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Abstract

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth
wrapped-up spatial dimension is inspiration for many modern attempts
to develop new physical theories. For a number of reasons the theory is
incomplete and generally considered untenable. An alternative approach
is presented that includes torsion, unifying gravity and electromagnetism
in a Kaluza-Cartan theory. Emphasis is placed on the variety of elec-
tromagnetic fields and the Lorentz force law. This is investigated via a
non-Maxwellian kinetic definition of charge related to Maxwellian charge
and 5D momentum. Two connections and a tighter than usual cylinder
condition are used. General covariance and global properties are investi-
gated via a reduced non-maximal atlas. Conserved super-energy is used in
place of the energy conditions. Explanatory relationships between matter,
charge and spin are present. Physical interpretation of the postulates is
attempted.

PACS numbers 04.50.Cd ; 02.40.Ky ; 04.20.-q ; 04.40.Nr

1 Conventions

1.1 General considerations

The following conventions are adopted unless otherwise specified.
Five dimensional metrics, tensors and pseudo-tensors and operators are

given the hat symbol. Five dimensional indices, subscripts and superscripts
are given capital Roman letters. So for example the five dimensional Ricci
flat 5-dimensional superspace-time of Kaluza theory is given as: ĝAB . Tensors
without a hat will be assumed to be 4 dimensional unless otherwise stated.
Small case indices are used. Index raising is referred to a metric ĝAB if 5-
dimensional, and to gab if 4-dimensional. The domain of partial derivatives
carries to the end of a term without need for brackets, so for example we have
∂agdbAc + gdbgac = (∂a(gdbAc)) + (gdbgac). Terms that might repeat dummy
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variables or are otherwise in need of clarification use additional brackets. Square
brackets can be used to make dummy variables local in scope.

Space-time is given signature (−, +, +, +), Kaluza space (−, +, +, +, +)
in keeping with [6], except where stated and an alternative from [1] is referred
to. Under the Wheeler et al [6] nomenclature, the sign conventions (for metric
signature, Riemannian curvature definition and Einstein tensor sign) used here
as a default are [+, +, +], as used throughout [6] itself. This is the usual mod-
ern convention used in general relativity. Note that torsion means that further
conventions in the definition of the Riemannian curvature are required and thus
the notation of Wheeler [6] is actually insufficient here, see the definition of the
Ricci tensor below. The first dimension (index 0) is always time and the 5th

dimension (index 4) is always the topologically closed Kaluza dimension. Time
and distance are geometrized throughout such that c = 1. G is the gravitational
constant. The scalar field component is labelled φ2 (in keeping with the litera-
ture) only as a reminder that it is associated with a spatial dimension, and to
be taken as positive. The matrix of gcd can be written as |gcd| when considered
in a particular coordinate system to emphasize a component view. The Einstein
summation convention may be used without special mention.

� represents the 4D D’Alembertian [6], the relativistic analog of the Lapla-
cian, a wave operator.

1.2 Four systems: with and without torsion; 4D and 5D

In this subsection small case Roman letters will also be used for indices in the
generic sense without reference to dimensionality, except where clear juxtaposi-
tion between two cases is required.

Connection coefficients with torsion will take the form: Γcab or Γabc and so on.
The metric for any given torsion tensor defines a unique connection. There are
therefore two unique connections for a given metric: one with and one without
torsion. The unique Levi-Civita connection (ie without torsion) is written as:
zcab, and the covariant Levi-Civita derivative operator (ie without torsion): 4a.
In order to distinguish tensors constructed using torsion Gab and Rab (i.e. where
the Ricci tensor is defined in terms of Γcab) from those that do not use torsion (ie
that are defined in terms of zcab), the torsionless case uses cursive: Gab and Rab.
On any given manifold with torsion both these parallel systems of connection
coefficients and dependent tensors can be used. That is, the Ricci tensor (with
torsion), Rab, and the Ricci tensor, Rab, are both defined and are in general
different. Further each of these can have hats on or hats off, giving: R̂AB and
R̂AB . It is an extremely confusing part of this work that all four systems can
be used at the same time in the same equations! This particularly occurs when
the 4D components of a 5D tensor are being used, i.e. looking at R̂ab and R̂ab.

