Quasi-periodic solution of a spiral type
for photogravitational restricted 3-bodies problem

Sergey V. Ershkov,
Institute for Time Nature Explorations,
M.V. Lomonosov's Moscow State University,
Leninskie gory, 1-12, Moscow 119991, Russia
e-mail: sergej-ershkov@yandex.ru

Abstract: Here is presented a new type of exact solutions for photogravitational restricted 3-bodies problem (a case of spiral motion).

A key point is that we obtain the appropriate specific case of spiral motions from the Jacobian-type integral of motion for photogravitational restricted 3-bodies problem (when orbit of small 3-rd body is assumed to be like a spiral).

Besides, we should especially note that there is a proper restriction to the type of spiral orbital motion of small 3-rd body, which could be possible for choosing as the exact solution of equations for photogravitational restricted 3-bodies problem.

The main result, which should be outlined, is that in a case of quasi-planar orbital motion (of the small 3-rd body) the asymptotic expression for component z of motion is proved to be given by the proper elliptical integral.

Key Words: photogravitational restricted three body problem, Jacobian-type integral of motion, spiral motion
1. Introduction.

In this contribution, we present a new type of exact solutions for photogravitational restricted 3-bodies problem [1-3], the case of spiral motions.

According to the Bruns theorem [4], there is no other invariants except well-known 10 integrals for 3-bodies problem (including integral of energy, momentum, etc.). But in the case of restricted 3-bodies problem, there is no other invariants except only one, Jacobian-type integral of motion [5-6].

The main idea is to obtain from the Jacobian-type integral of motion the appropriate specific case of spiral motion for photogravitational restricted 3-bodies problem (when orbit of small 3-rd body is assumed to be like a spiral); besides, such a case of spiral motion should be adopted by the structure of the Jacobian-type integral of motion.

In addition we should emphasize the appropriate astrophysical application of the constructed (exact) solutions of a spiral motion: for example, we could consider the Sun-Jupiter system as primaries and assume that only the larger primary (Sun) radiates. Besides, we could consider a small objects such as meteoroids or small asteroids (about 10 cm to 10 km in diameter) as the small 3-rd body for such a case.

2. Equations of motion.

Let us consider the system of ODE for photogravitational restricted 3-bodies problem, at given initial conditions [2].

We consider three bodies of masses \(m_1, m_2 \) and \(m \) such that \(m_1 > m_2 \) and \(m \) is an infinitesimal mass. The two primaries \(m_1 \) and \(m_2 \) are sources of radiation; \(q_1 \) and \(q_2 \) are factors of the radiation effects of the two primaries respectively, \(\{q_1, q_2\} \in (-\infty, 1] \).

We assume that \(m_2 \) is an oblate spheroid. The effect of oblateness [7-8] is denoted by the factor \(A_2 \).
Let \(r_i \) \((i = 1, 2)\) be the distances between the centre of mass of the bodies \(m_1 \) and \(m_2 \) and the centre of mass of body \(m \). The unit of mass is chosen so that the sum of the masses of finite bodies is equal to 1.

We suppose that \(m_1 = 1 - \mu \) and \(m_2 = \mu \), where \(\mu \) is the ratio of the mass of the smaller primary to the total mass of the primaries and \(0 \leq \mu \leq 0.5 \). The unit of distance is taken as the distance between the primaries. The unit of time is chosen so that the gravitational constant is equal to 1.

The three dimensional restricted 3-bodies problem, with an oblate primary \(m_2 \) and both primaries radiating, could be presented in barycentric rotating co-ordinate system by the equations of motion below [7-8]:

\[
\begin{align*}
\ddot{x} - 2n \dot{y} &= \frac{\partial \Omega}{\partial x}, \\
\ddot{y} + 2n \dot{x} &= \frac{\partial \Omega}{\partial y}, \\
\ddot{z} &= \frac{\partial \Omega}{\partial z}, \\
\Omega &= \frac{n^2}{2} (x^2 + y^2) + \frac{q_1 (1 - \mu)}{r_1} + \frac{q_2 \mu}{r_2} \left[1 + \frac{A_2}{2r_2^2} \right] - \frac{3z^2}{r_2^2},
\end{align*}
\]

\(n^2 = 1 + \frac{3}{2} A_2 \), - where

\[A_2 = \frac{AE^2 - AP^2}{5R^2}, \]

is the angular velocity of the rotating coordinate system and \(A_2 \) - is the oblateness coefficient. Here
\[r_1^2 = (x + \mu)^2 + y^2 + z^2, \]

\[r_2^2 = (x - 1 + \mu)^2 + y^2 + z^2, \] - where \(AE \) is the equatorial radius, \(AP \) is the polar radius and \(R \) is the distance between primaries. Besides, we should note that

- are the distances of infinitesimal mass from the primaries.

