthonormal base of Ң. 

 

If T is compact on an infinite dimensional Hilbert space Ң, then 

T is not invertible, hence σ(T), the spectrum of T, always contains 

0. The spectral theorem shows that σ(T) consists of the eigenvalues 

{λn} of T, and of 0 (if 0 is not already an eigenvalue). The set σ(T) 

is a compact subset of the real line, and the eigenvalues are dense 

in σ(T). 

 

http://en.wikipedia.org/wiki/Orthonormal_basis
http://en.wikipedia.org/wiki/Countable_set
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 A normal operator has a set of eigenvectors that spans the whole 

Hilbert space Ң.  

In quaternionic Hilbert space a normal operator has quaternions 

as eigenvalues.  

 

The set of eigenvalues of a normal operator is NOT compact. 

This is due to the fact that Ң is separable. Therefore the set of ei-

genvectors is countable. As a consequence the set of eigenvalues is 

countable. Further, the eigenspace of normal operators has no finite 

diameter.  

 

A continuous bounded linear operator on Ң has a compact ei-

genspace. The set of eigenvalues has a closure and it has a finite di-

ameter.  

3.2.6.4 Eigenspace 

The set of eigenvalues {q} of the operator Q form the eigen-

space of Q 

3.2.6.5 Eigenvectors and eigenvalues 

For the eigenvector |q> of normal operator Q holds  

 

|Q q> = |q q> = |q>·q 

 

<q Q
†
| = <q q

*
| = q

*
·<q| 

 

 |        [{  |    }   {  |   }   {    
 |   } 

 {    |   } ] 

 

The eigenvalues of 2
n
-on normal operator are 2

n
-ons  

  

(1) 

(2) 

(3) 
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   ∑ I   

   

   

 

 

The    are self-adjoint operators. 
  

(4) 
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3.2.6.6 Generalized Trotter formula 

For bounded operators {  } hold: 

 

lim
   
(∏     
 

   

)

 

  e p(∑  

 

   

)

  lim
   
(  
∑   
 
   

 
)

 

 

In general  

 

e p(∑  

 

   

)  ≠  ∏   

 

   

 

 

In the realm of quaternionic notion the Trotter formula is confus-

ing. 

3.2.6.7 Unitary operators 

For unitary operators holds: 

  

U
†
 = U

−1
 

Thus 

  

U·U
† 
= U

†
·U

 
=1 

 

Suppose U = I + C where U is unitary and C is compact. The 

equations U U* = U*U = I and C = U − I show that C is normal. 

The spectrum of C contains 0, and possibly, a finite set or a se-

(1) 

(2) 

(1) 

(2) 
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quence tending to 0. Since U = I + C, the spectrum of U is obtained 

by shifting the spectrum of C by 1. 

The unitary transform can be expressed as: 

 

U = exp(Ĩ·Φ/ħ) 

 

ħ = h/(2·π) 

 

Φ is Hermitian. The constant h refers to the granularity of the ei-

genspace. 

Unitary operators have eigenvalues that are located in the unity 

sphere of the 2
n
-ons field.  

The eigenvalues have the form: 

  

u = exp(i·φ/ħ) 

 

φ is real. i is a unit length imaginary number in 2
n
-on space. It 

represents a direction.  

u spans a sphere in 2
n
-on space. For constant i, u spans a circle 

in a complex subspace.  

3.2.6.7.1 Polar decomposition 
Normal operators N can be split into a real operator A and a uni-

tary operator U. U and A have the same set of eigenvectors as N. 

  

N = ||N||·U = A·U 

 

N = A·U = U·A  

 

= A· exp(Ĩ·Φ)/ħ) 

(3) 

(4) 

(5) 

(1) 

(2) 
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= exp (Φr+ Ĩ·Φ)/ħ)  

 

Φr is a positive normal operator. 

3.2.6.8 Ladder operator 

3.2.6.8.1 General formulation 

Suppose that two operators X and N have the 

commutation relation: 

 [N, X] = c·X 

for some scalar c. If |n> is an eigenstate of N with eigenvalue 

equation, 

 

|N n> = |n>∙n 

 

then the operator X acts on |n> in such a way as to shift the ei-

genvalue by c: 

 

|N·X n> = |(X·N + [N, X]) n> 

= |(X·N + c·X) n> 

= |X·N n> + |X n>·c 

= |X n>·n + |X n>·c 

= |X n>·(n+c) 

 

In other words, if |n> is an eigenstate of N with eigenvalue n 

then |X n> is an eigenstate of N with eigenvalue n + c.  

(1) 

(2) 

(3) 
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The operator X is a raising operator for N if c is real and posi-

tive, and a lowering operator for N if c is real and negative. 

If N is a Hermitian operator then c must be real 

and the Hermitian adjoint of X obeys the commu-

tation relation: 

[N, X†] = - c·X† 

In particular, if X is a lowering operator for N then X
†
 is a raising 

operator for N and vice-versa. 

3.2.7 Unit sphere of Ң 

The ket vectors in Ң that have their norm equal to one form to-

gether the unit sphere  of Ң. 

Base vectors are all member of the unit sphere. The eigenvectors 

of a normal operator are all member of the unit sphere.  

The end points of the eigenvectors of a normal operator form a 

grid on the unit sphere of Ң. 

3.2.8  Closure 

The closure of Ң means that converging rows of vectors con-

verge to a vector of Ң. 

  

In general converging rows of eigenvalues of Q do not converge 

to an eigenvalue of Q. 

Thus, the set of eigenvalues of Q is open.  

(4) 
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At best the density of the coverage of the set of eigenvalues is 

comparable with the set of 2
n
-ons that have rational numbers as co-

ordinate values. 

With other words, compared to the set of real numbers the ei-

genvalue spectrum of Q has holes. 

The set of eigenvalues of operator Q includes 0. This means that 

Q does not have an inverse. 

  

The rigged Hilbert space Ħ can offer a solution, but then the di-

rect relation with quantum logic is lost. 

 

3.2.9 Canonical conjugate operator P 

The existence of a canonical conjugate represents a stronger re-

quirement on the continuity of the eigenvalues of canonical eigen-

values.  

Q has eigenvectors {|q>}q and eigenvalues q. 

P has eigenvectors {|p>}p and eigenvalues p. 

For each eigenvector |q> of Q we define an eigenvector |p> and 

eigenvalues p of P such that: 

  

  |       |          (       ) 
 

      (  ) is a scaling factor.   |   is a quaternion. ȋ is a 

unit length imaginary quaternion. 

3.2.10 Displacement generators 

Variance of the scalar product gives: 

 

       |         |     
 

(1) 

(1) 



217 

       |         |     
 

In the rigged Hilbert space Ħ the variance can be replaced by 

differentiation.  

Partial differentiation of the function <q|p> gives: 

 

           |          |   
 

   
 

   
  |          |   

3.2.11 Quaternionic L² space 

The space of quaternionic measurable functions is a quaternionic 

Hilbert space. The quaternionic probability amplitude distributions 

are measurable.113 

This space is spanned by an orthonormal basis of quaternionic 

measurable functions. When the shared affine parameter space of 

these functions is non-curved, then this base has a canonical conju-

gate, which is the quaternionic Fourier transform of the original 

base. 

As soon as curvature of the parameter space arises, this relation 

is disturbed. 

With other words: “In advance the Palestra has a virgin state.” 

  

                                                           
113 http://en.wikipedia.org/wiki/Lp_space#Lp_spaces 

(2) 

(3) 

(4) 
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4 Gelfand triple 

The separable Hilbert space only supports countable orthonor-

mal bases and countable eigenspaces. The rigged Hilbert space Ħ 

that belongs to a separable Hilbert space Ң is a Gelfand triple. It 

supports non-countable orthonormal bases and continuum eigen-

spaces. 

A rigged Hilbert space is a pair (   ) with Ң a Hilbert space,   a 

dense subspace, such that   is given a topological vector space 

structure for which the inclusion map i is continuous. Its name is 

not correct, because it is not a Hilbert space. 

Identifying Ң with its dual space Ң*, the adjoint to i is the map 

           

The duality pairing between   and    has to be compatible with 

the inner product on Ң, in the sense that: 

 

〈   〉     (   )  

 

whenever       and           . 
 

The specific triple (      ) is often named after 

the mathematician Israel Gelfand). 

(1) 

(2) 

http://en.wikipedia.org/wiki/Topological_vector_space
http://en.wikipedia.org/wiki/Inclusion_map
http://en.wikipedia.org/wiki/Israel_Gelfand
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Note that even though   is isomorphic to    if   is a 

Hilbert space in its own right, this isomorphism is not 

the same as the composition of the inclusion i with its 

adjoint i* 

              

5 Quaternionic distributions 

5.1 Sign flavors 

Quaternionic distributions are quaternion valued functions of a 

quaternionic parameter. If not otherwise stated, the quaternionic pa-

rameter space is not curved. Quaternions feature sign selections. In-

side a quaternionic distribution the quaternionic sign selections of 

the values are all the same. Due to the four possible sign selections 

of quaternions, quaternionic distributions exist in four sign flavors. 

5.2 Differentiation 

A quaternionic distribution f(q) can be differentiated. 

 

 ( )    ( )
     ( )  〈   ( )〉     ( )

     ( )  (    ( )) 

 

The colored   and   signs refer to the influence of conjugation 

of  ( ) on quaternionic multiplication. The  sign refers to the in-

fluence of reflection of  ( ). 

(3) 

(1) 
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5.2.1 Extra freedom 

The solution  ( ) of  

 

 ( )     ( ) 
 

Is determined apart from a gauge term  ( ) 
 

 ( )    ( ( )    ( )) 
 

Where  

 

  ( )    
 

This leads to three equations: 

 

    ( )  〈   ( )〉    
 

    ( )      ( )    
 

   ( )    
 

This leads to 

 

 ( )     ( ) 

5.3 Fourier transform 

In order to simplify the discussion we restrict it to the case that 

the parameter spaces of the functions are not curved.  

In Fourier space differentiation becomes multiplication with the 

canonical conjugate coordinate   and therefore the equivalent equa-

tion becomes: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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g̃( )    ̃( )

      ̃( )  〈   ̃( )〉     ̃( )

    ̃ ( )  (    ̃( )) 

 

For the imaginary parts holds: 

 

 ( )       ( )      ( )  (    ( )) 

 

 ̃( )      ̃( )     ̃ ( )  (    ̃( )) 

 

By using114  

 

     ( )    
 

and 

 

〈     ( )〉 = 0 

 

It can be seen that for the static part (   ( )   ) holds: 

 

 ( )      ( )  (    ( )) 

 

 ̃( )     ̃ ( )  (    ̃( )) 

                                                           
114 Bo Thidé: 

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf 

;Formulas:F.104, F.105 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf
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5.4 Helmholtz decomposition 

Formula (7) of the last paragraph leads to the Helmholtz decom-

position. The Helmholtz decomposition splits the static vector field 

  in a (transversal) divergence free part    and a (one dimensional 

longitudinal) rotation free part   .  
 

                
 

Here    is a scalar field and   is a vector field. In quaternionic 

terms    and   are the real and the imaginary part of a quaterni-
onic field  .   is an imaginary quaternion.115 

 

The significance of the terms “longitudinal”and “transversal” 

can be understood by computing the local three-dimensional Fouri-

er transform of the vector field  , which we call  ̃. Next decom-

pose this field, at each point  , into two components, one of which 

points longitudinally, i.e. parallel to  , the other of which points in 

the transverse direction, i.e. perpendicular to  .  

 

 ̃( )   ̃ ( )   ̃ ( )  
 

〈   ̃ ( )〉    
 

   ̃ ( )    
 

The Fourier transform converts gradient into multiplication and 

vice versa. Due to these properties the inverse Fourier transform 

gives: 

 

                                                           
115 See next paragraph 

(1) 

(2) 

(3) 

(4) 
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〈    〉    
 

        
 

So, this split indeed conforms to the Helmholtz decomposition. 

 

This interpretation relies on idealized circumstance in which the 

decomposition runs along straight lines. This idealized condition is 

in general not provided. In normal conditions the decomposition 

and the interpretation via Fourier transformation only work locally 

and with reduced accuracy. 

 

Inside a single HBM page the QPAD’s are static. It means that 

there the Helmholtz decomposition is valid. 

  

(5) 

(6) 

(7) 
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6 Fields 

6.1 The origin of physical fields. 

The Hilbert Book Model is a simple Higgsless model of physics 

that is strictly based on traditional quantum logic and on the lattice 

isomorphic model; the set of subspaces of an infinite dimensional 

separable Hilbert space for which the inner product is specified by 

using quaternions116. 

This restriction results in the fact that all sets of variables are 

countable. At the same time most observations are taken from a 

continuum. As a result the set of potential observations overwhelms 

the set of variables117. The situation is comparable to the situation in 

which the number of equations is far larger than the number of var-

iables that should form the result. Probably, the set of equations 

will appear to be inconsistent. In order to cure the situation, it is 

common to assume that the observations are inaccurate. The inac-

curacy must be stochastic or with other words the observation result 

must be blurred118.  

Nature applies a similar solution, but instead of a simple spread 

function in the form of a probability density distribution, nature ap-

plies a quaternionic probability amplitude distribution (QPAD). 

This QPAD can be split into a real part that represents a “charge” 

density distribution and an imaginary part that represents a corre-

sponding “current” density distribution. The “charge” represents 

the set of properties of the thing that is being observed. The param-

eter of the distribution represents the location at which the “charge” 

                                                           
116 See: http://www.crypts-of-physics.eu/HilbertBookModelEssentials.pdf 
117 A continuum has a higher cardinality than a countable set.  
118 The statistics must support the coherence of observations. 
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is observed. The squared modulus of the QPAD represents the 

probability density of the presence of the “charge” at the location 

that is specified by the parameter. 

This approach transfers the dynamics of the observation into a 

streaming problem. The equation of motion of the “charge” be-

comes a continuity equation119. 

The properties of particles move according to the above princi-

ple. With each elementary particle belongs a state function QPAD 

that act as a private field of the particle and that determines its dy-

namic behavior when it moves freely. However, these fields over-

lap. In this way these fields and the corresponding particles interact. 

Particles can interact in an extra way. A gauge field that acts as a 

solution of the coupling equation when the coupling factor equals 

zero implements the extra interaction. 

A subset of the elementary particles is massless. These particles 

correspond to a single QPAD. That does not say that their fields 

cannot overlap.  

All other elementary particles are identified by an ordered pair 

of QPAD’s that are two field sign flavors of the same base field. 

The coordinate system, whose values are used as field parameter, 

has its own field sign flavor and acts as a sign flavor reference. 

6.1.1 Categories of fields 

Two categories of fields exist.  

6.1.1.1 Primary fields 

The first category consists of quaternionic probability amplitude 

distributions (QPAD’s). The QPAD’s may overlap and through this 

                                                           
119 Another name for “continuity equation” is “balance equa-

tion”. 
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superposition they may form covering fields. The QPAD’s exist in 

eight sign flavors. The same holds for the covering fields. The 

QPAD’s may interact. When different sign flavors interact the 

strength of the local interaction is characterized by a coupling fac-

tor. The members of this category will be called primary fields. 

6.1.1.2 Second category physical fields 

The second category consists of administrator fields. These 

fields administer the effect of interactions on the local curvature of 

the positioning coordinate system. For all properties that character-

ize a coupling of sign flavors of primary fields an administrator 

field exist that registers the influence of that property during inter-

actions on the local curvature.  

 

One of these administrator fields is the gravitation field. It ad-

ministers the influence of the strength of the coupling between sign 

flavors of primary fields on the local curvature.  

 

The electromagnetic fields administer the influence of the elec-

tric charge on the local curvature. 

 

The angular momentum including the spin also influences the 

local curvature. Also this effect is administered.  

 

The members of this category will be called second category 

physical fields or administrator fields. 

 

All these influences can be administered by using the local met-

ric. This generates a metric tensor field. 
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6.2 Example potential 

The influence of local properties is represented by charges. The 

charge carrier may contain an assembly of charges. 

 

Spatial Harmonic functions120 are suitable charge spread 
functions. 

For a harmonic function  ( ) holds: 
 

  ( )      ( )     
 

If there is a static spherically symmetric Gaussian charge density 

ρ (r): 

 

 ( )   
 

√    
 e p( | |

 (   )⁄ ) 

where Q is the total charge, then the solution φ (r) of Poisson's 

equation121, 

 

   ( )   
 ( )

 
 

 

is given by 

 

 ( )  
 

   | |
erf (
| |

√  
) 

 

where erf(x) is the error function.  

                                                           
120 http://en.wikipedia.org/wiki/Harmonic_function  
121 http://en.wikipedia.org/wiki/Poisson%27s_equation  

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Harmonic_function
http://en.wikipedia.org/wiki/Poisson%27s_equation
http://en.wikipedia.org/wiki/Poisson%27s_equation
http://en.wikipedia.org/wiki/Harmonic_function
http://en.wikipedia.org/wiki/Poisson%27s_equation
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In fact the quaternionic Poisson’s equation represents two sepa-

rate equations: 

 

(  
    )  ( )   

  ( )

 
 

 

(  
    ) ( )   

 ( )

 
 

 

Note that, for | | much greater than σ, the erf function ap-

proaches unity and the potential φ (r) approaches the point charge 

potential 
 

   | |
, as one would expect. Furthermore the erf function 

approaches 1 extremely quickly as its argument increases; in prac-

tice for | | > 3σ the relative error is smaller than one part in a thou-

sand122.  