Torsion introduces non-obvious conventions in otherwise established defi-
nitions. The order of the indices in the connection coefficients matters, and
this includes in the Ricci tensor definition and the definition of the connection
coefficient symbols themselves:
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∇awb = ∂awb − Γcabwc (1.2.1)

Some familiar defining equations consistent with [1] define the Ricci tensor
and Einstein tensors in terms of the connection coefficients along usual lines,
noting that with torsion the order of indices can not be carelessly interchanged
as they can with the symmetric Levi-Civita coefficients:

Rab = ∂cΓ
c
ba − ∂bΓcca + ΓcbaΓddc − ΓcdaΓdbc (1.2.2)

Gab = Rab −
1

2
Rgab = 8πGTab (1.2.3)

For convenience we will define α = 1
8πG .

Analogous definitions can also be used with the Levi-Civita connection to
define Rab and Gab in the obvious way.

We also define:

Fab = 4aAb −4bAa = ∂aAb − ∂bAa equally F = dA (1.2.4)

2 Introduction

Kaluza’s 1921 theory of gravity and electromagnetism [2][3][4] using a fifth
wrapped-up spatial dimension is at the heart of many modern attempts to
develop new physical theories [1][5]. From supersymmetry to string theories
topologically closed small extra dimensions are used to characterize the vari-
ous forces of nature. It is therefore inspiration for many modern attempts and
developments in theoretical physics. However it has a number of foundational
problems and is often considered untenable in itself. This paper looks at these
problems from a purely classical perspective, without involving quantum theory.

2.1 Motivation

Kaluza’s theory gives a taste of unification of electromagnetism with gravity
in a way that couldn’t be made to work. However the underlying aim was
particularly promising in terms of explanatory power. The coincidence repre-
sented by the construction is tantalising. Rather than being a coincidence of
no merit it may instead be that it is but a subset of a more comprehensive and
explanatory theory. But how to search for it? Certain requirements are evident:
the Lorentz force law must be explained, Maxwell’s laws must be present, the
Lorentz transformation must define inertial frames, general relativity must be
a limit. Of these the Lorentz force law is the most enigmatic and conceptually
unsatisfying within current theory. Yes, it comes from the Einstein-Maxwell
stress-energy tensor, but where does that come from? - assuming that quantum
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mechanics is not the sphere of research. On the other hand the Lorentz force
law is but the relativistic form of Coulomb’s law. Surely it should be as funda-
mental geometrically as the inverse square law of gravity? It is in this vein that
search for an extended Kaluza theory makes sense: to get all these pieces to fit
together in a 5D theory.

At first the objective was to discount torsion since its lack of presence is
geometrically an obvious assumption in many physical theories, and showing
it really wasn’t necessary after all therefore seemed necessary on the basis of
thoroughness. Besides, torsion seems messy and difficult. The research was
based around showing that somehow the missing electromagnetic fields could be
obtained without torsion. The missing solutions being those solutions that are
non-null that would in Kaluza’s field equations require a scalar field oscillation.
Committed to adding anything except torsion, various attempts were made.
The trouble is scalar field oscillations kept being necessary and always led to
the Lorentz force law being underivable. In this way many attempts were made
to, as it were, pack the luggage into an insufficiently sized suitcase. None were
succesful. In the end the research to date was scrapped and the decision made
to develop Kaluza’s theory with torsion. Not that this was in itself original, but
it was certainly going to be tricky.

Initially the research was not generally covariant, wrong essentially, and
heuristic at best. But in that way it was possible to explore the landscape and
learn some relevant mathematics. The necessary introduction of general covari-
ance to the definitions surely also demanded the possibility of general covariance
for the cylinder condition itself. This led to the possibility of unthought of for-
mulations. Experimentation uncovered the formulation of the cylinder condition
presented in this paper. Due to the long period of development and the rather
impractical approach to questioning assumptions, something new was perhaps
inevitably discovered eventually. Whether it has any merit is, on the other
hand, for the reader to decide based on their reasoning, and perhaps with a bit
of luck -if the theory gets that far- even via laboratory experiment.

