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Abstract

This is a study of a relatively simple system that seems to provide

an energy output greater than the visible energy input thanks to the ex-

traction of energy from the surrounding atmosphere. This is a theoretical

study, no experiments with real systems of this type has been performed

by the author. The idea of this system is the possibility of using hy-

drostatic pressure to obtain compressed air to be used in various ways,

however the source of energy is not the water pressure but the atmospheric

pressure.

1 Description

The system is composed of two cylinders, 1 and 2, with cylinder 1 having a larger
diameter than cylinder 2. The two cylinders have pistons rigidly connected so
that the discs in the cylinders move always together.

Cylinder 1 has an input valve 1 from which water at a high pressure comes
in. This water comes from a tank placed at an height H above the median line
of the cylinders.

Cylinder 2 has an output valve 2 from which water is pumped back into the
tank.

Between the two cylinders there is a valve 3 that allows the water to be
transferred from cylinder 1 to cylinder 2 during the return of the piston.

The remaining part of cylinder 1 is �lled with air initially at atmospheric
pressure. This air can exit from cylinder 1 by means of valve 4 and go to a
device that converts it into another form of energy.

The system is surrounded by air at the atmospheric pressure which pushes
the disc 2 from the outside. The external air can enter into cylinder 1 by means
of valve 5 when the piston is retracted.
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Figure 1: System

Finally there is an external motor that can push or pull the pistons when it
is needed

2 Cycle

Initial state

At the initial state the piston is at its leftmost position, cylinder 2 is full of
water, left part of cylinder 1 is full of water just to ensure continuity of action,
and the compression chamber is at its maximum volume, �lled with air at the
atmospheric pressure. Valves 1, 2, 3, 4 and 5 are all closed.

Figure 2: Basic system
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Active phase

From the initial state, valves 1 and 2 are suddenly opened, then the water inside
the cylinders acquires pressure, the same pressure in both cylinders, but disc
1 is larger than disc 2 so there is a net force that pushes the piston towards
right. The piston starts moving towards right and so it compresses the air. At
the same time disc 2 pushes water from cylinder 2 up into the tank. The piston
accelerates, but the pressure of the air in cylinder 1 increases, so the piston
reaches a maximum speed, then starts to decelerate and eventually stops. This
is the point of maximum compression. At this point valve 4 is opened and the
compressed air is allowed to exit into the conduit, expanding and providing work
on to an external device.

Push phase

Starting from the end of the active phase, valve 3 and 5 are still closed and
valves 2 and 4 are still open. Valve 1 is closed to stop water entering in cylinder
1. An external motor starts pushing the piston towards right to �nish pumping
water from cylinder 2 into the tank. At the same time disc 1 helps the air
to exit, however the air has already exited for the major part because of the
expansion into the conduit. This phase requires a work Wmp from the motor.
When the piston has pushed all the water from cylinder 2 back into the tank
the motor stops and valves 2 and 4 are closed.

Return phase

Starting from the end of the push phase now valves 1, 2 and 4 remain closed,
while valves 3 and 5 are opened, and the motor starts pulling the piston back.
Then new air enters into the compression chamber through valve 5 with atmo-
spheric pressure, and the water from cylinder 1 passes into cylinder 2 through
valve 3. This phase requires little work by the motor because the water has to
pass from a cylinder to another at the same height, so the only energy expended
is that for energy losses in the water �ow. When the piston has returned to the
initial position the motor stops, valves 3 and 5 are closed and the system is
again in the initial state, and the amount of water in the tank hasn't changed.
The energy expended by the motor in this phase is called Wmr and is small.