 

The definition of the quaternionic potential ϕ(q) is based on the 

convolution of a quaternionic distribution  (q) with the real func-

tion  ( ) See Newton potential and Bertrand’s theorem in Wikipe-

dia. The real part  0(q) of the distribution  (q) can be interpreted as 

a charge distribution. The imaginary part  (q) can be interpreted as 

a current distribution. 

The convolution blurs the distribution such that the result be-

comes differentiable. 

 

In configuration space holds: 

                                                           

122 
http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_d

ensity 

(5) 

(6) 

http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density
http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density
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 ( )    ( )  
 

| |
. 

 

Reversely, according to Poisson’s equation: 

 

 ( )        ( ) 
 

The real part of ϕ(q) presents a scalar potential. The imaginary 

part presents a vector potential.  

 

 ( )     ( )   ( ) 
 

In the above section: 

The scalar potential is a blurred charge distri-

bution.  

The vector potential is a blurred current dis-

tribution.  

Current is moving charge. 

Mass is a form of charge. 

 

(The selected blurring function has striking resemblance with the 

ground state of the quantum harmonic oscillator123). 

 

In Fourier space holds: 

 

                                                           
123 Functions and fields:Functions invariant under Fourier trans-

formation:Ladder operator:Ground state 

(7) 

(8) 

(9) 
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 ̃( )    ̃( )  
 

| |
.    ̃ ( )   ̃( ) 

 

In Fourier space the frequency spectrum of the Hilbert distribu-

tion is multiplied with the Fourier transform of the blurring func-

tion. When this falls off when the frequencies go to infinity, then as 

a consequence the frequency spectrum of the potential is bounded. 

This is valid independent of the fact that the frequency spectrum of 

the Hilbert distribution is unbounded. 

  

(10) 
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7 Fourier transform 

The Fourier transform mechanism cannot cope with curvature of 

the parameter space of the considered functions. Thus the scope of 

Fourier transforms must be restricted to regions where this curva-

ture is negligible or a reduced accuracy must be accepted. 

7.1 Quaternionic Fourier transform split 

The longitudinal Fourier transform represents only part of the 

full quaternionic Fourier transform. It depends on the selection of a 

radial line  ( ) in p space that under ideal conditions runs along a 

straight line. 

 

  ( ( ))    ( ( )  ( )) 

 

Or 

 

  ( ( ))    (  ( ))  

 

It relates to the full quaternionic Fourier transform Ƒ 

 

 ( ( ))    ̃( ) 

 

The inverse Fourier transform runs: 

 

   ( ̃( ))    ( ) 
 

The split in longitudinal and transverse Fourier transforms corre-

sponds to a corresponding split in the multi-dimensional Dirac delta 

function. 

(1) 

(2) 

(3) 

(4) 
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We consider a field  ( ) that equals the quaternionic differen-

tiation of another field   with respect to a selected (ideal) coordi-

nate system  .  

 

 ( )       

 

We use the results of the paragraph on decomposition. We only 

use the static and imaginary version of field  ( ). 
 

For the static imaginary part  ( ) holds: 

 

 ( )      ( )  (    ( ))    ( )    ( ) 

 

In Fourier space differentiation becomes multiplication with the 

canonical conjugate coordinate   and therefore the equivalent equa-

tion becomes: 

 

 ̃( )    ̃ ( )  (    ̃( ))   ̃ ( )   ̃ ( ) 

 

Since  

 

     ( )        ( )    
 

and 

 

〈     ( )〉    〈    ( )〉    
 

Now we take 

 

  | ̌            |          
 ( )    g( ) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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   ∫   |     |  

 

 

 

The static imaginary part is 

 

  | ̌            |          
 ( )     ( ) 

 

    (∫   |     |  

 

)

 ∫  (  |     |  )

 

 

 

 ∫  (  |     |   )

 

 ∫  (  |     |  
 

 ) 
 

 ∫  (  |    ̃ ( ))

 

 ∫  (  |    ̃ ( ))

 

 

 

The left part is the longitudinal inverse Fourier transform of field 

 ̃( ). 

(11) 
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The right part is the transverse inverse Fourier transform of field 

 ̃( ). 
For the Fourier transform of  ( ) holds the split: 

 

 ̃( )   ∫   (  |     ( ))

 

 ∫  (  |     ( ))

 

 

 

  ∫   (  |    ( ))

 

 

 

The longitudinal direction is a one dimensional (radial) space. 

The corresponding transverse direction is tangent to a sphere in 3D. 

Its direction depends on the field  ( ) or alternatively on the com-

bination of field   and the selected (ideal) coordinate system  ̌. 

For a weakly curved coordinate system  ̌ the formulas hold with 

a restricted accuracy and within a restricted region. 

7.2 Alternative transverse plane 

The Cayley-Dickson construction, as well as Warren Smith’s 

construction formula shows that the transverse part can be consid-

ered as a complex number space multiplied with a fixed imaginary 

quaternionic base number. The selection of the imaginary base 

number i is arbitrary as long as it is perpendicular to k. The result-

ing plane is spanned by axes i and ik. When base number i is divid-

ed away, then a normal complex number space results.  

Also here a complex Fourier transform can be defined in a way 

that is similar to the longitudinal Fourier transform. It must be 

reckoned that the sign selections for these directions differ.  

(12) 
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7.3 Alternative approach to Fourier transform 

The following draws from the work of S. Thangavelu124. 

 

Let us take the non-abelian group  1 which is ℝ ⊗ ℝ ⊗ℝ with 

the group law 

 

(     )(        )  
  (                       
      ) 

 

Then it is clear that  1 is non-abelian and the Lebesgue measure 

dx dy dt is both left and right invariant Haar measure on  1. With 

this measure we can form the Hilbert space L
2
( 1). Let Γ = ℤ ⊗ ℤ 

⊗ ℤ. Then it is easy to check that Γ is a subgroup of  1 so that we 

can form the quotient M = Γ/ 1 consisting of all right cosets of Γ. 

Functions on M are naturally identified with left Γ-invariant func-

tions on  1. As the Lebesgue measure dx dy dt is left Γ-invariant 

we can form L2(M) using the Lebesgue measure restricted to M. As 

a set we can identify M with [0, 1)
3
 and we just think of L

2
(M) as 

L
2
([0, 1)

3
). 

 

Fourier expansion in the last variable allows us to decompose 

L
2
(M) into a direct sum of orthogonal subspaces. Simply define ℋk 

to be the set of all f  L
2
(M) which satisfy the condition 

 

 (         )    e p(         )  (     ) 
 

Then ℋk is orthogonal to ℋj whenever k ≠ j and any f   L2
(M) 

has the unique expansion 

                                                           
124 http://www.math.iitb.ac.in/atm/faha1/veluma.pdf 

(1) 

(2) 

http://www.math.iitb.ac.in/atm/faha1/veluma.pdf
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     ∑   

 

    

       ℋ  

 

In quaternionic terms, the split sees ik as imaginary quaternion k 

and the quaternionic Hilbert space is split in components according 

to the imaginary direction of k, where the choice is between three 

mutually perpendicular directions.  

 

For the moment, we are mainly interested in ℋ1 which is a Hil-

bert space in its own right. It is interesting to note that functions in 

ℋ1 are also invariant under the left action of Γ. 

 

Our next example of a unitary operator is the following. Consid-

er the map J : ℋ1 → ℋ1 given by  

 

 (     )    (            ) 
 

  (     )    (           ) 
 

         
 

  (     )     (             )    (        ) 
 

       
 

 (     )    (     ) 
 

   (     )     ( (      ))     (            ) 
 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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7.4 Weil-Brezin transform  

Next consider the Weil-Brezin transform V: 

 

   (     )  

     (       ) ∑   (  

 

   ) e p(         ) 
 

∫ |   (     )|    ∫ ∑  | (     )| 
   

    

 

   

 

   

   

 

∭|   (     )|           ∫ |  ( )|   
 

 

 

 

 

  

V is unitary.  

See also Zak transform 

7.5 Fourier transform 

We define the Fourier transform F by: 

 

           

 

         ; for every       (ℝ)  

     ( )     (  ); for almost every     ℝ 

 ‖   ‖    ‖ ‖  
 

For       (ℝ)     (ℝ) the Fourier transform is given by 

 

(1) 

(2) 

(3) 

(1) 
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 f( )    ∫ f( )  e p(       )  
    ℝ

 

 

If we further assume that        (ℝ) then for almost every x 

we have 

 

 f( )    ∫  f( ) e p(         )  
    ℝ

 

 

7.6 Functions invariant under Fourier transform 

In this section we confine to a complex part of the Hilbert space. 

See http://en.wikipedia.org/wiki/Hermite_polynomials.  

There exist two types of Hermite polynomials: 

 

1. The probalist’s Hermite polynomials: 

 

  
    ( )  (  ) e p(   ) 

  

   
 e p(    ). 

  

 

2. The physicist’s Hermite polynomials 

 

  
    ( )  (  ) e p(  )

  

    
 e p(   )

 e p(   ) (  
 

  
)  e p(    ) 

 

These two definitions are not exactly equivalent; either is a 

rescaling of the other: 

 

(2) 

(3) 

  
    ( )

        
    
( √ ) 

(1, 2) 

http://en.wikipedia.org/wiki/Hermite_polynomials
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    ( )         

    
( √ ) 

 

In the following we focus on the physicist’s Hermite polynomi-

als. 

 

The Gaussian function φ(z) defined by  

 

 ( )       (     ) 
 

is an eigenfunction of F. It means that its Fourier transform has 

the same form. 

As     I  any λ in its spectrum   ( )  satisfies λ
4
 = 1: Hence,  

 

  ( )    {          }.  

We take the Fourier transform of the expansion: 

   (                 )  

   ∑    (     )   ( )  
 

 

   

    

First we take the Fourier transform of the left hand side: 

 
 

√  
 ∫    (       )    (    

              )
 

    

    

(3) 

(4) 

(5) 

(6) 

(7) 
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     (     
             
    ) 

   ∑    (     
 )   (  ) (    )

 

 

   

    

The Fourier transform of the right hand side is giv-

en by 

 

√  
 ∑  ∫    (       )

 

    

 

   

    (     )   ( )  
        

Equating like powers of c in the transformed ver-

sions of the left- and right-hand sides gives 

 

√  
 ∫ e p(       )  
 

    

   (     )   ( )  
         

(8) 

(9) 
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  (  ) 

 e p(     
 )   (  ) 

  

  
 

Let us define the Hermite functions   ( ) 
 

  ( )       |     c  e p(    
 )   ( )  

 

|        |    (  )
  

 

with suitably chosen cn so as to make 

 

‖  ‖
       

 

c  
 

√    √ 
 

 

The importance of the Hermite functions lie in the following 

theorem. 

 

“The Hermite functions ψn; n   N form an orthonormal 

basis for L
2
(R)” 

 

Consider the operator  

 

      
  

   
        

 

Apply this to ψn(z): 

 

    ( )   (     )   ( )  

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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Thus, ψn is an eigenfunction of H. 

 

Let f   ψ     be any of the Hermite functions. Then we have 

 

 ∑  (     )  e p(         (   ))

 

    

 

 

  (  )   ∑  (     )    (         )

 

    

 

 

Proof: As  

 

           

 

the equation  

 

     (  )   
 

translates into 

 

   (       )   (  )    (       ) 
 

With the definition of V and t = xy: 

 

   (     )  

     (       ) ∑   (  

 

   )    (         ) 
 

(16) 

(17) 

(18) 

(19) 

(20) 
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QED. 

 

The vectors |ψn> are eigenvectors of the Fourier transform oper-

ator with eigenvalues (-k)
n
. The eigenfunctions ψn(x) represent ei-

genvectors |ψn> that span the complex Hilbert space Ңk. 

For higher n the central parts of   ( ) and |  ( )|
  become a 

sinusoidal form. 
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A coherent state125 is a specific kind of state126 of the quantum 

harmonic oscillator whose dynamics most closely resemble the os-

cillating behavior of a classical harmonic oscillator system. The 

ground state is a squeezed coherent state127. 

 

The ground state here differs from the ground state of the 

QPAD. That ground state equals zero in the close neighborhood of 

the center. The size of that neighborhood is of the order of the 

Planck length. Thus in this region the QPAD has the form of a 

stretched turban mold. It has a form similar to the second state in 

the picture of | ( )| , thus the lowest state where  ( ) is asym-

metric. Asymmetric states are better localizable than symmetric 

states.  

  

                                                           
125 http://en.wikipedia.org/wiki/Coherent_state  
126 States 
127 Canonical conjugate: Heisenberg’s uncertainty 

http://en.wikipedia.org/wiki/Coherent_state
http://en.wikipedia.org/wiki/Coherent_state
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7.7 Special Fourier transform pairs 

Functions that keep the same form through Fourier transfor-

mation are: 

 

 ( )  e p ( | | ) 
 

 ( )   
 

| |
 

 

 ( )      ( )  
 

The comb function consists of a set of equidistant Dirac delta 

functions. 

 

Other examples of functions that are invariant under Fourier 

transformation are the linear and spherical harmonic oscillators and 

the solutions of the Laplace equation. 

7.8 Complex Fourier transform invariance properties 

Each even function  ( )     ̃( ) induces a Fourier invariant: 

 

 ( )  √    ( )    ̃( ). 
 

 ̃( )   √    ( )  
 

Each odd function  ( )     ̃( ) induces a Fourier invariant: 

 

 ( )  √    ( )    ̃( ). 
 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 
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A function  ( ) is invariant under Fourier transformation if and 

only if the function   satisfies the differential equation  

 
   ( )

   
    ( )     ( ), for some scalar    . 

 

The Fourier transform invariant functions are fixed apart from a 

scale factor. That scale factor can be 1, k, -1 or –k. k is an imagi-

nary base number in the longitudinal direction. 

 

Fourier-invariant functions show iso-resolution, that is,       

in the Heisenberg’s uncertainty relation. 

 

For proves see: 

http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf.  

7.9 Fourier transform properties 

7.9.1 Parseval’s theorem 

Parseval’s theorem runs: 

 

∫  ( )   ( )       ∫ ̃
 ( )   ̃( )      

 

This leads to 

 

∫| ( )|       ∫| ̃( )|
 
     

7.9.2 Convolution 

Through Fourier transformation a convolution changes into a 

simple product and vice versa. 

(4) 

(1) 

(2) 

http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf
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 ( ( )   ( ))    ̃( )   ̃( ) 

7.9.3 Differentiation 

Fourier transformation converts differentiation into multiplica-

tion with the canonical conjugated coordinate. 

 

g( )    ( ) 
 

g̃( )  p ̃( ) 

  

(1) 

(1) 

(2) 
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8 Ladder operator 

The Hermite functions    represent Fock states128. 

 

Boson ladder operators are characterized by 

 

 |     √   |      

 

  |     √     |      

 

  
 

√ 
(  
 

  
    )      ̌√

 

       
  ̌√

   

   
 

 

   
 

√ 
(   

 

  
    )     ̌√

 

       
  ̌√

   

   
 

 

In the Heisenberg picture, the operators have the following time 

dependence: 

 

 ( )   (  ) e p(     (t    )) 

 

  ( )    (  ) e p (    (t    )) 
 

We can also define an enumeration operator N which has the fol-

lowing property: 

 

         

                                                           
128 http://en.wikipedia.org/wiki/Fock_state  

(1) 

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Fock_state
http://en.wikipedia.org/wiki/Fock_state
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 |       |      
 

In deriving the form of   , we have used the fact that the oper-

ators X and Px, which represent observables, are Hermitian. These 

observable operators can be expressed as a linear combination of 

the ladder operators as 

 

 ̌( )    √
 

     
   (  ( )   ( )) 

 

 ̌( )      √          (  ( )   ( )) 
 

The  ̌ and  ̌ operators obey the following identity, known as the 

canonical commutation relation: 

 

[ ̌  ̌]       

 

Using the above, we can prove the identities 

 

        (        )       (     ) 
 

[    ]      
 

Now, let |fE>denote an energy eigenstate with energy E. The in-

ner product of any ket with itself must be non-negative, so 

 

      |               |  
              

 

Expressing     in terms of the Hamiltonian H: 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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    |(  (   )     )       (  (   )     )      
 

so that 

 

         .  

 

Note that when |        |   (is the zero ket i.e. a ket with 

length zero), the inequality is saturated, so that  

 

         

 

It is straightforward to check that there exists a state satisfying 

this condition; it is the ground state 

 

|           |      (     )  

 

Using the above identities, we can now show that the commuta-

tion relations of   and    with H are: 

 

[   ]          

 
[    ]          

 

Thus, provided |        is not the zero ket,  

 

|          |[   ]            

 

  |                 

 

  |                  

 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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  (       ) |      
 

Similarly, we can show that 

 

|            (       ) | 
      

 

In other words,   acts on an eigenstate of energy E to produce, 

up to a multiplicative constant, another eigenstate of energy E – ħ 

ω, and      acts on an eigenstate of energy E to produce an eigen-

state of energy E + ħ ω. For this reason, a is called a "lowering op-

erator", and     "raising operator". The two operators together 

are called ladder operators. In quantum field theory,   and    are 

alternatively called "annihilation" and "creation" operators because 

they destroy and create particles, which correspond to our quanta of 

energy. 

Given any energy eigenstate, we can act on it with the lowering 

operator  , to produce another eigenstate with ħ ω-less energy. By 

repeated application of the lowering operator, it seems that we can 

produce energy eigenstates down to E = −∞. However, this would 

contradict our earlier requirement that E ≥ ħ ω/2.  