We neglect the relativistic Poynting-Robertson effect [9-10] which may be treated as a perturbation for cosmic dust or for small particles (less than 1 cm in diameter), we neglect the Yarkovsky effect of non-gravitational nature [11-13], as well as we neglect the effect of variable masses of 3-bodies [14-15].

The possible ways of simplifying of equations (2.1):

- if we assume effect of oblateness is zero, \(A_2 = 0 \ (\sim n = 1) \), it means \(m_2 \) is non-oblate spheroid (we will consider only such a case below);
- if we assume \(q_1 = q_2 = 1 \), it means a case of restricted 3-bodies problem.

3. Exact solution (a case of spiral motion).

Regarding the orbit of small 3-rd body, let us assume such an orbit to be presented like a spiral (Pic.1).
Besides, let us remind that we could obtain from the equations of system (2.1) a Jacobian-type integral of motion [5-6]:

\[(\dot{x})^2 + (\dot{y})^2 + (\dot{z})^2 = 2\Omega (x, y, z) + C\] \hspace{1cm} (3.1)

- where \(C\) is so-called Jacobian constant.

As per assumption above, it means that components of solution \(\{x_i\} = \{x(t), y(t), z(t)\} \hspace{1cm} (i = 1, 2, 3)\) should be presented as below:

- where the angular velocity is chosen \(w = 1\). For example:

1) If \(x(t) = a^{-1}t + c, z(t) = b^{-1}t\) - we should obtain the spiral of screw line type,

2) If \(x(t) = a^{-1} \exp(b^{-1}t), z(t) = c^{-1}t\) - we should obtain the 3-D logarithmic spiral,

- here \(\{a,b,c\}\) are supposed to be the arbitrary positive real constants.
\((\dot{\xi}(t) \cos t - \dot{\xi}(t) \sin t)^2 + (\dot{\xi}(t) \sin t + \ddot{\xi}(t) \cos t)^2 + (\ddot{z})^2 = 2\Omega(x, y, z) + C\),

\[\Rightarrow \dot{\xi}^2(t) + \ddot{\xi}^2(t) + (\ddot{z})^2 = 2\Omega(x, y, z) + C\] \hspace{1cm} (3.2)

Thus if we substitute the representation above for the components of solution \{x_i\} = \{x(t), y(t), z(t)\} into the Equation (3.1), we should obtain the proper equation below

\[
\Omega(t) = \frac{\ddot{\xi}^2(t)}{2} + \frac{q_1(1 - \mu)}{r_1} + \frac{q_2 \mu}{r_2},
\] \hspace{1cm} (3.3)

\[r_1^2 = (\ddot{\xi}(t) \cos t + \mu)^2 + (\ddot{\xi}(t) \sin t)^2 + z(t)^2,\]

\[r_2^2 = (\ddot{\xi}(t) \cos t - 1 + \mu)^2 + (\ddot{\xi}(t) \sin t)^2 + z(t)^2.\]

- where the expression for \(\varpi(t)\) in (2.2) should be simplified in the case of non-oblateness \(A_2 = 0\) \((n = 1)\):

\[
\ddot{\xi}^2(t) + (\ddot{z})^2 = \frac{2q_1(1 - \mu)}{r_1} + \frac{2q_2 \mu}{r_2} + C
\] \hspace{1cm} (3.4)

\[r_1^2 = (\ddot{\xi}(t) \cos t + \mu)^2 + (\ddot{\xi}(t) \sin t)^2 + z(t)^2,\]

\[r_2^2 = (\ddot{\xi}(t) \cos t - 1 + \mu)^2 + (\ddot{\xi}(t) \sin t)^2 + z(t)^2.\]

So, taking into consideration the expression (3.3) for \(\varpi(t)\), we obtain from (3.2)

\[\frac{2q_1(1 - \mu)}{r_1} + \frac{2q_2 \mu}{r_2} + C \geq 0\]

Besides, we should note from (3.4) that the proper restriction below should be valid:

- here \(\{q_1, q_2\} = (-\infty, 1]\). There are two possibilities to solve the equation (3.4):
- 1) first, we assume \(z(t) \) to be given as a proper function of parameter \(t \), then
we should obtain a solution of ODE of the 1-st kind for \(\mu(t) \);

- 2) or the 2-nd, we assume \(\mu(t) \) to be given as a proper function of parameter \(t \),
then we should obtain a solution of ODE of the 1-st kind for \(z(t) \).