3 Model

The height of water in the tank is considered constant during the cycle because
the tank's horizontal section is supposed to be much larger than the cylinder's
section. The corresponding hydrostatic pressure is then constant:

p1 = ρgH (1)

The total pressure of the water in the cylinders is given by:
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x position of the right face of the piston variable
v speed of the piston, equal to ẋ variable
A1 area of the the right disc of the piston constant
A2 area of the left disc of the piston constant
m total mass of the piston constant
p0 atmospheric pressure constant
p1 hydrostatic pressure due to the tank, equals to ρgH constant
pc hydrostatic pressure in the cylinders, equals to p0 + p1 constant
p pressure of air in compression chamber variable
V volume of compression chamber variable
V0 maximum volume of compression chamber, equals to A1b constant
g gravity constant constant
ρ water density constant
H external water height constant
b maximum length of the compression chamber constant
s length of the push section variable
xm distance traveled by the piston in the active phase variable
ξ compression ratio, equals to xm/b variable

Table 1: Model's variables and constants

pc = p0 + p1 (2)

The actual pressure exerted by the water inside the cylinders on the two
discs is supposed to be equal to pc also during the motion of the piston.

This is the strongest hypothesis of this model, because when the water pushes
the piston, the piston accelerates and so the e�ective pressure of the water may
be di�erent from the static one. Furthermore the left disc moves against the
water pressure while the right disc moves in the same direction of the water
pressure. However the water from the left cylinder is pushed away and goes up
into the tank, while the water in the right cylinder comes down to occupy the
space left by the disc that moves to the right. In static conditions the water
pressure on the discs would be pc so we can suppose that the piston moves
slowly enough.

Notice that the area of disc 1 subject to the pressure of the air is slightly
larger than the area subject to the pressure of the water because of the piston's
shaft, this has to be taken into account into a more detailed model.

Anyway a complete analysis of this system would require an hydrodynamic
model of the �uid inside the cylinder, and such model requires to know the exact
shape of the internal walls and the valves.

The volume of the compression chamber is given by:

V = V0 −A1x = V0(1 − x

b
) (3)
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Figure 3: Active phase

where V0 = A1b is the initial volume, corresponding to x = 0. The position
x is always between 0 and b.

The expression of the pressure of the air as a function of the volume of air
depends on the kind of compression. The process can be adiabatic, isothermal
or an intermediate type. However the pressure of the air will increase as the
volume decreases, and it will be a function of the piston's position.

4 Active phase

During the active phase, the equation of motion of the piston along the x axis
is:

p0A2 − (p1 + p0)A2 + (p1 + p0)A1 − pA1 = mẍ (4)

so simplifying:

p1(A1 −A2) + p0A1 − pA1 = mẍ (5)

or:

mẍ+ pA1 = Fa (6)

with:

Fa = p0A1 + p1(A1 −A2) (7)

The force Fa is originated by the di�erence in the piston's areas and from
the atmospheric pressure exerted on disc 2 but not on disc 1.

Notice that the piston starts moving towards right even if the pressure of
the tank p1 is lower than the atmospheric pressure p0 because the total pressure
of the water in the cylinders is pc = p0 + p1 which is greater than p0 as long as
p1 is positive.

In the compression phase the air receives mechanical work from the piston.
Let's call wc the total work done on the internal air during the time interval
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[0, t]. To calculate this work we need to know the pressure of the air for each
intermediate value of volume. We have:

wc =

ˆ t

0

pdV (8)

or:

wc =

ˆ t

0

pẋA1dτ (9)

so:

wc = A1

ˆ t

0

pẋdτ (10)

Notice that the pressure p is a function of the position x and not of the time.
From the di�erential equation for the motion of the piston we can �nd the

speed of the piston as a function of the piston's position. We multiply the
equation by the speed ẋ:

mẍẋ+ pA1ẋ = Faẋ (11)

then integrate from the initial time to the current time:

m

ˆ t

0

ẋẍdτ +A1

ˆ t

0

pẋdτ = Fa

ˆ t

0

ẋdτ (12)

Having the conditions x(0) = 0 and ẋ(0) = 0, we �nd:

ˆ t

0

ẋẍdτ =
ẋ2

2
(13)

ˆ t

0

ẋdτ = x (14)

and for the second integral we have:

ˆ t

0

pẋdτ =
1

A1

ˆ t

0

pA1ẋdτ =
wa
A1

(15)

So we have:

1

2
mv2 + wa = Fax (16)

To �nd the point where the piston stops and starts moving backwards, we
use the equation of the piston's speed. Putting the piston's speed to zero we
obtain:

wc(xm) = Faxm (17)
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where wc is the function that gives the work done on the air as a function of
x. To determine xm we need the exact form of the function wc, which depends
on the type of compression. It is useful to introduce the normalized piston's end
point:

ξ =
xm
b

(18)

which is an dimensionless variable, with a value between 0 and 1, which can
be called compression factor.

The total work done on the air from the beginning of the active phase until
the piston stops at the point of maximum compression is then:

Wc = Faxm (19)

or:

Wc = [p0A1 + p1(A1 −A2)]xm (20)

It is convenient to normalize it respect to the energy p0V0:

yc =
Wa

p0V0
(21)

so:

yc =
p0A1 + p1(A1 −A2)

p0V0
xm (22)

which after some passages becomes:

yc =

[
1 +

p1
p0

(
1 − A2

A1

)]
ξ (23)

During the active phase the right cylinder receives a volume of water V1 =
A1xm from the tank, and the left cylinder pumps a volume of water V2 = A2xm
back into the tank. The volume V1 of water was entirely into the left cylinder
at the beginning of the cycle, so, when the piston stops at xm, the volume of
water that remains inside the left cylinder is:

Vp = A1xm −A2xm = (A1 −A2)xm (24)

During the active phase the external air does a positive work Waa on the
piston because atmospheric pressure pushes disc 2 from the outside towards
right:

Waa = p0A2xm (25)

7



Figure 4: Push phase

5 Push phase

The push phase starts at the end of the active phase. Cylinder 2 has to pump
a volume of water Vp and to push this water back into the tank, disc 2 has to
move for an additional distance s that is given by:

s =
Vp
A2

=

(
A1

A2
− 1

)
xm (26)

In the push phase the water pressure in cylinder 1 is zero because valve
1 has been closed, and the pressure of the air in the compression chamber is
the atmospheric pressure p0 because the air has already expanded, out of the
compression chamber, and returned to its original pressure. The equation of
motion of the piston during the push phase is then:

mẍ = Fe + p0A2 − pcA2 − p0A1 (27)

where Fe is the external force applied by the motor on the shaft. The force
Fe doesn't have to be constant, in fact the motor should push with a variable
force in such a way that the piston arrives at the end of the run with zero speed.
So inserting pc = p0 + p1 we have:

mẍ = Fe − p0A1 − p1A2 (28)

and then:

mẍ+ Fp = Fe (29)

with:

Fp = p0A1 + p1A2 (30)

Let's take the origin of time at the beginning of the push phase, and lets
take the origin of x at the initial position of the push phase. Let tp be the
time required to complete the push phase and let's suppose that the external
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force pushes in such a way that the piston stops at the �nal point. Then we
have x(0) = 0, ẋ(0) = 0, x(tp) = s, ẋ(tp) = 0. From the equation of motion,
multiplying by the speed, we have:

mẋẍ+ Fpẋ = Feẋ (31)

now integrating from 0 to t and using the initial conditions:

1

2
mẋ2 + Fpx =

ˆ t

0

Feẋdτ (32)

The last integral is the work done by the external force Fe during the interval
[0, t]. At the instant tp the speed must be zero and the position must be s so
the total work of the external force in the push phase is:

Wmp =

ˆ tp

0

Feẋdτ = Fps (33)

This is the value of work whatever the variation of the force Fe, as long as
Fe causes the piston to arrive at distance s and stop there. So we have found:

Wmp = (p0A1 + p1A2)

(
A1

A2
− 1

)
xm (34)

The normalized work of the motor in the push phase is then:

yp =
Wp

p0V0
=

(
1 +

p1
p0

A2

A1

)(
A1

A2
− 1

)
ξ (35)

During the push phase the external air does a work on the piston because
atmospheric pressure pushes disc 2 from the outside towards right and atmo-
spheric pressure pushes disc 1 from the outside towards left. The work done by
the atmosphere during the push phase is then:

Wap = p0A2s− p0A1s = p0s(A2 −A1) (36)

which is negative because A2 < A1. Inserting the expression of s in terms
of xm:

Wap = p0

(
A1

A2
− 1

)
(A2 −A1)xm (37)

6 Return phase

The return phase starts at the end of the push phase, with the piston at its
rightmost position. Valves 1, 2, and 4 are closed, valve 3 and 5 are open.
Since valves 1 and 2 are closed the water in the cylinders has zero pressure.
The external air enters in the compression chamber with atmospheric pressure
through valve 5, so disc 1 receives a force p0A1 towards left, while disc 2 receives
a force p0A2 towards right. Then the piston starts moving towards left and
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Figure 5: Return phase

accelerates. The motor now has to do a negative work to brake the piston and
let it arrive at the leftmost position with zero speed. The water �ows from
cylinder 1 to cylinder 2.

At the end of the return phase the piston is at its leftmost position, which is
the start position for another cycle, and the volume of water A1xm has passed
into cylinder 2.

During the return phase the external air does a work that is balanced by the
motor and losses in water �ow. If Wmr is the work done by the motor in the
return phase, and War is the work done by the external air in the return phase
then we must have:

Wmr = −War (38)

The work done by the atmosphere during the return phase is:

War = p0A1(xm + s) − p0A2(xm + s) (39)

and so:

War = p0(A1 −A2)
A1

A2
xm (40)

7 Compressed air energy

In the compression phase the air goes through a thermodynamic process: it
receives mechanical work from the piston, and it can also exchange some heat
with the cylinder. At the end of the compression the internal energy of the air
in the compression chamber may have changed. If Wa is the total work done by
the piston on the air, and Q is the heat given by the air to the cylinder, then
the change of internal energy of the air is:

∆U = Wa −Q (41)
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Isothermal process

In the isothermal case the temperature of the air doesn't change, and since
the internal energy of an ideal gas depends only on the amount of gas and the
temperature, the internal energy does not change, which means Q = Wa. This
means that the work done on the air goes entirely lost in heat that the air gives
to the cylinder. In this case to return to its original volume and pressure the
air has to absorb the same amount of heat but this is not possible in practice.

Adiabatic process

In the adiabatic case the air does not give any heat to the cylinder, and so its
internal energy increases, and ∆U = Wa, this means that the temperature of the
air rises. The air can then do some work to an external device before returning
to the initial pressure and temperature. Ideally the compressed air would do
a work equal to the work received by the piston, but of course there are some
heat losses so the work done by the compressed air will be a little lower than
Wa.

8 Energy balance

After a cycle the water has returned in the same initial position so the energy
of water hasn't changed. Instead the compressed air has been extracted from
the system taking away an energy Wc. The motor has done a total work Wm =
Wmp + Wmr on the system and the atmosphere has done a total work Wa =
Waa + Wap + War on the system. Then the energy balance of the system in a
cycle should be:

Wc = Wm +Wa (42)

Since the atmospheric pressure is constant, the energy that we must provide
to the system to complete a cycle is just the work Wm so the net energy that
we obtain from this system in a cycle is:

Wn = Wc −Wm = Wa (43)

So in theory the system provides always a positive net energy at each cycle,
and this energy is equal to the work done on the system by the atmosphere in
a cycle.

Notice that during the return phase the motor works as a brake and probably
the energy −Wmr cannot be converted back into electric energy, so perhaps a
better estimation of the net energy is Wc −Wmp which is lower.

In practice the energy acquired by the air during the compression must also
be converted into electric energy by means of a turbofan or another system and
this conversion has losses too.