  

(20) 
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9 States 

9.1 Ground state 

Therefore, there must be a ground-state energy eigenstate, which 

we label |fground>, such that 

 

 |             |    (zero ket). 

 

In this case, subsequent applications of the lowering operator 

will just produce zero kets, instead of additional energy eigenstates. 

Furthermore, we have shown above that 

 

|             (     ) |         

 

Finally, by acting on |         with the raising operator and 

multiplying by suitable normalization factors, we can produce an 

infinite set of energy eigenstates  

 

{|         |     |      .  |    },  

 

such that 

 

|             (    ) |     

 

which matches the energy spectrum. 

This method can also be used to quickly find the ground state 

state function of the quantum harmonic oscillator.  

Indeed  

 

|             |    
 

(1) 

(2) 

(3) 

(4) 

(5) 
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becomes 

 

       ( )    ( )      |          

    
 

   
 
 

  
   ( ) 

 

so that 

 

    ( )    ( )  
 

   
       ⇒ ln(  ( ))  

  
   

  
            

 

After normalization this leads to the following position space 

representation of the ground state state function. 

 

  ( )    √
   

  

 
    
   
  
    

 

9.2 Coherent state 

A coherent state is a specific kind of state129 of the quantum 

harmonic oscillator130 whose dynamics most closely resemble the 

oscillating behavior of a classical harmonic oscillator system.  

 

The coherent state |α> is defined to be the 'right' eigenstate of the 

annihilation operator  . Formally, this reads: 

 

                                                           
129States  
130 Functions invariant under Fourier transform 

(6) 

(7) 

(8) 
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|        |   

 

Since   is not Hermitian, α is a hyper complex number that is 

not necessarily real, and can be represented as 

 

  | | e p (   ) 
where   is a real number. | | is the amplitude and   is the phase 

of state |α>. 

This formula means that a coherent state is left unchanged by the 

annihilation or the creation of a particle. The eigenstate of the anni-

hilation operator has a Poissonian131 number distribution A Poisson 

distribution is a necessary and sufficient condition that all annihila-

tions are statistically independent. 

The coherent state's location in the complex plane 

(phase space132) is centered at the position and 

momentum of a classical oscillator of the same 

phase θ and amplitude. As the phase increases the 

coherent state circles the origin and the corresponding 

disk neither distorts nor spreads. The disc represents 

Heisenberg’s uncertainty. This is the most similar a 

quantum state can be to a single point in phase space. 

                                                           
131 http://en.wikipedia.org/wiki/Poissonian  
132 http://en.wikipedia.org/wiki/Phase_space  

(1) 

(2) 

http://en.wikipedia.org/wiki/Poissonian
http://en.wikipedia.org/wiki/Phase_space
http://en.wikipedia.org/wiki/Poissonian
http://en.wikipedia.org/wiki/Phase_space
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Phase space plot of a coherent state. This shows that the uncer-

tainty (blur) in a coherent state is equally distributed in all direc-

tions. The horizontal and vertical axes are the X and P quadratures 

of the field, respectively. Oscillations that are said to be in quadra-

ture, if they are separated in phase by π/2 radians. The red dots on 

the x-axis trace out the boundaries of the quantum noise. Further 

from the origin the relative contribution of the quantum noise be-

comes less important. 

 

The representation of the coherent state in the basis of Fock 

states is: 
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|    e p(  | | )∑
  

√  

 

   

 |   

 e p(  | | ) e p (    ) |    

 

where |n> are Hermite functions (eigenvectors of the Hamiltoni-

an). This is a Poissonian distribution. The probability of detecting n 

photons is: 

 

 ( )  e p( 〈 〉)
〈 〉 

  
 

 

Similarly, the average photon number in a coherent state is  

 

〈 〉  〈   〉   | |  
 

and the variance is 

 

(  )     (   )   | |  

9.3 Squeezing 

The squeezing operator can squeeze a state more or less in the 

direction of either P or Q. The operator is defined as: 

 

  ( )  e p ( (       )) 

 

    e p (   ) 
 

The ground state is a saturated squeezed coherent state where  

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Squeezing_operator


257 

 

      and Δq·Δp = ħ/2 

 

 

10 Base transforms 

Now we have discovered the following base transforms: 

Position momentum  
 

  |     
 

√   
 e p (
     

 
) 

 

Position Foc  state  
 

  |     √
  

  

  

√     
 e p ( 

  

  
   )  ( √

  

 
) 

 

Fock state coherent state  
 

  |     
 

√  
    e p (  | | ) 

 
 

11 Oscillations 

11.1 Harmonic oscillating Quaternionic distribution  

Take the ingredients of the complex harmonic oscillator and in-

terpret these as similar ingredients of a harmonic oscillating Qua-

ternionic distribution that is based on a Gaussian blur. The blur de-

livers the conditions of the ground state. 

(3) 

(1) 

(2) 

(3) 
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  ( )    √
   

  

 
    
   
  
    

 

This means that the ground state corresponds with a Gaussian 

charge distribution. Higher states correspond to a blurred current. 

We indicate this current as vector potential  . Its time derivative  ̇ 

is perpendicular to  . The other ingredients are P, Q,   and   . 
 

        √
 

   
(     

 
) 

 

     
 
   

 

    ̇    ̇  √
   

 
(      

 
) 

 

     
 
   

 

              √
  

  
(  

 ̇

 
)

 √
  

  
(      

 ̇ 

 
) 

 

         
 
     

 
 √
  

  
(  

 ̇

 
)

 √
  

  
(      

 ̇ 

 
) 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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The   field and the  ̇ field are mutually perpendicular. If both 

fields are subjected to a synchronized quantum harmonic oscilla-

tion, then an oscillating wave results. We take the same ground 

state for each of the fields. These ground states correspond to a 

spherical symmetric Gaussian blur.  

 

When bounds of the cavity are removed or relaxed, then the 

higher order modes may differ in a phase shift. The sign selections 

set the eigenvalues of the spin operator. The result is an elliptically 

polarized wave that moves in directions along    ̇.  

 

  no longer stands for a single position, but instead for a Gauss-

ian distribution of positions of virtual charges. Similarly  ̇ does not 

stand for a single moving particle, but for a moving Gaussian cloud 

of virtual charges. 
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11.2 Annihilator and creator 

The annihilator   and the creator    are examples of boson 

operators. This is a consequence of their commutation relations. 

 

     α   

 

     β  ̇ 

 

    α    β  ̇ 

 

     α    β  ̇ 

 

[ ( )   ( )]    |   

 

[ ( )  ( )]    
 

[  ( )   ( )]    

 

The corresponding fermion operators are: 

 

{ ( )   ( )}    |   

 

{ ( )  ( )}    
 

{  ( )   ( )}    

 

The fermion operators can be represented by imaginary quater-

nionic base numbers: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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    (   ) 
 

     (   ) 
 

(    ) (    )                  

 

             

11.3 Rotational symmetry 

In case of rotational symmetry in the imaginary part of quaterni-

on space, the exponential function must be replaced by a Bessel 

function. The corresponding Fourier transform then becomes a 

Hankel transform133. 

The spherical harmonics are eigenfunctions of the 

square of the orbital angular momentum operator 

       and therefore they represent the different 

quantized configurations of atomic orbitals. 

                                                           
133 http://en.wikipedia.org/wiki/Hankel_transform  

(11) 

(12) 

(13) 

(14) 

(15) 

http://en.wikipedia.org/wiki/Hankel_transform
http://en.wikipedia.org/wiki/Orbital_angular_momentum
http://en.wikipedia.org/wiki/Quantized
http://en.wikipedia.org/wiki/Atomic_orbitals
http://en.wikipedia.org/wiki/Hankel_transform
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11.4 Spherical harmonics 

The following draws from the work of S. Thangavelu134. 

In this subsection we look for eigenfunctions of the Fourier 

transform which have spherical symmetry. As in the one dimen-

sional case we consider functions of the form  

 

 ( )    ( ) e p(  | | ) 
 

This will be an eigenfunction of   if and only   satisfies 

 

∫  (      ) e p(   | | )   
ℝ 

      ( ) 

 

Here in quaternion terms   and    represent two mutually per-

pendicular imaginary numbers while   and   are parallel. 

Thangavelu uses complex numbers. We keep as close as is possible 

to his text. 

 

If (2) is true for all   ℝ  then we should also have 

 

∫  (   ) e p(   | | )   
ℝ 

      (  ) 

 

Integrating in polar coordinates the integral on the left is 

 

∫ |    | (∫  (       )   ( )
    

)
 

   

    (     )

        
 

                                                           
134 http://www.math.iitb.ac.in/atm/faha1/veluma.pdf  

(1) 

(2) 

(3) 

(4) 

http://www.math.iitb.ac.in/atm/faha1/veluma.pdf
http://www.math.iitb.ac.in/atm/faha1/veluma.pdf
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where   ( ) is the normalised surface measure on the unit 

sphere     . 
 

If   is homogeneous of degree m then  

 

 (   )       ( )  
 

and hence for such polynomials the equation 

 

∫  (   ) e p(   | | )   
ℝ 

         (  ) 

 

will be satisfied for 

 

    (  )   
 

if   has the mean value property 

 

∫  (       )  ( )   ( )
    

 

 

Such functions are precisely the harmonic functions satisfying  

 

       
 

Thus we have proved: 

 

Let  

 

 ( )    ( )    (   | | ) 
 

where   is homogeneous of degree m and harmonic. Then  

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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      (  )    
 

Let    stand for the finite dimensional space of homogeneous 

harmonic polynomials of degree m:  

 

The above theorem says that the finite dimensional subspace of 

  (ℝ ) consisting of functions of the form 

 

 ( ) e p(   | | )          
 

is invariant under the Fourier transform. 

We claim that the following extension is true. 

Let  

 

      (ℝ   
 

be of the form  

  

 ( )     ( ) (| |)           
Then  

 

   ( )     ( ) (| |) 
 

Thus the subspace of functions of the form  

 

 ( )     ( ) (| |)           

 

is invariant under the Fourier transform. 

 

Let  

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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      (ℝ )  
 

be of the form  

 

 ( )     ( ) (| |)           

 

Then  

 

   (f)   ( i)
             

 

The above result is known as the Hecke-Bochner formula for the 

Fourier transform.  

 

We conclude our discussion on invariant subspaces with the fol-

lowing result which shows that the Fourier transform of a radial 

function reduces to an integral transform whose kernel is a Bessel 

function. This relates to the Hankel transform. 

 

Let    stand for the Bessel function of type        
If  

 

 ( )     (| |)  
 

is radial and integrable then 

  

   (f)( )   c  ∫ g(r)  
  
 
  
(    r | |)

(    r | |)
 
 
  
 r     

 

 

   

(17) 

(18) 

(19) 

(20) 

(21) 

http://en.wikipedia.org/wiki/Hankel_transform
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11.5 Spherical harmonic transform 

Next we like to decompose 2D and 3D functions into wave-like 

basic patterns that have simple radial and angular structures135. In 

that case, the base functions must take the separation-of-variable 

form: 

 

 ( ) ( )   
 

√  
 ( ) e p (   ) 

 

for 2D and 

 

 ( ) ( ) ( )     ( ) (   )  
 

 (   )     (   )

 √
    

  

(   ) 

(   ) 
   ( ) e p (   ) 

 

for 3D where (   ) and (     ) are the polar and spherical co-

ordinates respectively. mand l are integers. l     and |m|    l. 
 

The base functions are eigenfunctions of the Laplacian. They 

represent wave-like patterns. The associated angular transform is 

closely related to the normal Fourier transform. For polar coordi-

nates this reduces to a simple complex 1D Fourier transform. 

The radial base function is a Bessel function   (  ) for polar 

coordinates and a spherical Bessel function   (  ) for spherical co-

ordinates. The parameter   can take either continuous or discrete 

                                                           
135 http://lmb.informatik.uni-

freiburg.de/papers/download/wa_report01_08.pdf  

(1) 

(2) 

(3) 

http://lmb.informatik.uni-freiburg.de/papers/download/wa_report01_08.pdf
http://lmb.informatik.uni-freiburg.de/papers/download/wa_report01_08.pdf
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values, depending on whether the region is infinite or finite. For 

functions defined on (   ), the transform with   (  ) as integral 

kernel and r as weight is known as the Hankel transform. For 

functions defined on a finite interval, with zero-value boundary 

condition for the base functions, one gets the Fourier-Bessel se-

ries. For the 3D case the transform is called Spherical Harmonic 

(SH) transform. 

11.6 Polar coordinates 

The Laplacian in polar coordinates is: 

 

    
 

 
 
 

  
(  
  

  
)  
 

  
   

   
 

 

The Helmholtz differential equation is 

 

   (   )      (   ) 
 

 (   )   ( )Φ( ) 
 

Φ( )     Φ( ) 
 

 

 
 
 

  
(  
  ( )

  
)   (

  

  
   ) ( ) 

 

The solution is: 

 

Φ ( )  e p (   ) 
 

 ( )     (  )     (  ) 
 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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   is the  -th order Bessel function. The Neumann function    

is singular at    . Therefore     and    . 
In finite solutions, the boundary conditions determine what set 

of functions can be used as base functions. The reference in the 

footnote shows which choices can be relevant. 

11.7 Spherical coordinates 

The Laplacian in polar coordinates is: 

 

    
 

  
 
 

  
(   
  

  
)  

 

       

   

   

 
 

      

 

  
(     

  

  
) 

 

The Helmholtz differential equation is 

 

   (     )      (     ) 
 

 (     )   ( ) (   ) 
 

 (   )     (   ) 
 

   (   )  √
    

  

(   ) 

(   ) 
   ( ) e p (   ) 

 
 

  
 
 

  
(   
  ( )

  
)   (

 (   )

  
   ) ( ) 

 

A non-singular solution for  ( ) is: 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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 ( )    (  ) 
 

   is the spherical Bessel function of order  . 
 

  ( )  √
 

  
     ( ) 

 

11.8 The spherical harmonic transform 

The equivalent of the Fourier transform in terms of spherical 

harmonics depends on the boundary conditions. For example when 

the analysis is done over a limited region, then the zero boundary 

condition will give different results than the zero derivative bound-

ary condition136. An infinite range will always request a zero value 

of contributions when the radius goes to infinity. 

 

    

  ∫ ∫ ∫  (     ) 

 

   

  

   

 

   

ψ   
 (r    ) r sin   dr d  d  

 

 (     )   ∑∑ ∑     

 

    

 

   

 

   

 ψ   (r    ) 

 

    (     )     (  )    (   ) 
 

                                                           
136  http://lmb.informatik.uni-

freiburg.de/papers/download/wa_report01_08.pdf 

(7) 

(8) 

(1) 

(2) 

(3) 

http://lmb.informatik.uni-freiburg.de/papers/download/wa_report01_08.pdf
http://lmb.informatik.uni-freiburg.de/papers/download/wa_report01_08.pdf
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11.9 The Fourier transform of a black hole 

In its simplest form a black hole is a bubble that is covered with 

a blanket of ground states. 

The blanket is a comb function that is convoluted with a ground 

state. The Fourier transform of this blanket is the product of the 

Fourier transform of the comb function and the Fourier transform 

of the ground state. Apart from a factor, the ground state is invari-

ant under Fourier transformation. Also the comb function is invari-

ant. Thus the Fourier transform of the blanket is a modulated comb 

function. The modulation does not reach far. 

 

The most complicated component is the bubble. In its simplest 

form this is a pulse on the radius. If we interpret this pulse as a Di-

rac delta function, then the Fourier coefficients have the form: 

 

    ( )    (   )   √
 

  
   (   ) 

 

If we sum these coefficients, then we get a sampled spherical 

Bessel function. These spheres are blurred with the transformed 

blanket. 

11.10 Spherical harmonics eigenvalues 

See: http://en.wikipedia.org/wiki/Spherical_harmonics for more 

details. 

Spherical harmonics are best presented in polar coordinates. 

There exists a corresponding polar Fourier transform. This Fourier 

transform also has invariant functions. Like in the rectangular case, 

they form the basis for spherical harmonics. 

 

Laplace's equation in spherical coordinates is: 

http://en.wikipedia.org/wiki/Spherical_harmonics
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 (   

  

  
)  

 

     ( )
 
 

  
 (sin( ) 

  

  
)   

 

      ( )
 
   

   
     

 

Try to find solutions in the form of the eigenfunctions of the 

Fourier transform.  

By separation of variables, two differential equations result by 

imposing Laplace's equation: 

 

 (     )    ( )   (   ) 
 

   
 

  
 (  
  

  
)     

 

 

 sin( )

 

  
 (sin( )

  

  
)   

 

  sin ( )

   

   
       

 

The second equation can be simplified under the assumption that 

  has the form  

 

 (   )    ( ) ( ) 
 

Applying separation of variables again to the second equation 

gives way to the pair of differential equations 

 

 

 ( )

   ( )

   
       

 

  sin ( )   
sin( )

 ( )

 

  
[sin ( )

  

  
]        

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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for some number m. A priori, m is a complex constant, but be-

cause   must be a periodic function whose period evenly divides 

     is necessarily an integer and   is a linear combination of the 

complex exponentials e p(      ). The solution function  (   ) 
is regular at the poles of the sphere, where      . Imposing this 

regularity in the solution   of the second equation at the boundary 

points of the domain is a Sturm–Liouville problem137 that forces the 

parameter   to be of the form    (   ) for some non-negative 

integer with   | |; this is also explained below in terms of the 

orbital angular momentum. Furthermore, a change of variables 

       transforms this equation into the Legendre equation, 

whose solution is a multiple of the associated Legendre function138. 

