Engineering the Ni-H Bomb

Fran De Aquino

Maranhao State University, Physics Department, S.Luis/MA, Brazil. Copyright © 2012 by Fran De Aquino. All Rights Reserved.

The anomalous heat production detected in Ni-H systems was recently explained based on the fact that electromagnetic fields of extremely-low frequencies (ELF) can increase the intensities of gravitational forces and overcome the intensity of the electrostatic repulsion forces, producing nuclear fusion reactions. This effect can provide a consistent and coherent explanation for anomalous heat production detected in Ni-H Systems, and shows that a Ni-H System can be easily transformed into a Hydrogen bomb. Here, a Ni-H bomb of 20 kilotons is engineered.

Key words: Modified theories of gravity, Nuclear Fusion, Fusion Reactors. PACS: 04.50.Kd , 89.30.Jj , 28.52.-s.

1. Introduction

Recently, a large anomalous production of heat in a nickel rod filled with hydrogen has been reported by Focardi et al., [1]. This phenomenon was posteriorly confirmed by Cerron-Zeballos et al., [2].

Nuclear fusion can be produced by increasing the gravitational forces in order to overcome the electrostatic repulsion forces between the nuclei. This process became feasible after the Quantization of Gravity [3], with the discovery that the gravitational mass m_g can be made negative and strongly intensified by means of electromagnetic fields of extremely-low frequencies. This effect can provide a consistent and coherent explanation for anomalous heat production detected in Ni-H Systems, and shows that a Ni-H System can be easily transformed into a Hydrogen bomb [4]. Here, a Ni-H bomb of 20 kilotons is engineered.

2. Theory

Consider the Ni-H system showed in Fig. 1. In a previous paper [4] it was showed that, if the air inside the Nickel powder is evacuated by means of a vacuum pump (down to $P = 0.05 \text{ latm} = 5.166 \times 10^3 \text{ N/m}^2$ at temperature T = 400 K) and after Hydrogen is injected into the Nickel powder, then, the number of Hydrogen atoms/m³ inside the Nickel powder is

$$n_H = N_0 \rho_H / A_{H2} = 1.94 \times 10^{29} \rho_H$$
 atoms/m³

where ρ_H is the Hydrogen density; $N_0 = 6.02 \times 10^{26}$ molecules/kmole is the Avogadro's number and A is the molar mass.

Then, the number of atoms inside the Nickel powder is given by

$$n_H V_H = n_H S_f \delta_H \cong 8.3 \times 10^{24} \rho_H \alpha^2 \xi$$

where $S_f \cong 4 \times 10^3 \rho_{(Ni)} S_{\alpha} \xi$; $\rho_{(Ni)} = 8800 \text{kg.m}^{-3}$; $S_{\alpha} = \pi \alpha^2 / 4$ and $\delta_H = \Delta_{Ni} - \phi_{Ni} \cong 1nm$; ϕ_{Ni} is the diameter of Ni atom; Δ_{Ni} is the *average* molecular separation in the Ni.

Fig. 1 - Ni-H system. Note that, on Earth, the system is subjected to a 7.83 Hz electromagnetic field. This field is what naturally exists inside the *spherical* resonant cavity formed by the Earth's surface and the inner edge of the ionosphere. (Schumann resonance).

Thus, the total energy realized in the *protons fusions* is^{*}

$$E = \frac{n_H V_H}{2} = \frac{8.3 \times 10^{24} \rho_H \alpha^2 \xi}{2} (0.42 MeV) \cong (1)$$

 ${\cong}1.7{\times}10^{30}\rho_{H}\alpha^{2}\xi~eV{\cong}2.7{\times}10^{11}\rho_{H}\alpha^{2}\xi~Joules$

It is easy to see that a Ni-H System can be transformed into a Hydrogen bomb, simply increasing the volume of the Ni-H cylinder and substituting the Hydrogen by *a liquid deuterium* LD (12.5 MeV of *energy* is produced at each fusion of two *deuterium nuclei*[†]). For example, if $\alpha = 0.27m$, $\xi = 2$ m (See Fig.2), and, if a liquid deuterium ($\rho_H = 67.8 \ kg.m^{-3}$ [5]) is injected into the Ni powder, then the total energy realized in the fusions becomes

$$E = \frac{8.4 \times 10^{24} \rho_H \alpha^2 \xi}{2} (12.5 MeV) \cong$$
(2)
$$\cong 5.2 \times 10^{31} \rho_H \alpha^2 \xi \ eV \cong 8.3 \times 10^{13} J \cong 20 \ kilotons$$

The Hiroshima's atomic bomb had 20 kilotons.

Fig.2 – The core of the Ni-H bomb of 20 *kilotons*.

It is important to note that *this bomb* type is much easier to build than the conventional nuclear bombs. Basically, these bombs are made of Nickel powder (99%), liquid deuterium and Mumetal. These materials can be easily obtained. Due to the simplicity of its construction, these bombs can be built at the very location of the target (For example, inside a house or apartment at the target city.). This means that, in most of cases missiles are not necessary to deliver them, except for launching the Ni-H bomb at the height of explosion (<1Km \ddagger) when necessary.

Thus, the Ni-H bomb so far seems to be the simplest atomic bomb ever to be built. *It can be made by every nation*, in such a way that, peace in the World will be reached in the future due to the equilibrium of forces among nations.

Figure 3 shows the Ni-H bomb. It is enveloped by a Mumetal box in order to avoid the action of the 7.83Hz electromagnetic field that naturally exists inside the *spherical resonant cavity* formed by the Earth's surface and the inner edge of the ionosphere. (Schumann resonance [6, 7]). When the mumetal shielding is exploded the 7.83Hz electromagnetic field acts on the core of the Ni-H bomb and it explodes.

Fig.3 – The Ni-H bomb of 20 kilotons.

^{*} 0.42MeV are realized at each fusion of *two* Hydrogen nuclei.

[†] The d + d fusion reaction has two branches that occur with nearly equal probability: $(T + p + 4.03MeV \text{ and } {}^{3}He + n + 3.27MeV)$. Then, a *deuteron d* is produced by the fusion of the proton *p* (produced in the first branch) with the neutron (produced in the second branch). Next, occurs the fusion of this deuteron with the *tritium T* produced in the first branch, i.e., $(d + T \rightarrow {}^{3}_{2}He + n + 17.6 MeV)$. Thus, we count the d + d fusion energy as $E_{\text{fus}} = (4.03+17.6+3.27)/2 = 12.5 MeV$.

[‡] Hiroshima 600m above. Nagasaki 500m above.

References

- [1] Focardi, S., Habel, R. and Piantelli, F., (1994) *Nuovo Cimento* A, **107**, 163.
- [2] Cerron-Zeballos et al., (1996) Nuovo Cimento A, 109, 1645.
- [3] De Aquino, F. (2010) Mathematical Foundations of the Relativistic Theory of Quantum Gravity, Pacific Journal of Science and Technology, 11 (1), pp. 173-232.
- [4] De Aquino, F. (2012), A Possible Explanation for Anomalous Heat Production in Ni-H Systems, http://vixra.org/pdf/1202.0039v3.pdf
- [5] Rossini, F.D. (1968) IPTS-1968, Butterworths, London.
- [6] Schumann W. O. (1952). "Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgebenist". Zeitschrift und Naturfürschung 7a: 149–154
- [7] Volland, H. (1995), *Handbook of Atmospheric Electrodynamics*, CRC Press, vol.I, Chapter11.