Using the expressions of the energies found before, the total work done by
the atmosphere is:

11



Wa = p0A2xm + p0(A2 −A1)

(
A1

A2
− 1

)
xm (44)

+ p0(A1 −A2)
A1

A2
xm = p0A1xm = p0V0ξ (45)

and the total work done by the motor is:

Wm = (p0A1 + p1A2)

(
A1

A2
− 1

)
xm − p0(A1 −A2)

A1

A2
xm (46)

= p1(A1 −A2)xm (47)

and so:

Wm +Wa = [p0A1 + p1(A1 −A2)]xm = Wc (48)

so the expressions obtained from the model satisfy the energy balance. It is
convenient to de�ne the following parameters:

α =
A2

A1
(49)

β =
p1
p0

(50)

The parameter α is always between 0 and 1, while the parameter β is just
positive. With these parameters the expressions of the energies normalized
respect to p0V0 are:

yaa = αξ (51)

yap = (α− 1)

(
1

α
− 1

)
ξ (52)

yar =

(
1

α
− 1

)
ξ (53)

ymp = (1 + αβ)

(
1

α
− 1

)
ξ (54)

ymr =

(
1 − 1

α

)
ξ (55)

ya = ξ (56)

yc = [1 + β(1 − α)]ξ (57)

ym = β(1 − α)ξ (58)

yn = ξ (59)
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9 Volume constraint

As we have seen, after reaching the end point xm, the piston has to advance for
another length s to �nish pushing the water from cylinder 2 into the tank, so
the piston's �nal position, and the end of the push phase, respect to the initial
position is:

xf = xm + s =
A1

A2
xm (60)

The length of the compression chamber b must be greater than or equal to
this value or else the right disc would hit the right wall, so it must be:

A1

A2
xm < b (61)

which is:

ξ < α (62)

Since ξ increases with the pressure p1, if we �x the ratio of A1 and A2 this
puts an upper limit to the pressure p1, and then an upper limit for ξ to allow
the piston's complete run. The useful interval of the parameters α and β is
then restricted. Notice however that this constraint appears just because we
have supposed that the discs of the piston are �xed to each other. The water
that remains in cylinder 2 could be pumped back into the tank by another
subsystem, the work done to pump it back would be almost the same but the
disc in cylinder 1 would not have to advance more, and so this constraint would
be avoided. The formulas for the motor work however would be di�erent.

10 Adiabatic end point

In the adiabatic case the pressure is related to the volume by the following
equation:

pV γ = const (63)

then we have:

p0V
γ
0 = pV γ (64)

and so, using the expression of the volume, we have:

p =
p0

(1 − x
b )γ

(65)

Inserting this in the integral that gives the work done on the air, we �nd
that the work done on the air by the piston during the active phase is:

wa =
p0V0
γ − 1

[(1 − ξ)−γ+1 − 1] (66)

13



Then the end point is determined by the equation:

p0V0
γ − 1

[(1 − ξ)−γ+1 − 1] = Fabξ (67)

so:

(1 − ξ)−γ+1 − 1 = (γ − 1)
Fab

p0V0
ξ (68)

but:

Fab

p0V0
=
p0A1 + p1(A1 −A2)

p0A1
= 1 + β(1 − α) (69)

so the equation is:

(1 − ξ)−γ+1 − 1 = (γ − 1)[1 + β(1 − α)]ξ (70)

which is the intersection of the function:

f(ξ) =
1

(1 − ξ)γ−1
− 1 (71)

with the straight line:

g(ξ) = Kξ (72)

with:

K = (γ − 1)[1 + β(1 − α)] (73)

The function f(ξ) tends to in�nite for ξ tending to 1 from the left, and its
value is zero for ξ = 0. However:

f ′(ξ) =
γ − 1

(1 − ξ)γ
(74)

f ′(0) = γ − 1 (75)

then the intersection of the curve of this function with the straight line Kξ
exists in the interval [0,1) if and only if K > γ − 1 but this is true and so there
is always an intersection. This equation cannot be solved in closed form but its
solution can be calculated numerically, for example with the Newton's method.
It is clear that ξ increases as β increases and as α decreases. In appendix there
is a table that reports the value of ξ corresponding to various values of α and
β.

Once that the �nal compression is known the air temperature can be calcu-
lated supposing that the air follows the law of ideal gas, from which it comes:

Tf
T0

=
1

(1 − ξ)γ−1
(76)
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11 Example

Let's suppose that β = 2, i.e. the pressure of water from the tank is twice the
atmospheric pressure. To achieve this pressure the height H must be about 20
meters, since the hydrostatic pressure of water is about 1 atmosphere for 10
meters of water. Using fresh water with density 1 kg/dm3 we have:

H =
p1
ρg

=
2 ∗ 101325 Pa

1000 kg/m3 ∗ 9.81 m/s2
= 22.07m (77)

Let's put α = 0.6 which means A2 = 0.6A1. From this we calculate the
compression factor ξ which comes out 0.58, and so it satis�es the condition
ξ < α. Then the normalized energies are:

ya = (1 + 2 ∗ (1 − 0.6)) ∗ 0.58 = 1.044 (78)

ym = 2 ∗ (1 − 0.6) ∗ 0.58 = 0.464 (79)

yn = 0.58 (80)

Let's suppose that A1 = 1 m2 and b = 1 m, then the initial volume V0 is
1 m3, then:

p0V0 = 101325 Pa ∗ 1 m3 = 101325 J (81)

and so:

Wa = 101325 ∗ 1.044 J = 105783 J (82)

Wm = 101325 ∗ 0.464 J = 47014 J (83)

Wn = 101325 ∗ 0.58 J = 58768 J (84)

Assuming that the cycle happens in 2 s, which is quite a high speed for such
big pistons, the useful power, not counting the losses, would be about 29 kW.

12 Calculated tables

In the following table the combinations that give ξ < α are not allowed by this
system.

α β ξ yc ym yn η pm
0.10 0.10 0.12 0.13 0.01 0.12 12.11 1.19
0.10 0.50 0.42 0.61 0.19 0.42 3.22 2.15
0.10 1.00 0.62 1.17 0.56 0.62 2.11 3.85
0.10 2.00 0.80 2.23 1.43 0.80 1.56 9.33
0.10 5.00 0.94 5.17 4.23 0.94 1.22 50.50
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0.10 10.00 0.98 9.81 8.83 0.98 1.11 265.26
0.10 20.00 1.00 18.91 17.92 1.00 1.06 1841.53
0.20 0.10 0.10 0.11 0.01 0.10 13.50 1.17
0.20 0.50 0.39 0.54 0.16 0.39 3.50 1.99
0.20 1.00 0.58 1.05 0.47 0.58 2.25 3.42
0.20 2.00 0.77 2.00 1.23 0.77 1.63 7.84
0.20 5.00 0.93 4.64 3.71 0.93 1.25 39.33
0.20 10.00 0.98 8.79 7.82 0.98 1.13 195.92
0.20 20.00 0.99 16.90 15.90 0.99 1.06 1308.82
0.30 0.10 0.09 0.10 0.01 0.09 15.29 1.15
0.30 0.50 0.35 0.48 0.12 0.35 3.86 1.85
0.30 1.00 0.55 0.93 0.38 0.55 2.43 3.02
0.30 2.00 0.74 1.77 1.03 0.74 1.71 6.52
0.30 5.00 0.91 4.10 3.19 0.91 1.29 29.95
0.30 10.00 0.97 7.77 6.80 0.97 1.14 140.45
0.30 20.00 0.99 14.88 13.89 0.99 1.07 901.47
0.40 0.10 0.08 0.09 0.00 0.08 17.67 1.12
0.40 0.50 0.32 0.41 0.10 0.32 4.33 1.71
0.40 1.00 0.50 0.80 0.30 0.50 2.67 2.65
0.40 2.00 0.70 1.54 0.84 0.70 1.83 5.34
0.40 5.00 0.89 3.56 2.67 0.89 1.33 22.22
0.40 10.00 0.96 6.73 5.77 0.96 1.17 97.14
0.40 20.00 0.99 12.86 11.87 0.99 1.08 575.59
0.50 0.10 0.07 0.07 0.00 0.07 21.00 1.10
0.50 0.50 0.28 0.35 0.07 0.28 5.00 1.57
0.50 1.00 0.45 0.67 0.22 0.45 3.00 2.31
0.50 2.00 0.65 1.30 0.65 0.65 2.00 4.31
0.50 5.00 0.86 3.02 2.15 0.86 1.40 15.96
0.50 10.00 0.95 5.69 4.74 0.95 1.20 63.67
0.50 20.00 0.98 10.83 9.85 0.98 1.10 352.09
0.60 0.10 0.05 0.06 0.00 0.05 26.00 1.08
0.60 0.50 0.23 0.28 0.05 0.23 6.00 1.45
0.60 1.00 0.39 0.54 0.16 0.39 3.50 1.99
0.60 2.00 0.58 1.05 0.47 0.58 2.25 3.42
0.60 5.00 0.82 2.46 1.64 0.82 1.50 11.00
0.60 10.00 0.93 4.64 3.71 0.93 1.25 39.33
0.60 20.00 0.98 8.79 7.82 0.98 1.13 195.92
0.70 0.10 0.04 0.04 0.00 0.04 34.33 1.06
0.70 0.50 0.18 0.21 0.03 0.18 7.67 1.33
0.70 1.00 0.32 0.41 0.10 0.32 4.33 1.71
0.70 2.00 0.50 0.80 0.30 0.50 2.67 2.65
0.70 5.00 0.75 1.89 1.13 0.75 1.67 7.16
0.70 10.00 0.89 3.56 2.67 0.89 1.33 22.22
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0.70 20.00 0.96 6.73 5.77 0.96 1.17 97.14
0.80 0.10 0.03 0.03 0.00 0.03 51.00 1.04
0.80 0.50 0.13 0.14 0.01 0.13 11.00 1.21
0.80 1.00 0.23 0.28 0.05 0.23 6.00 1.45
0.80 2.00 0.39 0.54 0.16 0.39 3.50 1.99
0.80 5.00 0.65 1.30 0.65 0.65 2.00 4.31
0.80 10.00 0.82 2.46 1.64 0.82 1.50 11.00
0.80 20.00 0.93 4.64 3.71 0.93 1.25 39.33
0.90 0.10 0.01 0.01 0.00 0.01 101.00 1.02
0.90 0.50 0.07 0.07 0.00 0.07 21.00 1.10
0.90 1.00 0.13 0.14 0.01 0.13 11.00 1.21
0.90 2.00 0.23 0.28 0.05 0.23 6.00 1.45
0.90 5.00 0.45 0.67 0.22 0.45 3.00 2.31
0.90 10.00 0.65 1.30 0.65 0.65 2.00 4.31
0.90 20.00 0.82 2.46 1.64 0.82 1.50 11.00
0.95 0.10 0.01 0.01 0.00 0.01 201.00 1.01
0.95 0.50 0.03 0.04 0.00 0.03 41.00 1.05
0.95 1.00 0.07 0.07 0.00 0.07 21.00 1.10
0.95 2.00 0.13 0.14 0.01 0.13 11.00 1.21
0.95 5.00 0.28 0.35 0.07 0.28 5.00 1.57
0.95 10.00 0.45 0.67 0.22 0.45 3.00 2.31
0.95 20.00 0.65 1.30 0.65 0.65 2.00 4.31
0.96 0.10 0.01 0.01 0.00 0.01 251.00 1.01
0.96 0.50 0.03 0.03 0.00 0.03 51.00 1.04
0.96 1.00 0.05 0.06 0.00 0.05 26.00 1.08
0.96 2.00 0.10 0.11 0.01 0.10 13.50 1.17
0.96 5.00 0.23 0.28 0.05 0.23 6.00 1.45
0.96 10.00 0.39 0.54 0.16 0.39 3.50 1.99
0.96 20.00 0.58 1.05 0.47 0.58 2.25 3.42
0.97 0.10 0.00 0.00 0.00 0.00 334.33 1.01
0.97 0.50 0.02 0.02 0.00 0.02 67.67 1.03
0.97 1.00 0.04 0.04 0.00 0.04 34.33 1.06
0.97 2.00 0.08 0.09 0.00 0.08 17.67 1.12
0.97 5.00 0.18 0.21 0.03 0.18 7.67 1.33
0.97 10.00 0.32 0.41 0.10 0.32 4.33 1.71
0.97 20.00 0.50 0.80 0.30 0.50 2.67 2.65
0.98 0.10 0.00 0.00 0.00 0.00 501.00 1.00
0.98 0.50 0.01 0.01 0.00 0.01 101.00 1.02
0.98 1.00 0.03 0.03 0.00 0.03 51.00 1.04
0.98 2.00 0.05 0.06 0.00 0.05 26.00 1.08
0.98 5.00 0.13 0.14 0.01 0.13 11.00 1.21
0.98 10.00 0.23 0.28 0.05 0.23 6.00 1.45
0.98 20.00 0.39 0.54 0.16 0.39 3.50 1.99
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0.99 0.10 0.00 0.00 0.00 0.00 1001.00 1.00
0.99 0.50 0.01 0.01 0.00 0.01 201.00 1.01
0.99 1.00 0.01 0.01 0.00 0.01 101.00 1.02
0.99 2.00 0.03 0.03 0.00 0.03 51.00 1.04
0.99 5.00 0.07 0.07 0.00 0.07 21.00 1.10
0.99 10.00 0.13 0.14 0.01 0.13 11.00 1.21
0.99 20.00 0.23 0.28 0.05 0.23 6.00 1.45

The following table gives the �nal temperature of the compressed air for
various values of the compression factor, considering an initial temperature of
15°C or 25°C.

ξ Tf/T0 tf with t0 = 15°C tf with t0 = 25°C
0.1 1.043 27.40 37.83
0.2 1.093 41.90 52.84
0.3 1.153 59.19 70.72
0.4 1.227 80.32 92.59
0.5 1.320 107.07 120.26
0.6 1.443 142.56 156.99
0.7 1.619 193.26 209.45
0.8 1.904 275.39 294.42
0.9 2.512 450.65 475.77
0.95 3.314 681.91 715.05
0.99 6.310 1544.95 1608.05

13 Other solutions

Instead of pumping the water by pushing the piston we could use a di�erent
way to bring the remaining water back into the tank. For example we could let
the water �ow into another smaller cylinder and then push the piston of that
cylinder. This would save some energy because the smaller cylinder doesn't
have to win the atmospheric pressure on an area A1. In this way the constraint
imposed by the geometry of the piston inside the cylinders would be avoided,
and the main cylinder could work at a higher water pressure, producing more
power. The work needed to bring the water back into the tank is at least:

Wb = p1Vp = p1(A1 −A2)xm = p1V0

(
1 − A2

A1

)
ξ (85)

14 Conclusions

In this system the energy acquired by the compressed air is greater than the
work done by the motor. The net useful energy is given by the work of the
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atmospheric pressure. The theoretical net energy that can be obtained is equal
to the total work done by the atmosphere on the system in a cycle, and is given
by p0V0ξ. The compression factor ξ can be increased by increasing the height
of the water column, but this particular system has a geometrical limit that
imposes the constraint ξ < α. This constraint could be avoided with a di�erent
system of pumping the remaining water back into the tank.

In a real system the energy of the compressed air would be lower because of
the heat losses, and it also has to be converted into electric energy by means of a
turbofan connected to an alternator, or another electromechanical system. The
e�ciency of this conversion is crucial to obtain a net energy from this machine.
The compressed air produced by this machine has a relative low pressure.

If we had a way to extract all the energy from the low-pressure compressed
air then this machine would be a valid power generator. The problem then
is to �nd a way to convert the energy of an amount of compressed air with
relatively low pressure into another form of mechanical energy and then into
electric energy.

The author is available for collaborations with people who want to test the
theory here described. To contact the author send an email to mail@softwaresphere.com.

Disclaimer

This study has been developed in a total independent way. In 2011 I read the
very little information published on the Web about a system called Hydro+,
but the websites and the papers available were absolutely insu�cient to achieve
an understanding of that machine. After almost one year of, not uninterrupted,
study and e�orts I have devised this system that gives an explanation in terms of
the energy of the atmospheric pressure, not because of the hydrostatic pressure,
so every reference to Hydro+ is excluded. This is an independent and separate
work done by Dr. Ing. Alessandro Forcella which cannot be considered based
on any other existing system.
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