  
 (   ( )). Finally, the equation for R has solutions of the form 

 ( )                 ; requiring the solution to be regular 

throughout ℝ  forces    . 
Here the solution was assumed to have the special form  

 

 (   )    ( )  ( )  
 

For a given value of  , there are      independent solutions of 

this form, one for each integer m with       . These angular 

solutions are a product of trigonometric functions, here represented 

as a complex exponential, and associated Legendre functions: 

 

  
 (   )     e p(     )   

 (   ( )) 
 

which fulfill 

                                                           

137 
http://en.wikipedia.org/wiki/Sturm%E2%80%93Liouville_problem  

138 http://en.wikipedia.org/wiki/Associated_Legendre_function  

(8) 

(9) 

http://en.wikipedia.org/wiki/Sturm%E2%80%93Liouville_problem
http://en.wikipedia.org/wiki/Associated_Legendre_function
http://en.wikipedia.org/wiki/Sturm%E2%80%93Liouville_problem
http://en.wikipedia.org/wiki/Associated_Legendre_function
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 (   )      (     )   

 (   ) 
 

Here   
  is called a spherical harmonic function of degree   and 

order m,    
  is an associated Legendre function, N is a normaliza-

tion constant, θ represents the colatitude and φ represents the longi-

tude. In particular, the colatitude139 θ, or polar angle, ranges from 0 

at the North Pole to π at the South Pole, assuming the value of π/2 

at the Equator, and the longitude140  , or azimuth141, may assume 

all values with       . For a fixed integer  , every solution 

 (   ) of the eigenvalue problem 

 

            (     )   

 

is a linear combination of   
 . In fact, for any such solution, 

    (   ) is the expression in spherical coordinates of a homoge-

neous polynomial that is harmonic, and so counting dimensions 

shows that there are      linearly independent of such polynomi-

als. 

The general solution to Laplace's equation in a ball centered at 

the origin is a linear combination of the spherical harmonic func-

tions multiplied by the appropriate scale factor   , 
 

 (     )    ∑ ∑   
     

 (   )

 

    

 

   

 

 

                                                           
139 http://en.wikipedia.org/wiki/Colatitude  
140 http://en.wikipedia.org/wiki/Longitude  
141 http://en.wikipedia.org/wiki/Azimuth  

(10) 

(11) 

(12) 

http://en.wikipedia.org/wiki/Colatitude
http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Azimuth
http://en.wikipedia.org/wiki/Colatitude
http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Azimuth
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where the   
  are constants and the factors·     

  are known as 

solid harmonics142. Such an expansion is valid in the ball 

 

          lim
 ⇒ 
     |  

 |       

 

11.11 Orbital angular momentum 

In quantum mechanics, Laplace's spherical harmonics are under-

stood in terms of the orbital angular momentum143 

 

                                   

 

The spherical harmonics are eigenfunctions of the square of the 

orbital angular momentum 

 

              (  
 

  
    )   

 

  
 

 

  
 

sin( )
 
 

  
 sin( )

 

  
  

 

sin ( )
 
  

   
 

 

Laplace's spherical harmonics are the joint eigenfunctions of the 

square of the orbital angular momentum and the generator of rota-

tions about the azimuthal axis: 

 

          ( 
 

  
   
 

  
)      

 

  
 

 

                                                           
142 http://en.wikipedia.org/wiki/Solid_harmonics  
143 http://en.wikipedia.org/wiki/Orbital_angular_momentum  

(13) 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Solid_harmonics
http://en.wikipedia.org/wiki/Orbital_angular_momentum
http://en.wikipedia.org/wiki/Solid_harmonics
http://en.wikipedia.org/wiki/Orbital_angular_momentum
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These operators commute, and are densely defined self-adjoint 

operators on the Hilbert space of functions ƒ square-integrable with 

respect to the normal distribution on ℝ : 
 

(   ) 
 
 ∫ | ( )| 

ℝ 
e p( | |   )      

Furthermore,    is a positive operator. 

If   is a joint eigenfunction of    and   , then by definition 

 

           

 

           
 

for some real numbers m and  . Here m must in fact be an inte-

ger, for   must be periodic in the coordinate   with period a num-

ber that evenly divides    . Furthermore, since 

 

       
      

      
  

 

and each of           are self-adjoint, it follows that     . 

Denote this joint eigenspace by     , and define the raising and 

lowering operators by 

 

               

 

              

 

Then    and    commute with   , and the Lie algebra generated 

by          is the special linear Lie algebra, with commutation re-

lations 

 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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[     ]      

 

[     ]       

 

[     ]        
 

Thus                  (it is a "raising operator") and 

                 (it is a "lowering operator"). In particular, 

  
                must be zero for k sufficiently large, because 

the inequality      must hold in each of the nontrivial joint ei-

genspaces. Let        be a nonzero joint eigenfunction, and let k 

be the least integer such that 

 

  
         

 

Then, since 

 

         
     

      
 

it follows that 

 

         
       (   (     )    (     ))   

 

Thus      (   ) for the positive integer        . 

11.12 Spherical harmonics expansion 

The Laplace spherical harmonics form a complete set of or-

thonormal functions and thus form an orthonormal basis of the Hil-

bert space of square-integrable functions. On the unit sphere, any 

square-integrable function can thus be expanded as a linear combi-

nation of these: 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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 (   )  ∑ ∑   
   
 (   )

 

    

 

   

 

 

This expansion holds in the sense of mean-square convergence 

— convergence in L
2
 of the sphere — which is to say that 

 

lim
   
∫ ∫ | (   )

 

 

  

 

 ∑ ∑   
   
 (   )

 

    

 

   

|

 

sin( )         

 

The expansion coefficients are the analogs of Fourier coeffi-

cients, and can be obtained by multiplying the above equation by 

the complex conjugate of a spherical harmonic, integrating over the 

solid angle  , and utilizing the above orthogonality relationships. 

This is justified rigorously by basic Hilbert space theory. For the 

case of orthonormalized harmonics, this gives: 

 

  
  ∫ (   )

 

  
  (   )  

 ∫   ∫    sin ( )
 

 

  

 

  (   )   
  (   ) 

 

If the coefficients decay in ℓ sufficiently rapidly — for instance, 

exponentially — then the series also converges uniformly to ƒ. 

A real square-integrable function ƒ can be expanded in terms of 

the real harmonics Yℓm above as a sum 

 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Lp_space
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 (   )  ∑ ∑   
   
 (   )

 

    

 

   

 

 

Convergence of the series holds again in the same sense. 

11.13 Spin weighted spherical harmonics 

Regard the sphere    as embedded into the three-

dimensional imaginary part of the quaternionic 

number field. At a point x on the sphere, a posi-

tively oriented orthonormal basis of tangent vec-

tors at x is a pair a, b of vectors such that 

(   )    (   )    (   )      

(   )    (   )      

〈       〉      

where the first pair of equations states that a and b are tangent at 

x, the second pair states that a and b are unit vectors, a and b are 

orthogonal, and the {     } is a right-handed basis of ℝ . 
  

(4) 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Euclidean_space
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θ

a·sin(θ)

a·cos(θ)

b·cos(θ)

-b·sin(θ)

θ

a·sin(θ)

a·cos(θ)

b·cos(θ)
-b·sin(θ)

ψ

ψ

c

d

da = ca·cos(θ) –cb·sin(θ) 

db = ca·cin(θ) –cb·cos(θ)

 

Figure 8: θ and the parameters a and b of the spin-weight function 

f. 

 

A spin-weight s function ƒ is a function accepting as input a 

point x of S
2
 and a positively oriented orthonormal basis of tangent 

vectors at x, such that 

  

(4) 
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 (       ( )       ( )      ( )        ( ))

  e p(     )  (     ) 

for every rotation angle  . 

Following Eastwood & Tod (1982), denote the collection of all 

spin-weight s functions by B(s). Concretely, these are understood as 

functions ƒ on    { } satisfying the following homogeneity law 

under complex scaling 

 

 (     ̅  ̅)   (
 ̅

 
)

 

 (   ̅) 

 

This makes sense provided s is a half-integer. 

Abstractly, B(s) is isomorphic to the smooth vector bundle un-

derlying the antiholomorphic vector bundle O
*
(2·s) of the Serre 

twist on the complex projective line    . A section of the latter 

bundle is a function g on    { } satisfying 

 

 (     ̅  ̅)   ( ̅)
  
  (   ̅) 

 

Given such a g, we may produce a spin-weight s function by 

multiplying by a suitable power of the Hermitian form 

 

 (   ̅)      ̅ 
 

Specifically,        is a spin-weight s function. The associa-

tion of a spin-weighted function to an ordinary homogeneous func-

tion is an isomorphism. 

(5) 

(6) 

(7) 
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11.14 Eth 

The spin weight bundles B(s) are equipped with a differential 

operator  ð (eth). This operator is essentially the Dolbeault opera-

tor144,  

 

            
 

Thus for    ( ), 
 

             (    ) 
 

defines a function of spin-weight    . 

11.15 Spin-weighted harmonic functions 

See http://en.wikipedia.org/wiki/Spin-

weighted_spherical_harmonics for more details. 

Just as conventional spherical harmonics are the eigenfunctions 

of the Laplace-Beltrami operator on the sphere, the spin-weight s 

harmonics are the eigensections for the Laplace-Beltrami operator 

acting on the bundles  ( ) of spin-weight s functions. 

The spin-weighted harmonics can be represented as functions on 

a sphere once a point on the sphere has been selected to serve as the 

North Pole. By definition, a function η with spin weight s trans-

forms under rotation about the pole via  

 

    e p(     )   
 

                                                           
144 http://en.wikipedia.org/wiki/Dolbeault_operator  

(1) 

(2) 

(1) 

http://en.wikipedia.org/wiki/Dolbeault_operator
http://en.wikipedia.org/wiki/Dolbeault_operator
http://en.wikipedia.org/wiki/Spin-weighted_spherical_harmonics
http://en.wikipedia.org/wiki/Spin-weighted_spherical_harmonics
http://en.wikipedia.org/wiki/Dolbeault_operator
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Working in standard spherical coordinates, we can define a par-

ticular operator ð acting on a function η as: 

 

      sin  ( ) {
 

  
 
 

sin( )
 
 

  
}[sin  ( )  ] 

 

This gives us another function of   and  . [The operator ð is ef-

fectively a covariant derivative operator in the sphere.] 

An important property of the new function    is that if η had 

spin weight      has spin weight      . Thus, the operator raises 

the spin weight of a function by 1. Similarly, we can define an op-

erator which will lower the spin weight of a function by 1: 

 

 ̅     sin  ( ) {
 

  
 
 

sin( )

 

  
} [(sin ( )  ] 

 

We extend the function   
  to   

 
 
  according to 

 

  
 

 
  (   )     

 (   ) 
 

                          
 

The spin-weighted spherical harmonics are then defined in terms 

of the usual spherical harmonics as: 
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           | |   

 

The functions   
 

 
  then have the property of transforming with 

spin weight s. 

Other important properties include the following: 

 

 (   
 

 
 )    √(   ) (       )   
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12 Differentiation 

A quaternionic distribution f(q) can be differentiated. 

 

 ( )       ( )  〈   ( )〉     ( )      ( )

 (    ( )) 

 

The colored   and   signs refer to the influence of conjugation 

of  ( ) on quaternionic multiplication. The  sign refers to the in-

fluence of reflection of  ( ). 
 

12.1 Continuity equation 

When applied to a quaternionic probability amplitude distribu-

tion (QPAD), the equation for the differentiation leads to a continu-

ity equation. 

 

When   ( ) is interpreted as a charge density distribution, then 

the conservation of the corresponding charge is given by the conti-

nuity equation: 

 

Total change within V = flow into V + production in-

side V 
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For the imaginary parts hold. 

 
 

  
∫    

 

  ∮ ̂     
 

 ∮ ̂      
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  ∫      

 

 ∫      
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For the full integral equation holds: 

 
 

  
∫      

 

 ∮ ̂    
 

 ∫    

 

 

 

 

∫      

 

 ∫    

 

 

 

Here  ̂ is the normal vector pointing outward the surrounding 

surface S,  (   ) is the velocity at which the charge density 

  (   ) enters volume V and    is the source density inside V. In 

the above formula   stands for 

          
 

It is the flux (flow per unit area and unit time) of    . 
  stands for progression (not coordinate time). 

 

The combination of   (   ) and  (   ) is a quaternionic skew 

field  (   ) and can be seen as a probability amplitude distribution 

(QPAD). 
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 (   )  (   ) can be seen as an overall probability density dis-

tribution of the presence of the carrier of the charge.   (   ) is a 

charge density distribution.  (   ) is the current density distribu-

tion. 

The conversion from formula (2) to formula (3) uses the Gauss 

theorem145. This results in the law of charge conservation:  

 

  (   )
     (   )

 〈  (  (   ) (   )     (   ))〉 

 

     (   )  〈   (   )   (   )〉 
 

     (   )  〈 (   )    (   )〉
 〈   (   )〉   (   ) 

 

 〈   (   )〉 
 

The blue colored ± indicates quaternionic sign selection through 

conjugation of the field  (   ). The field  (   ) is an arbitrary dif-

ferentiable vector function. 

 

〈     (   )〉    
 

 (   )      (   ) is always divergence free. In the follow-

ing we will neglect  (   ). 
 

In Fourier space the continuity equation becomes: 

                                                           
145 http://en.wikipedia.org/wiki/Divergence_theorem  

(9) 

(10) 

(11) 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
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 ̃ (   )     ̃ (   )  〈   ̃(   )〉 
 

Equation (6) represents a balance equation for charge density. 

What this charge is will be left in the middle. It can be one of the 

properties of the carrier or it can represent the full ensemble of the 

properties of the carrier. 

 

This only treats the real part of the full equation. The full equa-

tion runs: 
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 (   )      (   )      (   ) 
 

 ( (  (   )    (   )   (   )

    (   ))) 

 

The red sign selection indicates a change of handedness by 

changing the sign of one of the imaginary base vectors. Conjuga-

tion also causes a switch of handedness. It changes the sign of all 

three imaginary base vectors. 

12.1.1 Continuity Equations 

The equation for the conservation of charge: 

 

  ( )      ( )  〈   ( )〉 
 

We can define  ( ): 
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The definition of  ( ) and  ( ) have the freedom of the gauge 

transform146 

 

 ( )   ( )      
 

 ( )   ( )   (    ( )) 
 

   
 
   
  
 
 

 

This translates in the source free case   ( )    into: 

 

    ( )   〈   ( )〉 
 

  ( )       ( )  〈   ( )〉    
 

In the source divergence free case    ( )    this means: 

 

     ( )    〈   ( )〉 
 

     ( )    〈   ( )〉 
 

 〈   ( )〉       ( )     ( ) 
 

Due to the fact that there are other charges present, the diver-

gence of the scalar potential need be in the direction of the current 

 (q), which for a spherical symmetric blur is also in the direc-
tion of the vector potential ϕ(q). However, a tendency exists to 

                                                           
146 http://en.wikipedia.org/wiki/Gauge_fixing 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

http://en.wikipedia.org/wiki/Gauge_fixing
http://en.wikipedia.org/wiki/Gauge_fixing
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minimize that difference. Thus      ( ) is parallel to  ( ).  
With other words: 

 
 ( )   〈   ( )〉    

 

Reckoning the sign selections for the sign ± of the conjugation 

and the handedness ± of the cross product will provide four differ-

ent sets of equations. This will provide eight different quaternionic 

distributions.  

 

The continuity equation (or balance equation) is in fact quaterni-

onic a differential equation. The operator    represents the Hamil-

tonian.  It has a direct relation with the Lagrangian, which is de-

rived from the path equation147. 

12.2 Discrete distribution 

If  (q) is discrete, such that  

 

  ( )  ∑       (    ) 
 

where   
  is a point charge at location q′, then the contribution to 

the field E(q) that is generated by a point charge at location qi is 

given by: 

 

   ( )      
    

|    |
         

 

|    |
 

                                                           
147 Path charcteristics, Euler Lagrange equations 

(15) 

(1) 

(2) 
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12.3 Differential potential equations 

The gradient and curl of ϕ(q) are related. In configuration space 

holds: 

 

  ( )       ( )  〈   ( )〉     ( )      ( )

 (    ( )) 

 

 ( )       ( ) 
 

 ( )       ( ) 
 

 ( )    ( )     ( )   ( )    ( )     ( ) 
 

  ( )       ( )  〈   ( )〉 
 

 ( )     ( )    ( )     ( ) 
 

When the field  ( ) is split into a private field   ( ) and a 

background field   ( ), then   ( ) corresponds to the private 

field of the uniform moving item. When this item accelerates, then 

it goes together with an extra term     ( ). This is the reason of 

existence of inertia148. 

 

〈   ( )〉        ( )      ( ) 
 

   ( )   ; Rotation free field 

 

〈   ( )〉    ; Divergence free B field  

 

                                                           
148 Influence; Inertia 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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   ( )   〈   ( )〉     ( )

  〈   ( )〉   ( )    
  ( ) 

 

   ( )        ( )   ( )    
  ( ) 

 

     ( )   ( )    
  ( ) 

 

Since    ( )is supposed to be parallel to    ( ), it is sensible 

to define  ( )as the total field in longitudinal direction: 

 

 ( )      ( )     ( )   ( )     ( ) 
 

And 

 

 ( )   ( ) 
 

With this definition: 

 

   ( )       ( ) 
 

〈   ( )〉    
 

   ( )    ( )     ( ) 

12.3.1 In Fourier space 

In Fourier space holds: 

 

 ̃( )      ̃ ( )  〈   ̃( )〉     ̃( )     ̃ ( )     ̃( ) 
 

 ̃( )    ̃( )     ( )   ̃( )    ̃( )     ̃( ) 
 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(1) 

(2) 
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 ̃ ( )      ̃ ( )  〈   ̃( )〉 
 

 ̃( )     ̃ ( ) 
 

 ̃( )     ̃ ( )     ̃( ) 
 

 ̃( )      ̃( ) 
 

 ̃( )     ̃( )    ̃( )     ̃( ) 
 

〈   ̃( )〉       ̃ ( )     ̃ ( ) 
 

   ̃( )   ; Rotation free field 

 

〈   ̃( )〉    ; Divergence free B field  

 

   ̃( )   〈   ̃( )〉     ̃( )

  〈   ̃( )〉   ̃( ) 
 

 

   ̃( )       ̃ ( )   ̃( )      ̃( )   ̃( ) 
 

If the distribution  (q) is differentiable, then the same equations 

that hold for fields ϕ(q) and  ̃( ) hold for the non-blurred distribu-

tions  (q) and  ̃( ). 

12.4 Maxwell equations 

First it must be noted that the above derived field equations hold 

for general quaternionic fields. 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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The resemblance with physical fields holds for electromagnetic 

fields as well as for gravitational fields and for any fields whose 

blurring function approximates  

 

 ( )   
 

| |
.  

 

In Maxwell equations, E(r) is defined as: 

 

 (   ) ≡      (   )  
  (   )

  
  (   )  

  (   )

  
 

 

Further: 

 

〈   (   )〉        (   )  
 〈   (   )〉

  
 

 

 
  (   )

  
 
 〈   (   )〉

  
 

 

In Maxwell equations, B(r) is defined as: 

 
 (   ) ≡     (   )   (   ) 

 

Further: 

 

   (   )    
  (   )

  
 

 

〈   (   )〉    
 

   (   )     (    
  

  
) 



295 

 

12.4.1 Differentiable distribution 

If the distribution  (q) is differentiable, then the same equations 

that hold for fields ϕ(q) and  ̃( ) hold for the non-blurred distribu-

tions  (q) and  ̃( ). 
Using: 

 

     
  (         )   (         )

  (         ) 
 

gives 

 

    ( )       ( ) 
 

    ( )    (    ( )      ( )) 

 

    ( )    (    ( )      ( )) 

 

    ( )  〈   ( )〉      ( )      ( )      ( ) 

 

And correspondingly in Fourier space 

 

   ̃ ( )      ̃ ( ) 
 

   ̃ ( )    (   ̃ ( )     ̃ ( )) 

 

   ̃ ( )    (   ̃ ( )     ̃ ( )) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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   ̃ ( )  〈   ̃( )〉     ̃ ( )     ̃ ( )     ̃ ( ) 

12.5 Covariant derivative 

The covariant derivative plays a role in the Lagrangian and in 

the equation of motion. It plays an essential role in the Higgs mech-

anism. 

The covariant derivative   is defined as  

 

  ( )    ( )   ( )  ( ) 
 

This is interesting with respect to a gauge transformation of the 

form 

 

  ( )   ( )  ( ) 
 

   ( )  ( )     
 

  ( )   ( ) ( ) 
 

where with a corresponding vector potential transformation 

 

   ( )    ( )   ( )  
 

      ( )   ( ) 
 

The following step is in general not valid for quaternionic func-

tions. However, we assume that it is valid for  ( ) and  ( ). 
 

 ( ( ) ( )) ≠ (  ( )) ( )   ( )  ( ) 

 

(9) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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    ( )   ( )  ( )  ( )   ( )   ( )  
 

  ( ) ( ) ( )   ( ) ( ) ( ) 
 

  ( )(  ( )   ( )  ( )) 

 

    ( )   ( )  ( ) 
 

Thus with that transformation pair not only the modulus of the 

function stays invariant but also the modulus of the covariant deriv-

ative stays invariant. Further 

 

   ( )    ( )    ( )   ( )  ( )  ( ) 
 

   ( )   ( ) 
 

Above the right sided covariant derivative   is defined 

 

 ⃗⃗⃗ ( )   ⃗⃗⃗ ( )   ( )  ( ) 
 

The left sided covariant derivative is defined as: 

 

 ( ) ⃗⃗⃖   ( ) ⃗⃗⃖    ( )  ( ) 
 

We will use  ⃖⃗ for both left sided and right sided covariant deriv-

ative: 

 

 ⃖⃗ ( )  
 ⃗⃗⃗ ( )   ( ) ⃗⃗⃖

 
  ( )  ( )    ( )  ( ) 

  

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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13 Conservation laws 

13.1 Flux vector 

The longitudinal direction k of  ( ) and the direction i of  ( ) 
fix two mutual perpendicular directions. This generates curiosity to 

the significance of the direction    . With other words what hap-

pens with  ( )   ( ).   
 

The flux vector   ( ) is defined as: 

 

  ( )    ( )   ( ) 
 

13.2 Conservation of energy 

 

〈   ( )〉  〈 ( )    ( )〉  〈 ( )    ( )〉 
 

  〈 ( )    ( )〉  〈 ( )  ( )〉
 〈 ( )    ( )〉 

 

     (〈 ( )  ( )〉  〈 ( )  ( )〉)
 〈 ( )  ( )〉 

 

The field energy density is defined as: 

 

      ( )   (〈 ( )  ( )〉  〈 ( )  ( )〉)

    ( )    ( ) 
 

 ( ) can be interpreted as the field energy current density. 

The continuity equation for field energy density is given by: 

(1) 

(1) 

(2) 
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        ( )  〈   ( )〉    〈 ( )  ( )〉

     ( )〈 ( )  ( )〉 
 

This means that 〈 ( )  ( )〉 can be interpreted as a source 

term. 

  ( ) ( ) represents force per unit volume. 

  ( )〈 ( )  ( )〉 represents work per unit volume, or, in 

other words, the power density. It is known as the Lorentz power 

density and is equivalent to the time rate of change of the mechani-

cal energy density of the charged particles that form the current 

 ( ). 
 

        ( )  〈   ( )〉                ( ) 

 

              〈 ( )  ( )〉    ( )〈 ( )  ( )〉 
 

  (       ( )              ( ))   〈   ( )〉 

 

Total change within V = flow into V + production in-

side V 

 

 ( )        ( )             ( )

   ( )    ( )             ( ) 
 

                                      

 ∫    

 

 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source s0 is zero. 

13.3 How to interprete Umechanical 

            is the energy of the private field (state function) of 

the involved particle(s). 

13.4 Conservation of linear momentum 

 ( ) can also be interpreted as the field linear momentum 

density. The time rate change of the field linear momentum density 

is: 

 

   ( )
       ( )      ( )   ( )

  ( )     ( ) 
 

 (   ( )   ( ))    ( )   ( )   

  ( ) 
 

 ( )    (     )  〈     〉  〈   〉
   〈    〉  〈   〉 

 

   (  )    〈    〉  〈    〉  

 

   (      〈    〉)  〈    〉  

 

 ( )    (     )
   (      〈    〉)  〈    〉  

(1) 

(2) 

(3) 

(4) 
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 ( )     (      〈    〉) 
 

   ( )   ( )   ( )   ( )    ( ) 
 

  ( )   ( )   ( )    ( )  〈    〉 
 〈    〉  

 

  ( )   ( )   ( )    ( )
   ( )  ( ) 

 

  ( )   ( )   ( )   ( )   ( ) 
 

 ( ) is the linear momentum flux tensor. 

The linear momentum of the field contained in volume V sur-

rounded by surface S is: 

 

       ∫         

 

 ∫        

 

 ∫  〈    〉    ∮〈 ̂   〉  
 

 

 

 

 ( )   ( )    ( )    ( )  ( ) 
 

Physically,  ( ) is the Lorentz force density. It equals the time 

rate change of the mechanical linear momentum density 

           . 
 

(5) 

(6) 

(7) 

(8) 
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           ( )      ( ) ( ) 
 

The force acted upon a single particle that is contained in a vol-

ume V is: 

 

  ∫    
 

 ∫(         )   
 

 

 

Brought together this gives: 

 

  (      ( )             ( ))    〈   ( )〉 

 

This is the continuity equation for linear momentum. 

The component     is the linear momentum in the i-th direction 

that passes a surface element in the j-th direction per unit time, per 

unit area. 

 

Total change within V = flow into V + production in-

side V 

 

 ( )        ( )             ( ) 

 

                     ∫    

 

 

 
 

  
∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source sg = 0. 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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13.5 Conservation of angular momentum 

13.5.1 Field angular momentum 

The angular momentum relates to the linear momentum. 

 

 (  )  (    )   ( ) 
 

      (  )  (    )        ( ) 

 

           ( )  (    )             ( ) 
 

 (  )  (    )   (q) 

 

This enables the balance equation for angular momentum: 

 

  (      (  )             (  ))    〈   (  )〉 

 

Total change within V = flow into V + production in-

side V 

 

                     ∫    

 

 

 
 

  
∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source sh = 0. 

 

For a localized charge density contained within a volume V 

holds for the mechanical torsion: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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 (  )  ∫(     )   (  )  

 

 

 

 ∫(     )

 

 (  (  ) (  )    (  )  

   (  ))   

 

  (    )  ( ( )    ( )     ( )) 
 

      (  )        ( )      ( ) 

 

Using 

 

〈    〉    
   

   
   

 

〈    〉    
   

   
   

 

holds 

 

      ( )  ∫ 
   (  )  

 

 ∫    (  )     (  )   

 

 

 

(8) 

(9) 

(10) 

(11) 

(12) 
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 ∫(   〈(  )  〉  〈     (  )〉)   

 

 

 

 ∫   〈(  )  〉  
 

 

 

 ∫      

 

 ∫〈       〉  
 

 ∫(  
 

  )〈   〉   

13.5.2 Spin 

Define the non-local spin term, which does not depend on qʹ as: 

 

       ∫ ( )   ( )  

 

 

 

Notice 

 

 ( )     ( )       ( )    (  ( ) ( )) 

 

And 

 

      ( )  ∫ 
  〈(  )  〉  

 

 ∫        
 

 

 

Using Gauss: 

 

(13) 

(14) 

(15) 
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∫〈   〉   
 

∮〈 ̂  〉  
 

 

And 

 

   〈   〉 
 

Leads to: 

      ( )               ( )  ∮〈 ̂   
   〉  

 

 

13.5.3 Spin discussion 

The spin term is defined by: 

 

       ∫ ( )   ( )  

 

 

 

In free space the charge density  0 vanishes and the scalar poten-

tial ϕ0 shows no variance. Only the vector potential ϕ may vary 
with q0. Thus: 

 
               

 

       ∫(   ( ))   ( )  

 

 

 

Depending on the selected field Σfield has two versions that 
differ in their sign. These versions can be combined in a single 
operator: 

 

(16) 

(17) 

(1) 

(2) 

(3) 

(4) 
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        [
       
       

] 

 

If 
 ( )

| ( )|
 can be interpreted as tantrix (  ) ) and 

   ( )

|   ( )|
 can be 

interpreted as the principle normal  (  ), then 
(   ( ))  ( )

|(   ( ))  ( )|
 

can be interpreted as the binormal  (  ).  
From these quantities the curvature and the torsion149 can be 

derived. 
 

[

 ̇( )

 ̇( )

 ̇( )

]   [

  (t)  
  (t)  τ(t)

  τ(t)  
] [

 ( )
 ( )

 ( )
] 

 

  

                                                           
149Path characteristics  

(5) 
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14 Lorentz transformation 

Differences between positions in subsequent members of the se-

quence of HBM pages can be interpreted as displacements. The 

displacement is a coordinate transformation. For the properties of 

this transformation it does not matter where the displacement starts 

or in which direction it is taken. 

 

The same holds for displacements that concern sequence mem-

bers that are located further apart. The corresponding displacements 

form a group. The displacement is a function of both the position 

and the sequence number. The displacement           can be in-

terpreted as a coordinate transformation and can be described by a 

matrix.  

 

[
  

  
]  [
  
  
] [
 
 
] 

 

The matrix elements are interrelated. When the displacement 

concerns a uniform movement, the interrelations of the matrix ele-

ments become a function of the speed  . The group properties to-

gether with the isomorphism of space fix the interrelations. 

 

[
  

  
]    √     [

   
   

] [
 
 
] 

 

If   is positive, then there may be transformations with       
which transform time into a spatial coordinate and vice versa. This 

is considered to be unphysical. The Hilbert book model also sup-

ports that vision. 

 

The condition k = 0 corresponds to a Galilean transformation 

(1) 

(2) 
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[
  

  
]  [

  
   

] [
 
 
] 

 

The condition       corresponds to a Lorentz transformation. 

We can set       , where   is an invariant speed that corre-

sponds to the maximum of  . 
 

[
  

  
]    √       [       

   
] [
 
 
] 

 

The Lorentz transformation corresponds with the situation in 

which a maximum speed occurs.  

 

Since in each progression step photons step with a non-zero 

space step and both step sizes are fixed, the speed of the photon at 

microscopic scale is fixed. No other particle goes faster, so in the 

model a maximum speed occurs. With other words when sequence 

members at different sequence number are compared, then the cor-

responding displacements can be described by Lorentz transfor-

mations.  

 

Lorentz transformations introduce the phenomena that go to-

gether with relativity, such as length contraction, time dilatation 

and relativity of simultaneity that occur when two inertial reference 

frames are considered. 

 

    (            
 ) √        

 

The term        
  introduces time dilatation. If       then 

depending on   and     the time difference     is non-zero. 

 

(3) 

(4) 

(5) 
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These phenomena occur in the Hilbert Book Model when differ-

ent members of the sequence of Hilbert spaces are compared. Usu-

ally the inertial frames are spread over a range of Hilbert book pag-

es. 

Since the members of the sequence represent static status quos, 

the relativity of simultaneity restricts the selection of the inertial 

frames. Only one of the inertial frames can be situated completely 

in a single member of the sequence. In that case the other must be 

taken from a range of sequence elements. 

 

15 Quaternionic metric 

Wiki: In the mathematical field of differential geometry, a met-

ric tensor is a type of function defined on a manifold (such as a 

surface in space) which takes as input a pair of tangent vectors v 

and w and produces a real number (scalar) g(v,w) in a way that gen-

eralizes many of the familiar properties of the inner product of vec-

tors in Euclidean space. In the same way as an inner product, a met-

ric tensor is used to define the length of and angle between tangent 

vectors, but is not required to be positive-definite. 

 

The Palestra is a continuous and compact space. It is character-

ized by a continuous quaternionic distribution ℘ that has a single 

sign flavor. This means that in the Palestra no reflections occur. 

Every location of the Palestra is characterized by a metric tensor, 

which defines for every location and every direction an infinitesi-

mal distance. This distance is an invariant with respect to transfor-

mations that represent continuous symmetries. These transfor-

mations form a Lie group. Apart from a small deviation, we follow 
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the ideas of Mendel Sachs150. The infinitesimal distance in the 

curved Palestra is defined as
151

 

 

    ∑
 ℘

   
   

 
    ( )      

 

The quaternionic distribution ℘( ) specifies the metric of the 

Palestra.    are coordinates in the flat parameter space of ℘( ). 

 

   is quaternion valued.     is real valued.  

 

We define the factors   ( ) as derivatives of the quaternionic 

distribution ℘( ) 
 

  ( )   
 ℘

   
  

 

They belong to the flat parameter space of the quaternionic dis-

tribution ℘( ).  
 

    is the infinitesimal spacetime interval   . (In this discussion 

we suppose it to be time-like). Apart from a constant factor it 

equals the progression interval   . It is directly related to the proper 

time interval   . 
 

         
 

  is the proper time. It is measured at the location of the ob-

served item. Thus it is independent of who is observing.  

                                                           
150 See: Symmetry in electrodynamics; M. Sachs 
151 This approach differs from the approach of Mendel Sachs. 

(1) 

(2) 

(3) 
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   appears to relate to the coordinate time interval     . 
The coordinate time interval    follows from 

 

           
                     

 

                  
                   

 

  is the coordinate time. It is measured at the location of the ob-

server.  

 

The infinitesimal progression interval    is a model invariant of 

the HBM. The infinitesimal spacetime interval    is a physical in-

variant. For that reason the infinitesimal spacetime interval    is 

used for the definition of the local metric tensor. 

 

By using the spacetime interval for defining the metric, the Pa-

lestra becomes a pseudo-Riemannian manifold with a Minkowski 

signature.  

When instead the coordinate time interval is used as the control-

ling interval for the metric, the Palestra is a Riemannian manifold 

with an Euclidean signature. The coordinate time interval is not a 

physical invariant. 

 

So    of formula (1) is related wit     .   is the coordinate time. 

It is measured at the location of the observer.  

In his version of formula (1), Mendel Sachs uses the proper time 

interval instead of the coordinate time interval. 

 

(4) 

(5) 
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The spacetime interval is a measure which is independent from 

the observer. The corresponding Lie group is the Einstein group152. 