\[
(z)^2 = \frac{2 q_1 (1 - \mu)}{\sqrt{z(t)^2 + r_1^2(x,y)}} + \frac{2 q_2 \mu}{\sqrt{z(t)^2 + r_2^2(x,y)}} + f \quad (3.5)
\]

\[
r_1^2(x,y) = (\xi(t) \cos t + \mu)^2 + (\xi(t) \sin t)^2,
\]
\[
r_2^2(x,y) = (\xi(t) \cos t - 1 + \mu)^2 + (\xi(t) \sin t)^2,
\]
\[
f = C - \dot{\xi}^2(t).
\]

For example, if we choose the 2-nd way of above, we should obtain from (3.4):

4. Conclusion.

We have obtained a new type of exact solutions for photogravitational restricted 3-bodies problem [1-3] (the case of spiral motion).

According to the Bruns theorem [4], there is no other invariants except well-known 10 integrals for 3-bodies problem (*including integral of energy, momentum, etc.*). But in the case of *restricted* 3-bodies problem, there is no other invariants except only one, Jacobian-type integral of motion [5-6].

A key point is that we obtain the appropriate specific case of *spiral* motion from the Jacobian-type integral for photogravitational restricted 3-bodies problem (when orbit of small 3-rd body is assumed to be like a *spiral*). Besides, we should especially note that there is a proper restriction to the type of spiral orbital motion of small 3-rd body, which could be possible for choosing as the exact solution of equations for photogravitational restricted 3-bodies problem.
Let us demonstrate the proper asymptotic simplifications of the considered solutions; Eq. (3.5) could be simplified if we consider a *quasi-planar case* of orbital motion:

\[
(\dot{z})^2 \approx \frac{2 q_1 (1 - \mu)}{r_1(x,y)} \cdot \left(1 + \frac{z(t)^2}{r_1^2(x,y)} \right) + \frac{2 q_2 \mu}{r_2(x,y)} \cdot \left(1 + \frac{z(t)^2}{r_2^2(x,y)} \right) + f \quad \Rightarrow \quad \frac{z(t)}{r_1} \to 0, \quad \frac{z(t)}{r_2} \to 0 \quad \Rightarrow
\]

\[
(\dot{z})^2 \approx \frac{2 q_1 (1 - \mu)}{r_1(x,y)} \cdot \left(1 - \frac{z(t)^2}{2 r_1^2(x,y)} \right) + \frac{2 q_2 \mu}{r_2(x,y)} \cdot \left(1 - \frac{z(t)^2}{2 r_2^2(x,y)} \right) + C - \dot{\xi}^2(t),
\]

\[
\frac{d\ z}{\sqrt{\frac{q_1 (1 - \mu)}{r_1^3(x,y)} + \frac{q_2 \mu}{r_2^3(x,y)} \cdot z(t)^2 + \frac{2 q_1 (1 - \mu)}{r_1(x,y)} + \frac{2 q_2 \mu}{r_2(x,y)} + C - \dot{\xi}^2(t)}} = dt \quad (3.6)
\]

- where the left side of Equation (3.6) could be transformed to the proper *elliptical* integral [16] in regard to \(z \).

\[
\frac{g_1 (1 - \mu)}{r_1(x,y)} + \frac{g_2 \mu}{r_2(x,y)} \cdot z(t)^2 + \frac{2 g_1 (1 - \mu)}{r_1(x,y)} + \frac{2 g_2 \mu}{r_2(x,y)} + C - \dot{\xi}^2(t) \geq 0.
\]

Besides, the appropriate *restrictions* of meanings of variables should be valid for all meanings of parameter \(t \geq 0 \) as below:

5. Discussions.

We obtain the appropriate specific case of a *spiral* motion for photogravitational restricted 3-bodies problem from the Jacobian-type integral of motion (when orbit of small 3-rd body is assumed to be like a *spiral*).

The main result, which should be outlined, is that in a case of *quasi-planar* orbital motion (of the small 3-rd body) the asymptotic expression for component \(z \) of motion
is proved to be given by the proper *elliptical* integral. But the elliptical integral is known to be a generalization of the class of inverse periodic functions.

Thus, by the proper obtaining of re-inverse dependence of a solution from time-parameter we could present the expression of $z(t)$ as a set of periodic cycles. So, the meaning of component $z(t)$ is proved to be limited in the proper range of values.

Acknowledgements

I am thankful to CNews Russia project (*Science & Technology Forum, branches “Gravitation”*) - for valuable discussions in preparing of this manuscript.

Especially I am thankful to Dr. P.V.Fedotov, Prof. L.Vladimirov, Dr.A.Kulikov for valuable suggestions in preliminary discussions of this manuscript.

References:

