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Abstract

In this article I show a relatively simple system that can provide a net

power that comes from the atmospheric pressure. The system uses the

pressure of a water column, and two other external devices to create a

cycle that has a net power output. The potential use of such system is

probably limited by many technical factors, but the system serves as an

example of how power can be extracted continuously from the atmosphere.

1 Description

Let's consider an horizontal cylinder with a piston that can run into it without
friction. The cylinder is surrounded by air at the atmospheric pressure. The
right section of the cylinder contains initially air at the atmospheric pressure
and temperature. The left section instead is �lled with water coming from a big
reservoir placed at a greater height respect to the median line of the cylinder.
When the piston is left to go the water pressure pushes it towards right and the
air in the cylinder gets compressed. The piston accelerates but after reaching
a maximum speed it starts to decelerate and eventually stops. At this point
the air has the maximum compression. Let's suppose that the piston now is
anchored to something that keeps it at this position, and that a valve on the
right section of the cylinder is opened. The compressed air can exit and expand
doing some work on an external device. When the expansion has �nished we
close this valve, and open another valve that lets the external air enter into
the cylinder, with atmospheric pressure. The cylinder now has atmospheric
pressure inside, then we can push the piston towards left and bring it to the
initial position, pumping the water back into the tank, and this requires a work
from the motor. When the piston has returned to its initial position we have
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Figure 1: Basic system

completed a cycle, and in this cycle there has been work done by the compressed
air to another device, and work done by our motor to push the piston back. If
the work done by the air is greater than the work done by the motor we have
obtained a net work towards another device, or a net energy.

2 Active phase

The active phase starts with the right face of the piston at distance b respect to
the right internal wall of the cylinder. Valves 2, 3 and 4 are closed and valve 1
is open. Let A be the area of the piston. More precisely the area of the right
face is a bit smaller than A because of the piston's shaft, but in this analysis we
neglect this. The initial volume of the air inside the cylinder is V0 = Ab. The
initial air pressure is equal to the atmospheric pressure p0. We suppose that the
pressure of the water in the cylinder is constant and equal to pc = p0+p1 where
p1 = ρgH is the hydrostatic pressure. Let p be the pressure of the air in the
compression chamber. Taking the x axis directed towards right, with the origin
at the initial position of the piston, the equation of the motion of the piston
during the active phase is:

mẍ = (pc − p)A (1)

or:

mẍ+ pA = Fa (2)

with:

Fa = (p0 + p1)A (3)
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Here we suppose that Fa is constant. A more detailed analysis would consider
also the motion of the water inside the cylinder but in this �rst analysis we just
suppose that the water pushes with constant pressure. By multiplying the
equation by the speed ẋ and integrating between the initial time and the time
t we have:

ˆ t

0

mẋẍdτ +

ˆ t

0

Apẋdτ = Fa

ˆ t

0

ẋdτ (4)

The second integral is the work done on the air:

ˆ t

0

Apẋdτ =

ˆ Vt

V0

pdV = wa(t) (5)

and with the initial conditions x(0) = 0 and ẋ(0) = 0:

1

2
mv2 + wa(t) = Fax (6)

At the point xm of maximum compression the piston's speed is zero so the
relation between the work done to compress the air up to the point of maximum
compression and the distance traveled by the piston is:

Wa = Faxm (7)

It is convenient to de�ne the dimensionless compression factor:

ξ =
xm
b

(8)

so:

Wa = Fabξ (9)

or:

Wa = (p0 + p1)Abξ = (p0 + p1)V0ξ (10)

3 Air energy

When the internal air is compressed its internal energy increases. If the cylinder
does not remove any heat from the compressed air then the internal energy of
the air increases of the amount Wa. When the air is left free to expand and
return to the atmospheric pressure it will do a work equal to this. If there are
heat losses the internal energy increases less than this, so when the air expands
it will do a smaller work, but during the expansion the air could also reabsorb
the heat from the surroundings and so its work could increase.
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4 Push phase

After the air has exited the input valve 3 can be opened and other air enters
into the chamber, bringing the air pressure to the right of the piston to the
atmospheric value. Now we can push the piston using an external force Fe to
bring the piston back to the initial position. The equation for the push phase
is:

mẍ = Fa − Fe − p0A (11)

or:

mẍ = p1A− Fe (12)

The atmospheric pressure inside the cylinder cancels the atmospheric pres-
sure that pushes on the free surface of the water in the tank. The external
force Fe created by the motor does not need to be constant, actually it has to
vary during the push phase in such a way that the piston arrives to the initial
position with zero speed. Anyway we can calculate the work done by the motor
in the push phase. For this let's take the time origin at the beginning of the
push phase. Let tp be the duration of the push phase, i.e. the time required
to bring the piston back at x = 0. Multiply the equation by the speed ẋ and
integrate from t = 0 to t = tp:

ˆ tp

0

mẋẍdτ =

ˆ tp

0

p1Aẋdτ −
ˆ tp

0

Feẋdτ (13)

the last integral is the work done by the motor in the push phase, consider
that Fe > 0 and ẋ < 0:

Wp = −
ˆ tp

0

Feẋdτ > 0 (14)

>
so with the conditions x(0) = xm, x(tp) = 0 and ẋ(0) = 0:

1

2
mv(tp)

2 = −p1Axm +Wp (15)

but at the instant tp the piston must stop again and so:

Wp = p1Axm (16)

or:

Wp = p1V0ξ (17)
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5 Energy balance

At the end of a cycle then the piston has returned to its original position, inside
the chamber there is again air at pressure p0 and volume V0, the machine has
taken a work Wp from the motor and the compressed air has delivered a work
Wa to the external device, and Wa is greater than Wp, the di�erence is:

Wn =Wa −Wp = p0V0ξ (18)

This is exactly the work done by the external air on the piston during the
push phase, so we can say that the net energy of the cycle comes from the
atmosphere.

Since Wa > Wp in theory we could use the energy Wa to power the motor,
and we still would have a net energyWn available for other devices, which means
that this system is a generator of free energy. In practice there would be energy
losses due to the temperature rise, and the conversion of the compressed air into
electric energy, but at least in theory there should be some energy left.

The power instead depends on the duration of the cycle. The duration of
the active phase cannot be expressed in closed form so it has to be calculated
numerically, and it depends on the mass of the piston. The duration of the push
phase depends also on the power of the pushing motor.

6 Normalized energies

It is convenient to consider the work and the energy normalized to the energy
p0V0:

ya =
Wa

p0V0
= (1 + β)ξ (19)

yp =
Wp

p0V0
= βξ (20)

yn =
Wn

p0V0
= ya − yp = ξ (21)

where β is:

β =
p1
p0

=
ρgH

p0
(22)

7 Adiabatic case

In the adiabatic case the pressure of the internal air is related to the volume of
the air by:

pV γ = p0V
γ
0 (23)
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where γ = 1.4 for air, so the pressure is given by:

p =
p0

(1− ξ)γ
(24)

Inserting this in the integral that gives the work done on the air we �nd at
last:

Wa =
p0V0
γ − 1

[
1

(1− ξ)
γ−1 − 1

]
(25)

Then the equation that determines the point of maximum compression be-
comes:

1

(1− ξ)
γ−1 − 1 = (1 + β)(γ − 1)ξ (26)

It easy to see that this equation has always a solution greater than 0 for
every β > 0. Considering the left side as a function:

f(ξ) =
1

(1− ξ)
γ−1 − 1 (27)

then:

f ′(ξ) = (γ − 1)(1− ξ)−γ (28)

f ′(0) = γ − 1 (29)

so the straight line (1 + β)(γ − 1)ξ is always above the curve, as long as
β > 0.

This equation cannot be solved in closed form but its solution can be calcu-
lated numerically, for example with the Newton's method.

The �nal temperature of the compressed air in the adiabatic case is given
by:

Tm =
Tf
T0

=
1

(1− ξ)γ−1
(30)

The following table gives the normalized energies, �nal pressure and temper-
ature and the ratio η = ya/yp for several values of β in the adiabatic hypothesis:

8 Example

For example if β = 2 the compression, in the adiabatic case, is 0.82, the �nal
pressure is 11 bar, the �nal absolute temperature is 1.98 times the initial absolute
temperature, so supposing that the initial air temperature is 25°C, the �nal air
temperature is:
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β ξ ya yp yn η pm Tm
0.1 0.13 0.14 0.01 0.13 11.00 1.21 1.06

0.2 0.23 0.28 0.05 0.23 6.00 1.45 1.11

0.3 0.32 0.41 0.10 0.32 4.33 1.71 1.17

0.4 0.39 0.55 0.16 0.39 3.50 2.00 1.22

0.5 0.45 0.67 0.22 0.45 3.00 2.31 1.27

0.6 0.50 0.80 0.30 0.50 2.67 2.65 1.32

0.7 0.55 0.93 0.38 0.55 2.43 3.02 1.37

0.8 0.58 1.05 0.47 0.59 2.25 3.42 1.42

0.9 0.62 1.18 0.56 0.62 2.11 3.85 1.47

1.0 0.65 1.30 0.65 0.65 2.00 4.32 1.52

1.1 0.67 1.42 0.74 0.67 1.91 4.81 1.57

1.2 0.70 1.54 0.84 0.70 1.83 5.34 1.61

1.3 0.72 1.65 0.93 0.72 1.77 5.91 1.66

1.4 0.74 1.77 1.03 0.74 1.71 6.52 1.71

1.5 0.76 1.89 1.13 0.76 1.67 7.19 1.76

1.6 0.77 2.01 1.23 0.77 1.63 7.86 1.80

1.7 0.78 2.12 1.33 0.79 1.59 8.58 1.85

1.8 0.80 2.23 1.44 0.80 1.56 9.34 1.89

1.9 0.81 2.35 1.54 0.81 1.53 10.15 1.94

2.0 0.82 2.46 1.64 0.82 1.50 11.00 1.98

2.1 0.83 2.57 1.74 0.83 1.48 11.89 2.03

2.2 0.84 2.68 1.84 0.84 1.45 12.83 2.07

2.3 0.85 2.79 1.95 0.85 1.43 13.82 2.12

2.4 0.85 2.91 2.05 0.85 1.42 14.87 2.16

2.5 0.86 3.02 2.15 0.86 1.40 15.96 2.21

2.6 0.87 3.14 2.26 0.88 1.39 17.27 2.26

2.7 0.88 3.25 2.36 0.89 1.37 18.45 2.30

2.8 0.88 3.36 2.47 0.89 1.36 19.68 2.34

2.9 0.89 3.46 2.57 0.89 1.35 20.97 2.39

3.0 0.89 3.57 2.67 0.90 1.34 22.32 2.43

3.1 0.90 3.68 2.78 0.90 1.32 23.73 2.47

3.2 0.90 3.79 2.88 0.90 1.31 25.20 2.51

3.3 0.90 3.89 2.98 0.91 1.30 26.74 2.56

3.4 0.91 4.00 3.09 0.91 1.30 28.33 2.60

3.5 0.91 4.11 3.19 0.91 1.29 30.00 2.64

3.6 0.92 4.21 3.30 0.92 1.28 31.72 2.69

3.7 0.92 4.32 3.40 0.92 1.27 33.52 2.73

3.8 0.92 4.43 3.50 0.92 1.26 35.39 2.77

3.9 0.92 4.53 3.61 0.93 1.26 37.32 2.81

4.0 0.93 4.64 3.71 0.93 1.25 39.33 2.86

4.1 0.93 4.74 3.81 0.93 1.24 41.41 2.90

4.2 0.93 4.85 3.92 0.93 1.24 43.57 2.94

4.3 0.93 4.96 4.02 0.94 1.23 45.80 2.98

4.4 0.94 5.11 4.13 0.98 1.24 49.14 3.04

4.5 0.94 5.21 4.23 0.98 1.23 51.47 3.08

4.6 0.94 5.31 4.33 0.98 1.23 53.88 3.12

4.7 0.94 5.41 4.44 0.98 1.22 56.37 3.16

4.8 0.95 5.51 4.54 0.97 1.21 58.95 3.21

4.9 0.95 5.61 4.64 0.97 1.21 61.62 3.25

5.0 0.95 5.72 4.74 0.97 1.20 64.38 3.29

Table 1: Calculated values for the adiabatic case
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Figure 2: Intersection that determines the compression factor

tf = 1.98 ∗ 298.15− 273.15 = 317°C (31)

If the volume V0 is 1 m3 then the net energy is:

Wn = p0V0ξ = 101325 Pa ∗ 1 m3 ∗ 0.82 = 83086 J (32)

and so, if the cycle is completed in 2 s the net power would be 41543 W. Of
course this value is much larger than the net power of a real system because of
the many energy losses. A value of β = 2 is obtained with an height of water
equal to:

H =
p1
ρg

=
2 ∗ 101325 Pa

1000 kg/m3 ∗ 9.81 m/s2
= 20.65 m (33)

9 Conclusions

This relatively simple system shows that it is possible, in theory, to extract
free energy from the atmosphere with a combination of mechanical, hydraulic
and gas dynamic processes, plus a motor that can use the energy provided by
the compressed air generated by the system. The practical application depends
on the availability of technologies that can convert the compressed air, with a
relatively low pressure and speed, into mechanical energy of other type. Ideally
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Figure 3: Plot of the normalized energies vs the parameter β
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the compressed air could be used to spin a turbine connected to an alternator
that can generate electric power but the losses must be very small or else the net
energy would be lost. The actual power of course would depend on the speed
of the piston, especially that of the return phase.
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