The Einstein group relates to a 1+3D pseudo Riemannian space 

with Minkowski signature. 

The Einstein group does not contain any discrete transfor-

mations, such as the Poincare group does. With other words, the 

spacetime interval corresponds with the Einstein group, rather than 

with the Poincare group and the metric tensor has 16 components, 

instead of 10. 

 

The electromagnetic field components of the metric tensor are 

given by: 

 

     
 

 
  (         )  

 

 
     (    ) 

 

R is the scalar curvature. Q is the magnetic flux. 

This formula defines 6 of the 16 components of the metric ten-

sor.  

 

  

                                                           
152 http://en.wikipedia.org/wiki/Einstein_group#The_Einstein_group 

See: Symmetry in electrodynamics; M. Sachs 

(6) 

http://en.wikipedia.org/wiki/Einstein_group#The_Einstein_group
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16 The universe of items 

All particles have properties. Some of these properties expose as 

sources of corresponding fields. Via superposition these fields in-

teract. Long range fields such as the gravitation field have universe 

wide effects. 

16.1 Inertia 

The influence of items in universe may decrease with distance 

according to some function  ( ) of the distance  153. However the 

number of contributing items increases with the distance. Depend-

ing on function  ( ) the most probable result is that the strongest 

influence comes from the cooperative activity of the most distant 

items. Due to the enormous number of items in the universe, any 

variation of the influences of the distant items averages away. This 

also holds for the density distribution of the items. So there exists a 

fairly uniform background influence caused by the universe of 

items. What will happen, can be deduced from an equivalent of 

Dennis Sciama’s analysis154155156. We will take his analysis as a 

guide. Sciama’s analysis uses a different setting: the (observed) 3D 

space and coordinate time and Sciama applies Maxwell field theo-

ry. We use the coordinate space defined by an appropriate coordi-

nate operator that resides in the Gelfand triple of the separable Hil-

bert space and the progression parameter   that relates to the 

progression step counter as our setting. A location in this coordinate 

                                                           
153 http://en.wikipedia.org/wiki/Bertrand's_theorem and Role of the par-

ticle locator operator 
154 http://arxiv.org/abs/physics/0609026v4.pdf  
155 http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 
156http://rmp.aps.org/abstract/RMP/v36/i1/p463_1   

http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
http://en.wikipedia.org/wiki/Bertrand's_theorem
http://arxiv.org/abs/physics/0609026v4.pdf
http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
http://rmp.aps.org/abstract/RMP/v36/i1/p463_1


315 

space represents a location on the unit sphere of Gelfand triple. 

This last location is taken by the eigenvector that corresponds to the 

first location.  

As stated before, the unit sphere of Gelfand triple is an affine 

space. This means that we must treat position as relative data. With 

other words, the eigenspace of the coordinate operator has no abso-

lute origin. Instead of Sciama’s usage of Maxwell fields we will use 

quaternionic field theory that is applied to quaternionic probability 

amplitude distributions (QPAD’s). 

 

We may specify a QPAD for usage in a continuity equation. In 

that case we specify in fact the combination of a charge density dis-

tribution and a current density distribution. As long as the charges 

and the currents stay static, the QPAD is a static object. 

In the continuity equation we consider the influence of the 

QPAD on the whole universe. Here we consider the influence of 

the universe on a local charge or current. For this purpose we can 

use similar QPAD’s and volume integrals! 

 

At large distances, the density   of the contributing items can be 

considered to be uniformly distributed. Also any variance in 

strength other than the dependence on   becomes negligible be-

cause the differences between functions { ( )} average away. We 

take the average of the strength of { ( )} as the significant parame-

ter. We combine it with ρ. Therefore the average of ρ can be taken 

out of the integral. 

 

 

The total potential   at the location of the influenced subject 

is157 

                                                           
157 http://en.wikipedia.org/wiki/Newtonian_potential 

http://en.wikipedia.org/wiki/Newtonian_potential
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    ∫
 

 
  

 

    ∫
  

  
        

 

What we have here is the reverse of the definition of the poten-

tial that goes together with a charge distribution.  

The integral is taken over the coordinate space volume  . Indi-

rectly, the integral is taken over the unit sphere of the Gelfand tri-

ple. This is an affine space. The parameter   is the length of the 

vector from the actor to the location of the subject. The considered 

subject is located somewhere in the affine coordinate space. All 

other subjects have positions relative to that considered subject. 

Thus, apart from its dependence on the average value of ρ, Φ is a 

huge constant. Sciama relates Φ to the gravitational constant  . 

 

    
 

 ⁄  

 

As a consequence we can consider the universe as a very large 

rigid body. If nothing else happens then all influences compensate 

each other. 

 

In contrast to Sciama, we use imaginary quaternions rather than 

3D vectors. This also avoids the distracting factor i. 

 

If the considered subject moves relative to the universe with a 

uniform speed v, then a vector potential A is generated. 

 

  =  ∫
   

   
  

 

 

 

(1) 

(2

) 
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Both ρ and v are independent of r. The product     represents a 

current. Together with the constant c they can be taken out of the 

integral. Thus 

 

A = Φ·v/c 

 

The notions of charge and current correspond to equivalent 
notions in Noether’s theorem158. Here we talk about inertia. Thus 
charge may symbolize mass. Or even better; it symbolizes the 
coupling factor that plays the role of mass. 

 

The progression parameter t plays the role of “time”. Be aware, 

in our setting it is the progression parameter, which is not the usual 

notion of time. 

 

According to the Helmholtz theorem the field that is derived 

from the above potential can be split into a divergence free part and 

a rotation free part. The Helmholtz decomposition theorem only 

concerns the static versions of the derived field. It is related to the 

fact that the Fourier transform of a vector field can be split in a lon-

gitudinal and a transversal version. A corresponding split of the 

multi-dimensional Dirac delta function in a longitudinal and a 

transversal version exists as well. 

 

According to Maxwell field theory as well as according to qua-

ternionic field theory, a variation of   goes together with a variation 

of A. On its turn this goes together with a non-zero field  ̇(   ) 
which is a dynamical part of the QPAD. Thus, with varying   the 

QPAD is no longer static.159 

                                                           
158 http://en.wikipedia.org/wiki/Noether%27s_theorem  
159 See Differentiation  

(3

) 

http://en.wikipedia.org/wiki/Noether%27s_theorem
http://en.wikipedia.org/wiki/Noether%27s_theorem
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Sciama uses a Maxwell equation to explain the relation between 

∂v/∂t and  ̇(   ). Our setting differs, but the quaternionic field the-

ory delivers the same results. 

 

 (   )      (   )   
 

 
  ̇(   )  

 

 ̃(   )       ̃(   )   
 

 
   ̃(   )  

 

If we exclude the first term because it is negligible small, we 

get: 

 

 (   )    
 

  
 
  

 t
   

  

 t
 

 

Remark: As soon as we turn to the dynamic version (4) an extra 

component  ̇ of field E appears that corresponds to acceleration 

∂v/∂t.160  

 

As already claimed, in our setting the component    of the field 

E is negligible. With respect to this component the items compen-

sate each other’s influence. This means that if the influenced sub-

ject moves with uniform speed v, then E ≈ 0. However, a vector po-

tential A is present due to the movement of the considered item. 

Like   and   ,   and   together form a QPAD. Any acceleration 

of the considered item goes together with an extra non-zero E field. 

In this way the universe of items causes inertia in the form of a 

                                                           
160 See http://www.plasma.uu.se/CED/Book; formula 3.25 or 

Appendix; Maxwell equations 

(4) 

(5) 

(6) 

http://www.plasma.uu.se/CED/Book
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force that acts upon the accelerating item’s charge. The item is the 

carrier of the charge  . 
 

The situation in curved space differs. When the path of the item 

coincides with a geodesic, then it can be travelled free of extra gen-

erated fields. Thus, a uniform movement along the geodesic does 

not on itself generate a reaction of the universe of items. Any al-

teration of that uniform movement will go together with the exist-

ence of an extra field. The physical name for this reaction is action. 

It usually gets the symbol S.  

 

On the other hand, as we see from inertia, any field change goes 

together with a corresponding acceleration. Uniform movements do 

cause displacement of charges. In a curved environment it changes 

the configuration of the QPAD. Thus, in that case, even an original-

ly static QPAD may be affected.  

 

We may reverse the conclusion of the analysis:  

An extra field component goes together with an acceleration 

of the local item. 

The acceleration can be seen as the consequence of a local cur-

vature and vice versa. Thus, the extra field goes together with a lo-

cal curvature. 

 

It must be noticed that the original analysis of Sciama uses ob-

servable position space rather coordinate space and it uses a differ-

ent notion of time. However, the general conclusion stays the same. 

Sciama’s analysis is criticized because it uses infinite speed of in-

formation transfer. Since we do not work in observable position 

space, we do not encounter coordinate time. So for the setting of 

our analysis, this criticism is misplaced. Most part of the story 

plays in a stationary QPAD condition. As long as the movement 
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stays uniform, the QPAD is static. Any acceleration deviates from 

this stationary condition. This deviation goes together with an extra 

field component and it goes together with a local curvature. 

 

Coordinate time161 relates to observations of position. It is a local 

player in the game, where the progression parameter is a global 

player. 

 

The situation with electromagnetic fields is different, because 

with this field positive and negative charges compensate each oth-

er’s long range influence. For that reason there exists no electro-

magnetic background influence. The masses of the gravitational 

and inertial fields only compensate each other’s long range influ-

ences through geometrical circumstances. Still in combination, they 

create gigantic potentials. 

 

The particles outside the information horizons also contribute to 

the inertia. 

 

Thus when through uniform movement the local field configura-

tion changes, then that change goes together with an acceleration of 

the local item. 

16.2 Nearby items 

Items that are located nearby have a different effect. In general 

their influence will not have its strength equal to the average 

strength. Further these items are not uniformly distributed. Still at 

macroscopic distances their influence depends on inter-distance as 

        . As a consequence their influences form a landscape of 

                                                           
161 Dynamics; Relativity 
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which the effects will become sensible in the action of the fields 

that surround the considered item. For observers, this landscape 

will form a curved action space. The considered item will try to fol-

low a geodesic through that curved space. 

16.3 Rotational inertia 

Besides linear inertia there exists rotational inertia. In a non-

rotating universe hold near the origin A = 0 and Φ = -c
2
/G. We 

choose units such that c=G=1. In a universe rotating slowly with 

angular speed ω hold 

 

Ax = ω·y 

 

Ay =  ω·x 

 

Az = 0 

 

    √  (   )   
 

A constant angular movement meets the fields that correspond to 

a centripetal force. 

 

The field E has the form 

 

    
   

√       
 

 

An added uniform speed v meets the fields corresponding to a 

Coriolis force.  

 

            

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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The forces are usually considered as fictitious but they are actu-

ally caused by inertia. Sciama treats them in section 5 of his paper. 

Like fields of linear inertia these rotation related fields correspond 

to actions of the manipulator. 

16.4 Computation of the background QPAD 

The same line of thinking that lead to the formula for the local 

potential in section 12.1-(1) can be applied to the computation of 

the QPAD that represents the local background field.  

 

The ensemble { ψ (    )} is distributed randomly over the cen-

ter points {  } in an affine parameter space. At a given point P in 

this space the superposition of all { ψ (   )} will be constructed. 

This superposition will be renormalized and then indicated by 

Φ(   ). 
Thus,  

 

∫|Φ(   )|      
 

 

 

In this superposition the largest contribution comes from the 

ψ (    ) for which the    is farthest from P. Further the directions 

of the imaginary part of Φ(   ).are reversed with respect to the di-

rections in the ψ (    ). 
Especially at long distances, all differences are smoothed away 

via an averaging process. 

 

The result is that for the average QPAD  (   ): 

(7) 

(1) 
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Φ(   ) =   (   ) 
 

We will interpret Φ(   ) as the background QPAD. 

Since we are talking about quaternionic distributions it is possi-

ble that every sign flavor has its own background QPAD. 

  

(2) 
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17 Path characteristics 

The Frenet-Serret frame is devised for describing curved paths 

of particles  

 

Let {αqt}t = α(q,t) describe a curved path consisting of infinites-

imal steps through a landscape {αq}q = α(q) of imaginary quaterni-

ons αqt, such that  || ̇( ( ))||      for all t.  

 

The 3D Frenet-Serret frame for the above path is given by: 

 

 ( ( ))    
  ( ( ))

  
  ( )   ̇( ) 

 

 ( )    || ̇( )|| 
 

 ( )   ( )     ̇( ) 
 

 ( )     ( )     ( ) 
 

|| ( )||    || ( )||    || ( )||      
 

 ( )  is the tantrix of curve α(q(t)) at instance t. 

 ( ) is the principal normal of curve α(q(t)) at instance t. It is 

only defined when κ(t) ≠ 0. 

 ( ) is the binormal of curve α(q(t)) at instance t. 

 ( ),  ( )  and  ( )  are imaginary quaternions. 

κ(t)  is the curvature of curve at α(q(t)) at instance t. 

r(t) = 1/ κ(t)  is the radius of curvature at instance t. 

τ(t) is the torsion of curve α(q(t)) at instance t.  

 

(1) 

(2) 

(3) 

(4) 

(5) 
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[

 ̇( )

 ̇( )

 ̇( )

]   [

  (t)  
  (t)  τ(t)

  τ(t)  
] [

 ( )
 ( )

 ( )
] 

 
The Frenet-Serret curves have particular characteristics. The 

path may be curved and curled. The path is completely determined 

by its tantrix, curvature and torsion given by functions of t. Each 

coordinate of the quaternionic function α(q(t)) has its own set of 

characteristics. This means that for a given quaternionic function 

these characteristics are quaternions rather than real numbers and 

they are all functions of parameter t. 

17.1 Path equations  

The path equations are given by 

 

 ̇( )   (t)   ( ) 
 

 ̇( )    (t)   ( )  τ(t)   ( )

   (t)   ( )  τ(t)   ( )   ( ) 
 

 ̇( )   τ(t)   ( )   ( )   ̇( )   ̇( )   ( ) 
 

 τ(t)   ( )   ( ) 

17.2 Curve length 

The curve length  (   ) is defined by: 

 

 (   )   ∫ | ̇( ( ))|
   

   

   

 

(6) 

(1) 

(2) 

(3) 

(1) 
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The integration over the square of the modulus delivers the ac-

tion S of the curve. 

 

 (   )   ∫ | ̇( ( ))| 
   

   

   

17.3 Reparameterization 

The path characteristics κ(t) and τ(t) together with the curve 

length and the curve action are independent of any reparameteriza-

tion  ( ) of the progression parameter t. 

A natural reparameterization is given by  ( )   (    ). 

This turns the curve  ( (t)) into a natural curve  ( (s)): 

 

 ( (s))   ( (t)) 

 

Curves on a surface which minimize length between the end-

points are called geodesics. 

The natural curve corresponds to a geodesic162. 

The consequence is that in three-dimensional space the corre-

sponding movement obeys the geodesic equation163. The Lagrangi-

an is an equivalent of this equation.  

17.4 Non unity path 

Instead of the unity sped path  (   ) we use a vector function 

 (   ). The function  (   ) is supposed to be regular 

. 

 ( )   
 ̇(   )

‖ ̇(   )‖
  

                                                           
162 http://en.wikipedia.org/wiki/Geodesic 
163 Euler Lagrange equations 

(2) 

(1) 

(1) 

http://en.wikipedia.org/wiki/Geodesic
http://en.wikipedia.org/wiki/Geodesic
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 ( )   
 ̇(   )  ̈(   )

‖ ̇(   )  ̈(   )‖
  

 

 ( )   ( )   ( ) 
 

 (t)  
‖ ̇(   )   ̈(   )‖

‖ ̇(   )‖
  

 

τ(t)  
[ ̇(   )  ̈(   )  ⃛(   )]

‖ ̇(   )   ̈(   )‖
  

 

 
〈 ̇(   )   ̈(   )  ⃛(   )〉

‖ ̇(   )   ̈(   )‖
  

 

where 

 

[     ]  〈     〉 
 

 

(2) 

(3) 

(4) 

(5) 

(6) 
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17.5 Geodesic curvature  

Let C be a curve on a surface S. The geodesic curvature 

   of C at a given point P is defined as the curvature, at 

P, of the orthogonal projection of C onto the plane Q 

tangent to S at point P. See Fig. 3, where C* is the pro-

jection of C onto the tangent plane Q. The geodesic cur-

vature of C at P is defined then as the curvature of C* at 

P164. 

The total curvature   is composed of the geodesic curva-

ture    and the normal curvature   .  

 

             ‖  ‖ 

 

                                                           
164 See: http://www.solitaryroad.com/c335.html  

(1) 

http://www.solitaryroad.com/c335.html
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 ( )   ( )   ( ) 
 

   is directed along  ( ) . 

 

   and    can be expressed in Christoffel symbols 

17.6 Geodesic equations 

 

 ( )    ( ( ( )  ( ( ))   (   ) 
 

 ( ) is the arc length. From here we interpret   ̇( ) as 

 

  ̇( )   
  ( )

  
   

 

                
 

(2) 

(1) 

(2) 

(3) 
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  ̇( )     

 

  ̈( )    ̇             

 

   〈  ̈  〉 
 

   〈  ̈  〉 

 

 ( )    ( ( )  ( )) 
 

    ̇( )  
  

  
( ( )  ( )) ̇( )  

  

  
( ( )  ( )) ̇( ) 

 

  ̈  (
   

   
 ̇  
   

    
 ̇)  ̇  

  

  
 ̈ 

 

 (
   

    
 ̇  
   

   
 ̇

̇
)  ̇  

  

  
 ̈ 

 

 
   

   
 ̇   

   

    
 ̇ ̇  
   

   
 ̇  
  

  
 ̈  
  

  
 ̈ 

 

  ̇  (   
 
  

  
    
 
  

  
     ) 

 

    ̇ ̇  (   
 
  

  
    
 
  

  
     ) 

 

  ̇  (   
 
  

  
    
 
  

  
     )   ̈

  

  
  ̈
  

  
 

 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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 ( ̇     
     ̇ ̇    

   ̇     
   ̈)

  

  
 

 

 ( ̇    
     ̇ ̇    

   ̇     
   ̈)

  

  
 

 

+( ̇         ̇ ̇      ̇
     )  

 

 {[ ̇ ̇] [
   
    

 

   
     

 ] [
 ̇
 ̇
]   ̈}

  

  
 

 

 {[ ̇ ̇] [
   
    

 

   
     

 ] [
 ̇
 ̇
]   ̈}

  

  
 

 

+[ ̇ ̇] [
      
       

] [
 ̇
 ̇
]   

 

The first two terms form the tangential component and the third 

term is the normal component. 

 

   [ ̇ ̇] [
      
       

] [
 ̇
 ̇
] 

 

In geodesic curves the tangential components are zero (    ) 

From this condition follow the geodesic equations: 

 

 ̇     
     ̇ ̇    

   ̇     
   ̈    

 

 ̇    
     ̇ ̇    

   ̇     
   ̈    

  

(11) 

(12) 
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18 Metric tensor field 

The metric tensor is an example of a tensor field. This means 

that relative to a locally non-affected coordinate system165 on the 

manifold, a metric tensor takes on the form of a symmetric matrix 

whose entries transform covariantly under changes to the coordi-

nate system. Thus a metric tensor is a covariant symmetric ten-

sor166. From the coordinate-independent point of view, a metric ten-

sor is defined to be a non-degenerate symmetric bilinear form167 on 

each tangent space that varies smoothly from point to point. 

18.1 Curved path 

In a Riemannian manifold168 M with metric tensor169  , the 

length of a continuously differentiable curve   [   ]    is de-

fined by 

 

 ( )  ∫ √  ( )( ̇( )  ̇( ))   
 

 

 

The distance  (   ) between two points   and   of   is defined 

as the infimum170 of the length taken over all continuous, piecewise 

continuously differentiable curves   [   ]    such that  ( )  
  and  ( )   . With this definition of distance, geodesics in a 

                                                           
165 http://en.wikipedia.org/wiki/Local_coordinate_system  
166 http://en.wikipedia.org/wiki/Symmetric_tensor  
167 http://en.wikipedia.org/wiki/Symmetric_bilinear_form  
168 http://en.wikipedia.org/wiki/Riemannian_manifold  
169 http://en.wikipedia.org/wiki/Metric_tensor  
170 http://en.wikipedia.org/wiki/Infimum  

(1) 

http://en.wikipedia.org/wiki/Riemannian_manifold
http://en.wikipedia.org/wiki/Metric_tensor
http://en.wikipedia.org/wiki/Infimum
http://en.wikipedia.org/wiki/Local_coordinate_system
http://en.wikipedia.org/wiki/Symmetric_tensor
http://en.wikipedia.org/wiki/Symmetric_bilinear_form
http://en.wikipedia.org/wiki/Riemannian_manifold
http://en.wikipedia.org/wiki/Metric_tensor
http://en.wikipedia.org/wiki/Infimum
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Riemannian manifold are then the locally distance-minimizing 

paths, in the above sense. 

The minimizing curves of L in a small enough open set171 of M 

can be obtained by techniques of calculus of variations172. Typical-

ly, one introduces the following action173 or energy functional174 

 

 ( )   ∫   ( )( ̇( )  ̇( ))   
 

 

 

 

It is then enough to minimize the functional E, owing to the 

Cauchy–Schwarz inequality175 

 

 ( )   (   )  ( ) 
 

with equality if and only if |     | is constant. 

The Euler–Lagrange176 equations of motion for the functional   

are then given in local coordinates by 

 

    

   
      

  
   

  
 
   

  
   

 

                                                           
171 http://en.wikipedia.org/wiki/Open_set  
172 http://en.wikipedia.org/wiki/Calculus_of_variations  
173 http://en.wikipedia.org/wiki/Action_(physics)  
174 http://en.wikipedia.org/wiki/Energy_functional  

175 
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequal

ity  
176 Appendix; Euler Langrange equations  

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Calculus_of_variations
http://en.wikipedia.org/wiki/Action_(physics)
http://en.wikipedia.org/wiki/Energy_functional
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Calculus_of_variations
http://en.wikipedia.org/wiki/Action_(physics)
http://en.wikipedia.org/wiki/Energy_functional
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
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where    
 are the Christoffel symbols177 of the metric. This is the 

geodesic equation. 

18.2 Calculus of variations 

Techniques of the classical calculus of variations178 can be ap-

plied to examine the energy functional E. The first variation179 of 

energy is defined in local coordinates by 

 

  ( )( )  
 

  
|
   
 (     ) 

 

The critical points180 of the first variation are precisely the geo-

desics. The second variation is defined by 

 

   ( )(   )  
  

   
|
   

 (        ) 

 

In an appropriate sense, zeros of the second variation along a 

geodesic γ arise along Jacobi fields181. Jacobi fields are thus regard-

ed as variations through geodesics. 

By applying variational techniques from classical mechanics182, 

one can also regard geodesics as Hamiltonian flows183. They are so-

                                                           
177 Metric tensor field; Christoffel symbols 
178 http://en.wikipedia.org/wiki/Calculus_of_variations  
179 http://en.wikipedia.org/wiki/First_variation  
180 http://en.wikipedia.org/wiki/Critical_point_(mathematics)  
181 http://en.wikipedia.org/wiki/Jacobi_field  
182 http://en.wikipedia.org/wiki/Classical_mechanics  

183 
http://en.wikipedia.org/wiki/Geodesics_as_Hamiltonian_flows  

(1) 

(2) 

http://en.wikipedia.org/wiki/Calculus_of_variations
http://en.wikipedia.org/wiki/First_variation
http://en.wikipedia.org/wiki/Critical_point_(mathematics)
http://en.wikipedia.org/wiki/Jacobi_field
http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wikipedia.org/wiki/Geodesics_as_Hamiltonian_flows
http://en.wikipedia.org/wiki/Calculus_of_variations
http://en.wikipedia.org/wiki/First_variation
http://en.wikipedia.org/wiki/Critical_point_(mathematics)
http://en.wikipedia.org/wiki/Jacobi_field
http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wikipedia.org/wiki/Geodesics_as_Hamiltonian_flows
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lutions of the associated Hamilton–Jacobi equations184, with (pseu-

do-)Riemannian metric taken as Hamiltonian185. 

18.3 Affine geometry 

A geodesic on a smooth manifold M with an affine connection186 

  is defined as a curve  ( ) such that parallel transport187 along the 

curve preserves the tangent vector to the curve, so 

 

  ̇ ̇( )    

 

at each point along the curve, where  ̇ is the derivative with re-

spect to t. More precisely, in order to define the covariant derivative 

of  ̇ it is necessary first to extend  ̇ to a continuously differentiable 

imaginary Quaternionic distribution in an open set188. However, the 

resulting value of the equation is independent of the choice of ex-

tension. 

Using local coordinates189 on M, we can write the geodesic 

equation (using the summation convention190) as 

 

    

   
      

  
   

  
 
   

  
   

                                                           

184 
http://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equatio

n  
185 http://en.wikipedia.org/wiki/Hamiltonian_mechanics  
186 http://en.wikipedia.org/wiki/Affine_connection  
187 http://en.wikipedia.org/wiki/Parallel_transport  
188 http://en.wikipedia.org/wiki/Open_set  
189 http://en.wikipedia.org/wiki/Local_coordinates  
190 http://en.wikipedia.org/wiki/Summation_convention  

(1) 

(2) 

http://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation
http://en.wikipedia.org/wiki/Hamiltonian_mechanics
http://en.wikipedia.org/wiki/Affine_connection
http://en.wikipedia.org/wiki/Parallel_transport
http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Local_coordinates
http://en.wikipedia.org/wiki/Summation_convention
http://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation
http://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation
http://en.wikipedia.org/wiki/Hamiltonian_mechanics
http://en.wikipedia.org/wiki/Affine_connection
http://en.wikipedia.org/wiki/Parallel_transport
http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Local_coordinates
http://en.wikipedia.org/wiki/Summation_convention
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where x
μ
(t) are the coordinates of the curve  ( ) and    

  are the 

Christoffel symbols191 of the connection  . This is just an ordinary 

differential equation for the coordinates. It has a unique solution, 

given an initial position and an initial velocity.  

From the point of view of classical mechanics, geodesics can be 

thought of as trajectories of free particles in a manifold. Indeed, the 

equation   ̇ ̇( )    means that the acceleration of the curve has 

no components in the direction of the surface (and therefore it is 

perpendicular to the tangent plane of the surface at each point of the 

curve). So, the motion is completely determined by the bending of 

the surface. This is also the idea of the general relativity where par-

ticles move on geodesics and the bending is caused by the gravity. 

18.4 Christoffel symbols 

If x
i
, i = 1,2,...,n, is a local coordinate system on a manifold M, 

then the tangent vectors 

 

     
 

   
             

 

define a basis of the tangent space of M at each point. The Chris-

toffel symbols    
  are defined as the unique coefficients such that 

the equation 

 

           
     

 

                                                           
191 http://en.wikipedia.org/wiki/Christoffel_symbol  

(1) 

(2) 

http://en.wikipedia.org/wiki/Christoffel_symbol
http://en.wikipedia.org/wiki/Christoffel_symbol
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holds, where    is the Levi-Civita connection192 on M taken in 

the coordinate direction   . 

The Christoffel symbols can be derived from the vanishing of 

the covariant derivative of the metric tensor gik: 

 

            
    

   
        

 
          

 
   

 

By permuting the indices, and re-summing, one can solve ex-

plicitly for the Christoffel symbols as a function of the metric ten-

sor: 

 

   
 
         (

    

   
   
    

   
   
    
   
)  

 

where the matrix (   ) is an inverse of the matrix (   ), defined 

as (using the Kronecker delta, and Einstein notation for summation)  

 

          
  

 

Although the Christoffel symbols are written in the same nota-

tion as tensors with index notation, they are not tensors, since they 

do not transform like tensors under a change of coordinates. 

Under a change of variable from (x
1
, …., x

n
) to (y

1
, …., y

n
), vec-

tors transform as 

 

 

   
   
   

   
 
 

   
 

 

                                                           
192 http://en.wikipedia.org/wiki/Levi-Civita_connection  

(3) 

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Levi-Civita_connection
http://en.wikipedia.org/wiki/Levi-Civita_connection
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and so 

 

   
   
   

   
 
   

   
    
  
   

   
 
   

   
 
    

      
 

 

where the underline denotes the Christoffel symbols in the y co-

ordinate frame. Note that the Christoffel symbol does not transform 

as a tensor, but rather as an object in the jet bundle. 

At each point, there exist coordinate systems in which the Chris-

toffel symbols vanish at the point. These are called (geodesic) nor-

mal coordinates, and are often used in Riemannian geometry. 

The Christoffel symbols are most typically defined in a coordi-

nate basis, which is the convention followed here. However, the 

Christoffel symbols can also be defined in an arbitrary basis of tan-

gent vectors    by 

 

           
     

18.5 Local metric equation 

The local metric equation relates the local value of the metric 

tensor field to the influence of the properties of the local particles 

on the local curvature.  

 

In order to do this it requires a non-affected coordinate system 

and a way to qualify the influence that the local value of the particle 

properties have on the resulting curved coordinate system.  

 

For example the Kerr Newman metric equation uses the per cat-

egory summed property values of the local coupling factors, the 

(7) 

(8) 
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electric charges of the local particles and the angular momenta of 

the local particles in order to relate these to the local curvature193.  

18.5.1 Kerr-Newman metric equation 

The Kerr–Newman metric equation describes the geometry of 

spacetime in the vicinity of a rotating mass M with charge Q. The 

formula for this metric depends upon what coordinates or coordi-

nate conditions are selected.  

 

It uses three local properties. These properties are: 

 

 The coupling factor   

 The electric charge   

 The angular momentum   
 

The angular momentum   includes the spin  . 
 

In most cases, the simplest interpretation of the Kerr-Newman 

metric can be taken on the surface of a sphere that has a selected 

radius  . This metric uses the sum of a category of properties that 

are collected within the observed sphere. However, the summation 

produces different centers of activity for different property catego-

ries. Thus, these centers need not be at the same location. However, 

for large enough selected radius   and applied to black holes or sin-

gle particles, these centers coincide. 

The formula uses three characteristic radii, whose prominence 

usually differs with the content of the investigated sphere. 

 

                                                           
193 See next part. 
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The metric uses a non-curved coordinate system to start with. 

Several coordinate systems can be used. The most common coordi-

nate systems for a non-curved three dimensional space are: 

 

 Cartesian coordinates 

 Spherical coordinates 
 

Alternatives for spherical coordinates are: 

 

 Schwarzschild coordinates194 

 Kruskal-Szekeres coordinates195 

 Lemaitre coordinates196 

 Eddington–Finkelstein coordinates197 
 

The advantage of the alternative coordinates is that they avoid 

unnecessary singularities.  

18.5.1.1 Spherical coordinates 

The line element dτ in spherical coordinates is given by: 

 

        (
   

 
    )   

 (           ( )   ) 
 

  
 

                                                           
194 http://en.wikipedia.org/wiki/Schwarzschild_coordinates  
195 http://en.wikipedia.org/wiki/Kruskal-Szekeres_coordinates  
196 http://en.wikipedia.org/wiki/Lemaitre_coordinates  

197 
http://en.wikipedia.org/wiki/Eddington%E2%80%93Finkelstein_co

ordinates  

(1) 

http://en.wikipedia.org/wiki/Schwarzschild_coordinates
http://en.wikipedia.org/wiki/Kruskal-Szekeres_coordinates
http://en.wikipedia.org/wiki/Lemaitre_coordinates
http://en.wikipedia.org/wiki/Eddington%E2%80%93Finkelstein_coordinates
http://en.wikipedia.org/wiki/Eddington%E2%80%93Finkelstein_coordinates
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 ((     )          )
 
 
    ( ) 

  
 

 

where the coordinates r   and ϕ are the parameters of the stand-

ard spherical coordinate system. The length-scales α   and   have 

been introduced for brevity. 

 

  
 

   
 

 

              ( ) 
 

            
    

  

 

   is the Schwarzschild radius198 (in meters) of the massive body, 

which is related to its mass   by 

 

   
   

  
 

 

where   is the gravitational constant199. In case of a single en-

capsulated elementary particle,   stands for the coupling constant 

m. 

 

Compare this with the Planck length, l   √    c
  

The Schwarzschild radius is radius of a spherical geo-cavity 

with mass  . The escape speed from the surface of this geo-cavity 

equals the speed of light. Once a stellar remnant collapses within 

                                                           
198 http://en.wikipedia.org/wiki/Schwarzschild_radius  
199 http://en.wikipedia.org/wiki/Gravitational_constant  

(2) 

(3 

(4) 

(5) 

http://en.wikipedia.org/wiki/Schwarzschild_radius
http://en.wikipedia.org/wiki/Gravitational_constant
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this radius, light cannot escape and the object is no longer visible. It 

is a characteristic radius associated with every quantity of mass. 

 

r  is a length-scale corresponding to the electric charge Q of the 

mass 

 

  
  
   

     
 
 

 

where 
 

    
 is Coulomb's force constant200. 

 

Next for simplicity we use the dimension adapted parameter m. 

The radius where the ergo region201 of a black hole starts can be 

specified by: 

 

        √       
           ( ) 

 

And the radius of the horizon by 

 

        √       
        

 

where  

 

        
 

                                                           
200 http://en.wikipedia.org/wiki/Coulomb%27s_law  
201 http://en.wikipedia.org/wiki/Black_hole#Ergosphere  

(6) 

(7) 

8) 

9) 

http://en.wikipedia.org/wiki/Coulomb%27s_law
http://en.wikipedia.org/wiki/Black_hole#Ergosphere
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is the dimensionless spin parameter, q is the electric charge and 

m is the mass of the particle that is set by the coupling factors202. 

Between these radii lays the ergo-region. That is the place where 

for any item it is impossible to stand still. This is the result of a 

process known as frame-dragging; general relativity predicts that 

any rotating mass will tend to slightly "drag" along the spacetime 

immediately surrounding it. Any object near the rotating mass will 

tend to start moving in the direction of rotation.  

The region where the considered item can be considered as a 

black hole is defined by: 

 

     
      

 

18.5.1.2 Kerr-Newman limit 

The lowest mass 𝔐 where a horizon exists is set by 

 

𝔐 ≡   √  
   (    )  

 

Where   is the elementary spin s. 

18.5.1.3 Cartesian coordinates 

The Kerr Newman metric can be expressed in "Kerr Schild" 
form, using a particular set of Cartesian coordinates  

 
                

 

                                                           
202 .Misner, C. W., Thorne, K. S. and Wheeler, J. A., Gravitation, 

W. H. Freeman and Co., 1973. (Box 33.2) 

(1) 

http://en.wikipedia.org/wiki/Cartesian_coordinate_system
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[        ] 

 

   
       

     
 

 

   
       

     
 

 
     

 
Notice that   is a unit vector. Here   is the constant mass of the 

spinning object,   is the constant charge of the spinning object,   is 
the Minkowski tensor, and   is a constant rotational parameter of 

the spinning object. It is understood that the vector   is directed 

along the positive z-axis. The quantity   is not the radius, but rather 

is implicitly defined like this: 

 

  
     

     
 
  

  
 

 

Notice that the quantity r becomes the usual radius   

√         when the rotational parameter   approaches zero. 

In this form of solution, units are selected so that the speed of light 

is unity (   ).  
 

In order to provide a complete solution of the Einstein–Maxwell 

Equations, the Kerr–Newman solution not only includes a formula 

for the metric tensor, but also a formula for the electromagnetic po-

tential:  

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Unit_vector
http://en.wikipedia.org/wiki/Minkowski_space#Standard_basis
http://en.wikipedia.org/wiki/Einstein%27s_field_equation#Einstein.E2.80.93Maxwell_equations
http://en.wikipedia.org/wiki/Einstein%27s_field_equation#Einstein.E2.80.93Maxwell_equations
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At large distances from the source (R>>a), these equations re-

duce to the Reissner-Nordstrom metric203 with: 

 

   (           ) 

 

The static electric and magnetic fields are derived from the vec-

tor potential and the scalar potential like this: 

 

      

 

      

18.5.2 Schwarzschild metric 

18.5.2.1 Schwarzschild coordinates 

Specifying a metric tensor204 is part of the definition of any Lo-

rentzian manifold205. The simplest way to define this tensor is to 

define it in compatible local coordinate charts and verify that the 

same tensor is defined on the overlaps of the domains of the charts. 

In this article, we will only attempt to define the metric tensor in 

the domain of a single chart. 

                                                           

203 
http://en.wikipedia.org/wiki/Reissner%E2%80%93Nordstr%C3%B

6m_metric  
204 http://en.wikipedia.org/wiki/Metric_tensor  
205 http://en.wikipedia.org/wiki/Lorentzian_manifold  

(8) 

(9) 

(10) 

http://en.wikipedia.org/wiki/Reissner-Nordstrom_metric
http://en.wikipedia.org/wiki/Reissner%E2%80%93Nordstr%C3%B6m_metric
http://en.wikipedia.org/wiki/Reissner%E2%80%93Nordstr%C3%B6m_metric
http://en.wikipedia.org/wiki/Metric_tensor
http://en.wikipedia.org/wiki/Lorentzian_manifold


346  

In a Schwarzschild chart206 (on a static spherically symmetric 

spacetime), the line element ds takes the form 

 

ds   (f(r))
 
dt  (g(r))

 
dr  r (d   sin ( ) dϕ ) 

 

   t     r  r  r           ϕ    

 

In the Schwarzschild chart, the surfaces           appear as 

round spheres (when we plot loci in polar spherical fashion), and 

from the form of the line element, we see that the metric restricted 

to any of these surfaces is 

 

d  r 
 (d   sin ( ) dϕ )          ϕ    

 

That is, these nested coordinate spheres do in fact represent ge-

ometric spheres with 

surface area 

 

      
  

 

And Gaussian curvature 

      
  

 

That is, they are geometric round spheres. Moreover, the angular 

coordinates     are exactly the usual polar spherical angular coor-

dinates:   is sometimes called the colatitude and   is usually 
called the longitude. This is essentially the defining geometric 
feature of the Schwarzschild chart. 

 

                                                           
206 http://casa.colorado.edu/~ajsh/schwp.html 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Locus_(mathematics)
http://en.wikipedia.org/wiki/Surface_area
http://en.wikipedia.org/wiki/Gaussian_curvature
http://casa.colorado.edu/~ajsh/schwp.html
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With respect to the Schwarzschild chart, the Lie algebra of Kill-

ing vector fields is generated by the time-like irrotational Killing 

vector field    and three space-like Killing vector fields 

   sin( )    cot( ) cos( )     cos( )     

cot( ) sin( )     

Here, saying that    is irrotational means that the vorticity tensor 

of the corresponding time-like congruence vanishes; thus, this Kill-

ing vector field is hyper-surface orthogonal. The fact that our 

spacetime admits an irrotational time-like Killing vector field is in 

fact the defining characteristic of a static spacetime. One immediate 

consequence is that the constant time coordinate surfaces        
form a family of (isometric) spatial hyper-slices. (This is not true 

for example in the Boyer-Lindquist chart for the exterior region of 

the Kerr vacuum, where the time-like coordinate vector is not hy-

per-surface orthogonal.) 

 

It may help to add that the four Killing fields given above, con-

sidered as abstract vector fields on our Lorentzian manifold, give 
the truest expression of both the symmetries of a static spheri-
cally symmetric spacetime, while the particular trigonometric 
form which they take in our chart is the truest expression of the 
meaning of the term Schwarzschild chart. In particular, the 
three spatial Killing vector fields have exactly the same form as 
the three non-translational Killing vector fields in a spherically 
symmetric chart on E3; that is, they exhibit the notion of arbi-
trary Euclidean rotation about the origin or spherical sym-
metry. 

However, note well: in general, the Schwarzschild radial co-
ordinate does not accurately represent radial distances, i.e. dis-
tances taken along the space-like geodesic congruence which 
arise as the integral curves of   . Rather, to find a suitable no-
tion of 'spatial distance' between two of our nested spheres, we 

http://en.wikipedia.org/wiki/Killing_vector_field
http://en.wikipedia.org/wiki/Killing_vector_field
http://en.wikipedia.org/wiki/Static_spacetime
http://en.wikipedia.org/wiki/Boyer-Lindquist_coordinates
http://en.wikipedia.org/wiki/Kerr_metric
http://en.wikipedia.org/wiki/Proper_length
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should integrate  ( )   along some coordinate ray from the 
origin: 

 

   ∫  ( )  
  

  

 

 
Similarly, we can regard each sphere as the locus of a spheri-

cal cloud of idealized observers, who must (in general) use 
rocket engines to accelerate radially outward in order to main-
tain their position. These are static observers, and they have 
world lines of form                     , which of course 
have the form of vertical coordinate lines in the Schwarzschild 
chart. 

In order to compute the proper time interval between two 
events on the world line of one of these observers, we must in-
tegrate  ( )   along the appropriate coordinate line: 

 

 τ  ∫ f(r)dt
  

  

 

18.5.2.2 Schwarzschild metric 

In Schwarzschild coordinates207, the Schwarzschild metric 
has the form: 

 

c  dτ  (  
r 
r
) c  dt  (  

r 
r
)
  

dr 

 r (d   sin ( ) dϕ ) 
 
where: 

                                                           
207 http://en.wikipedia.org/wiki/Schwarzschild_coordinates  

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Proper_time
http://en.wikipedia.org/wiki/World_line
http://en.wikipedia.org/wiki/Schwarzschild_coordinates
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   is the proper time (time measured by a clock moving 
with the particle) in seconds, 

   is the speed of light in meters per second, 
   is the time coordinate (measured by a stationary 

clock at infinity) in seconds, 
   is the radial coordinate (circumference of a circle 
centered on the star divided by   ) in meters  

   is the colatitude (angle from North) in radians, 
   is the longitude in radians, and 
    is the Schwarzschild radius (in meters) of the mas-

sive body. 

18.5.2.3 Lemaître coordinates 

In Schwarzschild coordinates the Schwarzschild metric has a 
singularity. Georges Lemaître was the first to show that this is 
not a real physical singularity but simply a manifestation of the 
fact that the static Schwarzschild coordinates cannot be real-
ized with material bodies inside the gravitational radius208. In-
deed inside the gravitational radius everything falls towards 
the center and it is impossible for a physical body to keep a 
constant radius. 

A transformation of the Schwarzschild coordinate system 
from {   } to the new coordinates {   }, 

 

      
√    

(  
  
 
)
    

 

                                                           
208 http://en.wikipedia.org/wiki/Lemaitre_coordinates  

(1) 

(2) 

http://en.wikipedia.org/wiki/Proper_time
http://en.wikipedia.org/wiki/Speed_of_light
http://en.wikipedia.org/wiki/Colatitude
http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Schwarzschild_radius
http://en.wikipedia.org/wiki/Lemaitre_coordinates
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√    

(  
  
 
)
    

 
leads to the Lemaître coordinate expression of the metric, 
 

        
  
 
      (    sin ( )    ) 

 
Where 
 

    
 [
  (   )

 
]

 

 

 
In Lemaître coordinates there is no singularity at the gravita-

tional radius, which instead corresponds to the point 
  (   )

 
 

  . However, there remains a genuine gravitational singularity 
at the centrum, where      , which cannot be removed by a 
coordinate change. 

The Lemaître coordinate system is synchronous, that is, the 
global time coordinate of the metric defines the proper time of 
co-moving observers. The radially falling bodies reach the grav-
itational radius and the center within finite proper time. 

Along the trajectory of a radial light ray, 
 

   (   √    )    

 
therefore no signal can escape from inside the Schwarzschild 

radius, where always        and the light rays emitted radial-
ly inwards and outwards both end up at the origin. 
  

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Gravitational_singularity
http://en.wikipedia.org/wiki/Synchronous_coordinates
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19 The action along the live path 

Where the Hamiltonian is derived from the balance equation, is 

the Lagrangian derived from the path equation. 

 

The integrated action Sab is performed over a distance along the 

action trail or equivalently over a period of coordination time 

 

        ∫    
    

 

 

              

 

    ∫      √    (
 

 
)
 

   
  

  

              
 

  ∫     
  

  

 

 

m is the mass of the considered item.  

v is the speed in Q space.  

  is the Lagrangian. 

 

The first line of this formula can be considered as an integral 

along the trail in coordinate space or equivalently over the trail in 

Hilbert space. The next lines concern integrals over the correspond-

ing path in observed space combined with coordinate time. It must 

be noticed that these spaces have different signature. 

 

          
  

  
 + matter terms 

 

(1) 

(2) 
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In general relativity, the first term generalizes (includes) both the 

classical kinetic energy and interaction with the Newtonian gravita-

tional potential. It becomes: 

 

     
  

  
      √      ̇    ̇  

 

    is the rank 2 symmetric metric tensor which is also the grav-

itational potential. Notice that a factor of c has been absorbed into 

the square root. 

The matter terms in the Lagrangian   differ from those in the in-

tegrated action Sab. 

 

               ∫        
 

 

 

 other matter terms 

 

The matter term in the Lagrangian due to the presence of an 

electromagnetic field is given by: 

 

          
  

  
     ̇     + other matter terms 

 

   is the electromagnetic 4-vector potential.  

19.1 Noether’s theorem 

When the Lagrangian does not vary with one or more of its parame-

ters, then this corresponds with a corresponding symmetry of the 

system. By Noether's theorem209, such symmetries of the system 

                                                           
209 http://en.wikipedia.org/wiki/Noether%27s_theorem  

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Noether%27s_theorem
http://en.wikipedia.org/wiki/Noether%27s_theorem
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correspond to conservation laws210. In particular, the invariance of 

the Lagrangian with respect to time τ implies the conservation of 

energy. 

By partial differentiation of the above Lagrangian, we find: 

   (τ    ̇)

   
  
  

   
 F  

 
   (τ    ̇)

  ̇ 
 m   ̇  p  

 

where the force is F = − U (the negative gradient of the potential, 

by definition of conservative force), and p is the momentum. By 

substituting these into the Euler–Lagrange equation, we obtain a 

system of second-order differential equations for the coordinates on 

the particle's trajectory, 

F  
d(m ̇ )

dt
 m    ̈  p ̇  

which is Newton's second law. 

  

                                                           
210 http://en.wikipedia.org/wiki/Conservation_law  

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Conservation_law
http://en.wikipedia.org/wiki/Conservation_law
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20 Euler Lagrange equations of field 

20.1 First order equations 

The Dirac Lagrangian density is 

 

    [  ( 
 

   
    )   ]  

 

The corresponding Euler-Lagrange equation 

 

[  ( 
 

   
    )   ]    

 

The Dirac 4-current is 

 

         

 

The density is the 0-component 

 

        
   

 

The Dirac Hamiltonian density is 

 

ℋ  
  

  ̇
 ̇      [  ( 

 

   
    )       ]  

 

ℋ    [ 〈      〉       ]  

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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The Dirac equation runs 

 

ℋ   [ 〈      〉       ]  

 

ℋ [
  
    
]  

 [ 〈      〉    ] [
  
    
]

  [
  
  
] [
  
    
] 

 

 [ 〈      〉    ] [
  
    
]   [

  
    
] 

 

ℋ    (        )      
 (     )       

 

ℋ    (       )      
 (    )       

 

The mass m couples    and   . The fact     decou-

ples    and   . 
 

The Dirac Hamiltonian density (6) as well as the Dirac 

Hamiltonian (7) do not contain a derivative of   with respect 

to time. 

 

Now, the form of an energy eigenfunction is 

 

 (   )   ( ) e p(   ) 
 

ℋ   [ 〈      〉    ]      

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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21 Lagrangians in quantum field theory 

21.1 Dirac Lagrangian 

The Lagrangian density for a Dirac field211 is:  

 

  
   

 
( ̅   

  

   
     

  ̅

   
)         ̅  

 

where   is a Dirac spinor212 (annihilation operator),  ̅ is its Di-

rac adjoint213 (creation operator) 

 

 ̅        

21.2 Quantum electrodynamic Lagrangian 

The Lagrangian density for quantum electro dynamics214 is: 

 

     
   

 
( ̅          

    ̅)      
   ̅  

 

   
    

   

 

where     is the electromagnetic tensor215, is the gauge covar-

iant derivative. 

 

                                                           
211 http://en.wikipedia.org/wiki/Fermionic_field#Dirac_fields  
212 http://en.wikipedia.org/wiki/Dirac_spinor  
213 http://en.wikipedia.org/wiki/Dirac_adjoint  
214 http://en.wikipedia.org/wiki/Quantum_electrodynamics  
215 http://en.wikipedia.org/wiki/Electromagnetic_tensor  

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Fermionic_field#Dirac_fields
http://en.wikipedia.org/wiki/Dirac_spinor
http://en.wikipedia.org/wiki/Dirac_adjoint
http://en.wikipedia.org/wiki/Dirac_adjoint
http://en.wikipedia.org/wiki/Quantum_electrodynamics
http://en.wikipedia.org/wiki/Electromagnetic_tensor
http://en.wikipedia.org/wiki/Fermionic_field#Dirac_fields
http://en.wikipedia.org/wiki/Dirac_spinor
http://en.wikipedia.org/wiki/Dirac_adjoint
http://en.wikipedia.org/wiki/Quantum_electrodynamics
http://en.wikipedia.org/wiki/Electromagnetic_tensor
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[
 
 
 
 
 
 
   

  
 
 
  

 
 
  
 

  
 

      

  

 
      

  
 
      ]

 
 
 
 
 
 
 

 

 

    
            

 

This is a Lorentz scalar. 

 

The equation of motion is  

 

            
 (     )  

 

The left-hand side is like the original Dirac equation and the 

right-hand side is the interaction with the electromagnetic field. 

 

   
     ̅      

 

Now, if we impose the Lorenz-Gauge condition, i.e., that the di-

vergence of the four potential vanishes then we get 

 

       ̅      

 

The d’Alembert operator   is defined as: 
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(6) 
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21.3 Quantum chromodynamic Lagrangian 

The Lagrangian density for quantum chromodynamics216: 

 

     
   

 
( ̅   

          
      ̅ )       

  ̅   

 
 

 
   
   
  

 

 

where is the QCD gauge covariant derivative, n = 1...6 

counts the quark types, and    
  is the gluon field strength tensor. 

22 Path of the quantum state function 

The path equation treats the path of a particle that moves with 

uniform speed along a curved path. Now let us investigate the path 

of a static QPAD. Any uniform movement with speed   will be rep-

resented by the currents in the static QPAD. 

Any deviation of that uniform speed will go together with the 

existence of an extra field. This deviation can be split in three parts.  

1. A deviation along the original direction.  

2. A deviation in a perpendicular direction that fol-

lows the curvature of the path. 

3. A deviation perpendicular to both the original 

path and the curvature deviation. 
When the QPAD follows a geodesic then the first deviation is zero. 

                                                           
216 http://en.wikipedia.org/wiki/Quantum_chromodynamics  

(1) 

http://en.wikipedia.org/wiki/Quantum_chromodynamics
http://en.wikipedia.org/wiki/Quantum_chromodynamics
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The second deviation  ̇ goes together with a curvature field and the 

third deviation  ̈ goes together with a torque field. 

These extra fields depend on the existence of inertia fields217, a sca-

lar potential field   and a vector potential field   

 

A = Φ·v/c 

 

          Φ  
 

 
 Φ  v̇  

 

The field Φ is considered to be rather static and    is consid-

ered to be small. 

 

F          
 

 
 Φ  v̈   ̇       

 

Via the equation 

 

     μ (    
  

 t
) 

 

Follows for the torque field 

 

F       
    μ  

  
 

 

Thus, even when the QPAD travels a geodesic, the curvature and 

the torque of the path go together with the existence of extra fields. 

                                                           
217 See The universe of items; Inertia 

(1) 

(2) 

(3) 

(4) 

(5) 
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field linear momentum 
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