2.2 The Metric

The theory assumes a (1,4)-Lorentzian Ricci flat manifold to be the underlying
metric, split as shown below (and for interest this can be compared to the later
ADM formalism [9]). Aa is to be identified with the electromagnetic potential,
φ2 is to be a scalar field, and gab the metric of 4D space-time:

ĝAB =

[
gab + φ2AaAb φ2Aa

φ2Ab φ2

]
(2.2.1)

Note that a scaling factor has been set to k = 1 and so is not present, this
will be reintroduced later in the text (3.4.1), it is mathematically arbitrary, but
physically scales units when units are geometrized. By inverting this metric as
a matrix (readily checked by multiplication) we get:
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ĝAB = |ĝAB |−1 =

[
gab −Aa
−Ab 1

φ2 +AiA
i

]
(2.2.2)

Maxwell’s law are automatically satisfied: dF=0 follows from dd = 0. d*F=
4π*J can be set by construction. d*J=0, conservation of charge, follows also by
dd=0 on most parts of the manifold.

However, in order to write the metric in this form there is a subtle assump-
tion, that gab, which will be interpreted as the usual four dimensional space-time
metric, is itself non-singular. However, this will always be the case for moder-
ate or small values of Ax which will here be identified with the electromagnetic
4-vector potential. The raising and lowering of this 4-vector are defined in the
obvious way in terms of gab. The 5D metric can be represented at every point on
the Kaluza manifold in terms of this 4D metric gab (when it is non-singular), the
vector potential Ax, and the scalar field φ2. We have also assumed that topol-
ogy is such as to allow the Hodge star operator and Hodge duality of forms
to be well-defined (see [6] p.88). This means that near a point charge source
the argument that leads to charge conservation potentially breaks down as the
potential may cease to be well-defined. Whereas the Toth charge that will be
defined in the sequel does not have this problem. So two different definitions of
charge are to be given: the Maxwellian, and the Toth charge.

With values of φ2 around 1 and relatively low 5-dimensional metric curva-
tures, we need not concern ourselves with this assumption beyond stating it on
the basis that physically these parameters encompass tested theory. Given this
proviso Ax is a vector and φ2 is a scalar - with respect to the tensor system
defined on any 4-dimensional submanifold (or region of a submanifold) that can
take the induced metric g.

2.3 Kaluza’s Cylinder Condition And The Original Field
Equations

Kaluza’s cylinder condition is that all partial derivatives in the 5th dimension
i.e. ∂4 and ∂4∂4 etc... of all metric components and of all tensors and their
derivatives are zero. A perfect ‘cylinder’. This leads to constraints on gab given
in [1] by three equations, the field equations of the original Kaluza theory, where
the Einstein-Maxwell stress-energy tensor can be recognised embedded in the
first equation. Beware in particular that the conventions are as used by the
referenced author and not those used in this paper.

Gab =
k2φ2

2

{
1

4
gabFcdF

cd − F caFbc
}
− 1

φ
{∇a(∂bφ)− gab�φ} (2.3.1)

∇aFab = −3
∂aφ

φ
Fab (2.3.2)

�φ =
k2φ3

4
FabF

ab (2.3.3)
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Note that there is both a sign difference and a possible factor difference
with respect to Wald’s [7] and Wheeler’s [6] Einstein-Maxwell equation. The
sign difference appears to be due to the mixed use of metric sign conventions in
[1]. A k factor is present and this scaling will be investigated. These equations
will be referred to as the first, second and third torsionless field equations, or
original field equations, respectively. They are valid only in Kaluza vacuum,
that is, outside of matter and charge models, and when there is no torsion.
That is when Rab = 0 and torsion is vanishing. Allowing torsion in this paper
will increase the range of solutions.

2.4 Some Definitions

Definition 2.4.1: ‘nullish’ and null electromagnetic fields.

Fields for which the following equation hold will be called nullish electro-
magnetic fields, and likewise those that do not satisfy this: non-nullish. Null
solutions are nullish solutions with a further constraint. But nullish solutions
will be of most interest here.

FabF
ab = 0 (2.4.1)

By looking at the third field equation (2.3.3) it can be seen that if the scalar
field does not vary then only a limited range of solutions result, that have nullish
electric and magnetic fields, for example null solutions. The second field equa-
tion (2.3.2) then also imposes no charge sources. Here the scalar term could be
allowed to vary in order to allow for non-zero FabF

ab. This falls within Kaluza’s
original theory. This potentially allows for more electromagnetic solutions, but
there are problems to overcome as the scalar field and the electromagnetic fields
become overly coupled.

Null electromagnetic fields require nullishness plus the following condition,
where the star is the Hodge star operator:

Fab(∗F ab) = 0 (2.4.2)

2.5 The Foundational Problems Addressed

The problem addressed in this paper is the variety of electromagnetic solutions
that are a consequence of Kaluza theory, whilst maintaining the Lorentz force
law. This is either not usually considered such a big problem, which is not con-
vincing: a sufficient variety of electromagnetic fields must be available. Or by
others, confusingly, it is considered insurmountable and Kaluza theory written
off, which is too negative. Either way this remains the real problem with Kaluza
theory as it prevents a geometric unification of gravity and electromagnetism.
The missing solutions are the non-nullish solutions when the scalar field is con-
stant. Important examples include static electric fields. So they include really
important solutions!
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One inadequate and arbitrary fix in standard Kaluza theory is to set the
scalar field term large to ensure that the second field equation (2.3.2) is iden-
tically zero despite scalar fluctuations. This approach will not be taken here
as it seems arbitrary. The stress-energy tensor under scalar field fluctuations is
different from the Einstein-Maxwell tensor [6][7] and the accepted derivation of
the Lorentz force law (for electrovacuums [6]) can not be assumed. A variable
scalar field also implies non-conservation of Maxwell charge via the third field
equation (2.3.3) and problems will also arise with respect to the Lorentz force
law in the case of a variable scalar field. Thus the scalar field will be fixed and
the non-nullish solutions will need reintroducing. This is done via the introduc-
tion of torsion. The electromagnetic field will then be characterised by R̂AB = 0
instead of R̂AB = 0.

Another foundational issue of Kaluza theory is that even with a scalar field
it does not have convincing sources of mass or charge built in. The second field
equation (2.3.2) has charge sources, but it’s unlikely that realistic sources are
represented by this equation.

By identifying electromagnetic fields with R̂AB = 0 with torsion we pre-
sumably have to identify matter with R̂AB 6= 0. However the mass-energy
conservation law remains by definition in terms of ĜAB - i.e. the torsionless
Einstein tensor. Further the causality of solutions of the form R̂AB = 0 needs
to be certified, the certainty in this respect from Kaluza’s original theory is lost.

The nature of matter and charge is investigated to clarify the consequences
of the use of torsion.

Charge will be given an alternative definition: Toth charge will be defined
as the 5th-dimensional component of momentum, following a known line of
reasoning [8] within Kaluza theory. This will enable a derivation of the Lorentz
force law. As momentum, the Toth charge is of necessity locally conserved,
provided there are no irregularities in the topology of the Kaluza 5th dimension.

Note that conservation of Maxwellian charge (which will be shown to be
identifiable with Toth charge under a certain conditions) is normally guaranteed
by the existence of the potential. The proviso is that this may not be valid in
extreme curvatures where the values here associated with the 4-potential may
cease to be a vector. The two definitions will be shown to be related, but the
Toth charge deemed more fundamental as in turn it is part of a more generalized
conservation law via the (torsionless) Einstein tensor.

2.6 A Solution?

The Lorentz force law is to be derived from the theory independently of the
electrovacuum solutions of general relativity, and the missing non-nullish solu-
tions included at the same time to create a more complete theory. Note that in
addition the derivation of the Lorentz force law within general relativity (from
an assumed Einstein-Maxwell stress-energy tensor) is not without problems of
principle [6], so it is not the Einstein-Maxwell stress-energy tensor that is neces-
sarily here being sought but just those experimental results that classical physics
explains using it. The Lorentz force law is here derived from first principles.
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The combination of torsion and the 5th spatial dimension justifies the label
Kaluza-Cartan theory.

The new definition of charge, the momentum in the fifth dimension, will
be introduced and Maxwellian charge (defined with respect to the field as a
2-form) will be shown to coincide at an appropriate limit. The collocation of
torsion with electromagnetism is different from other Einstein-Cartan theories
where the torsion is limited to within matter models. Here certain specific
components of torsion are an essential counterpart of electromagnetism, and
other components of torsion can exist outside of matter models, perhaps with
detectable consequences.

Restrictions to the geometry and certain symmetries will be handled by re-
ducing the maximal atlas to a reduced Kaluza atlas that automatically handles
the restrictions and symmetries without further deferment to general covari-
ance. Physically this represents the idea that in 4D charge is a generally co-
variant scalar, whereas in 5D charge is dependent on the frame. That this is
meaningful stems from the global property of a small wrapped-up fifth spatial
dimension with cylinder condition. The Kaluza atlas is a choice of subatlas
for which the partial derivatives in the Kaluza direction are vanishing. This
leads to useful constraints on the connection coefficients for all coordinate sys-
tems in the Kaluza atlas. The 5D metric decomposes into a 4D metric and the
electromagnetic vector potential and the scalar field that will eventually be set
constant.

It is necessary to this theory that the cylinder condition is tightened via its
definition in terms of the torsion-bearing covariant derivative.

3 Overview Of Kaluza-Cartan Theory

The theory presented here, the Kaluza-Cartan theory, purports to resolve the
foundational problems of the original Kaluza theory.

3.1 Kaluza-Cartan Space Definition

A definition of Kaluza-Cartan space follows. K3 is the cylinder condition:

POSTULATE (K1): Geometry. A Kaluza-Cartan manifold is a 5D smooth
Lorentzian manifold with metric torsion connection. Metric here means the
compatibility condition that the covariant derivative (with torsion) of the metric
tensor is vanishing.

POSTULATE (K2): Well-behaved. Kaluza-Cartan space is assumed glob-
ally hyperbolic in the sense that there exists a 4D spatial cauchy surface plus
time, such that the 4D hypersurface is a simply connected 3D space extended
around a 1D loop. And Kaluza-Cartan space is oriented and time-oriented.

POSTULATE (K3) version1: Cylinder condition (old). One spatial di-
mension is topologically closed and ‘small’, the Kaluza dimension. There are
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global unit vectors that define this direction and that can form units in ‘torsion-
normal’ coordinates (see Appendix). The partial derivatives of all tensors in this
Kaluza direction are zero. The other spatial dimensions and time dimension are
‘large’. ‘Large’ here simply means that the considerations given to ‘small’ in K3
do not apply. Plus, Cylinder condition (new). The covariant derivative ∇̂4

with torsion of all tensors in the Kaluza direction is zero.

We can refine this tightening of the usual cylinder condition to show how it
is conceptually different and interesting, replacing version 1 with version 2:

POSTULATE (K3) version2: Cylinder condition (new). The covariant
derivative ∇̂4 with torsion of all tensors parallel transported around the topo-
logical loop, via auto-parallels, in a direction called the Kaluza direction, is zero.
See Appendix for torsion-normal coordinates.

We can then define ‘torsion-normal’ coordinates about any point (see Ap-
pendix) such that the partial deivatives of all tensors in the Kaluza direction
are zero. The elegance of K3 version2 is in its evidently generally covariant
definition. Both versions are, however, equivalent.

3.2 The Cylinder Condition And Charts

Throughout this work the cylinder condition will be taken to be that the deriva-
tives of all tensors in the Kaluza direction are to be zero. The 5D metric gen-
erally decomposes into 4D metric, vector potential and scalar field as a result,
at least when the embedded 4D metric is non-singular.

The cylinder condition by construction allows for an atlas of charts wherein
the Kaluza dimension is naturally presented by the fourth index. The atlases
that are compliant are restricted. This means that the cylinder condition can
be represented by a subatlas of the maximal atlas. The set of local coordinate
transformations that are compliant with this atlas (called a Kaluza atlas) is
non-maximal by construction.

A further reduction in how the atlas might be interpreted is also implied
by setting c=1, and constant G. The existence of a single unit for space and
time can be assumed, and this must be scaled in unison for all dimensions.
Consistently with cgs units we can choose either centimetres or seconds. This
would leave velocities (and other geometrically unitless quantities) unchanged
in absolute magnitude. This doesn’t prevent reflection of an axis however, and
indeed reflection of the Kaluza dimension is here equivalent to a charge inver-
sion. However, given orientability and an orientation we can remove even this
ambiguity.

We can further reduce a Kaluza atlas by removing boosts in the Kaluza
dimension. Space-time is taken to be a subframe within a 5D frame within
a Kaluza subatlas of a region wherein uncharged matter can be given a rest
frame via a 4D Lorentz transformation. Boosting uncharged matter along the
Kaluza axis will give it Toth charge. The Kaluza atlas represents the 4D view
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that charge is 4D covariant. Here we require that the Toth charge coincides
with Maxwellian charge in some sense. The justification for this assertion will
be given later. Rotations into the Kaluza axis can likewise be omitted. This
results in additional constraints on the connection coefficients associated with
charts of this subatlas, and enables certain geometrical objects to be more easily
interpreted in space-time. The use of this subatlas does not prevent the theory
being generally covariant, but simplifies the way in which we look at the Kaluza
space through a 4D physical limit.

Definition 3.2.1: A Kaluza atlas.

A Kaluza atlas is:

(i) A subatlas (possibly just over a region) of the maximal atlas of Kaluza-
Cartan space where boosts and rotations into the Kaluza dimension (as defined
by the cylinder condition K3) are explicitly omitted.

(ii) All partial derivatives in the Kaluza direction are vanishing.
(iii) Inversion in the Kaluza direction and rescalings can also be omitted so

as to establish units and orientation.
(iv) For each point on the Kaluza atlas a chart exists with ‘torsion-normal’

coordinates (see Appendix).

(3.2.1)

3.3 Kinetic Toth Charge

Kinetic Toth charge is defined as the 5D momentum component in terms of
the 5D Kaluza rest mass of a hypothesised particle: ie (i) its rest mass in the
5D Lorentz manifold (mk0) and (ii) its proper Kaluza velocity (dx4/dτ

∗) with
respect to a frame in the maximal atlas that follows the particle. And equally
it can be defined in terms of (i) the relativistic rest mass (m0), relative to a
projected frame where the particle is stationary in space-time, but where non-
charged particles are stationary in the Kaluza dimension, and in terms of (ii)
coordinate Kaluza velocity (dx4/dt0):

Definition 3.3.1: Toth charge (scalar).

Q∗ = mk0dx4/dτ
∗ = m0dx4/dt0 (3.3.1)

This makes sense because mass can be written in fundamental units (i.e. in
distance and time). And the velocities in question defined relative to particular
frames. It is not a generally covariant definition but it is nevertheless mathe-
matically meaningful. In the Appendix (9.2.1) it is shown that this kinetic Toth
charge can be treated in 4D space-time, and the Kaluza atlas, as a scalar: the
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first equation above is covariant with respect to the Kaluza atlas. It can be
generalized to a 4-vector as follows, and it is also conserved as shown in the
sequel.

In general relativity at the special relativistic Minkowski limit the conser-
vation of momentum-energy/stress-energy can be given in terms of the stress-
energy tensor as follows [9]:

∂T̂ 00

∂t
+
∂T̂ i0

∂xi
= 0 (3.3.2)

Momentum in the j direction:

∂T̂ 0j

∂t
+
∂T̂ ij

∂xi
= 0 (3.3.3)

This is approximately true at a weak field limit and can be applied equally
to Kaluza theory, via the (torsionless) connection. We have a description of
conservation of (torsionless) momentum in the 5th dimension as follows:

∂T̂ 04

∂t
+
∂T̂ i4

∂xi
= 0 (3.3.4)

We also have i=4 vanishing by the cylinder condition. Thus the conservation
of Toth charge becomes (when generalized to different space-time frames) the
property of a 4-vector current, which we know to be locally conserved:

(T̂ 04, T̂ 14, T̂ 24, T̂ 34) (3.3.5)

∂0T̂
04 + ∂1T̂

14 + ∂2T̂
24 + ∂3T̂

34 = 0 (3.3.6)

As in relativity this can be generalized to a new definition that is valid even
when there is curvature. Nevertheless the original Toth charge definition (3.3.1)
has meaning in all Kaluza atlas frames as a scalar.

Kinetic Toth charge current is the 4-vector, induced from 5D Kaluza-Cartan
space as follows (using the Kaluza atlas to ensure it is well-defined as a 4-vector):

J∗a = −αĜa4 (3.3.7)

Noting that,

4̂AĜA4 = 0 ≈ 4̂aĜa4 (3.3.8)

Using Wheeler et al [6] p.131, and selecting the correct space-time (or Kaluza
atlas) frame, we have:

Q∗ = J∗a (1, 0, 0, 0)a (3.3.9)

So we have a scalar, then a vector representation of relativisitic invariant
charge current, and finally a 2-tensor unification with conserved (torsionless)
mass-energy via the (torsionless) Einstein tensor.
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Definition 3.3.10: Toth charge current.

Toth charge current is defined to be the 4-vector J∗a = −αĜa4, with respect
to the Kaluza atlas, and noting the divergence of the (torsionless) Einstein
tensor:

4̂AĜAB = 0

(3.3.10)

It follows that the vanishing of the divergence of Toth charge in 4D is only
approximate. In 5D it is absolute.

3.4 Two Types Of Geometrized Charge

The metric components used in [1] as the 5D Kaluza metric, defined in terms
of the cylinder condition. It will be similarly used here in its new context.
It is called here the Kaluza-Cartan metric to remind us of this context. The
vector potential and electromagnetic fields formed via the metric are sourced in
Maxwell charge QM .

Definition 3.4.1: The 5D Kaluza-Cartan metric.

ĝAB =

[
gab + k2φ2AaAb kφ2Aa

kφ2Ab φ2

]
(3.4.1)

This gives inverse as follows:

ĝAB = |ĝAB |−1 =

[
gab −kAa
−kAb 1

φ2 + k2AiA
i

]
(3.4.2)

This gives (with respect to space-time) nullish solutions [1] under the cylinder

condition, such that Gab = −k
2

2 FacF
c
b . Compare this with [7] where we have

Gab = 2FacF
c
b in geometrized units we would need to have k = 2 or k = −2 for

compatibility of results and formulas. Noting the sign change introduced by [1]
- where it appears that the Einstein tensor was defined relative to (+, −, −, −),
despite the 5D metric tensor being given in a form that can only be (−, +, +,
+, +), which is confusing. Approximately the same result, but with consistent
sign conventions, is achieved here in (5.2.3).

The geometrized units, Wald [7], give a relation for mass in terms of funda-
mental units. This leads to an expression for Toth charge in terms of Kaluza
momentum when k = 2 and G = 1. G and k are not independent however.
If we fix one the other is fixed too, as a consequence of requiring the Lorentz
force law written in familiar form. The relation between G and k is given in
equation (6.5.5). Simple compatibility with Wald [7], where k = 2 and G = 1,
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results however. The sign of k is also fixed by (6.1.4). The result as given in
the Appendix, written in terms of the Toth charge Q∗, is:

Q∗ =
c√
G
P4 (3.4.3)

Generally speaking the approach here will be to do the calculations using
k = 1 and then add in the general k term later, as and when needed, simply to
ease calculation.

An important part of this theory is the nature of the relationship between
these two types of charge: Q∗ and QM - to be dealt with later.

3.5 Consistency With Special Relativity

Toth charge is identified with 5D momentum in a space-time rest frame. This
is already known in the original Kaluza theory to obey a Lorentz-like force law,
but will be extended here in scope.

That this is consistent with special relativity can be investigated. What this
consistency means is that the relativistic mass created by momentum in the 5th
dimension is kinematically identical to the relativistic rest mass.

The additions of velocities in special relativity is not obvious. Assume a flat
5D Kaluza space (i.e without geometric curvature or torsion, thus analogously to
special relativity at a flat space-time limit, a 5D Minkowski limit). Space-time
can be viewed as a 4D slice (or series of parallel slices) perpendicular to the 5th
Kaluza dimension that minimizes the length of any loops that are perpendicular
to it. Taking a particle and an inertial frame, the relativistic rest frame where
the particle is stationary with respect to space-time but moving with velocity
u in the 5th dimension, and a second frame where the charge is now moving in
space-time at velocity v, but still with velocity u in the 5th dimension, then the
total speed squared of the particle in the second frame is according to relativistic
addition of orthogonal velocities:

s2 = u2 + v2 − u2v2 (3.5.1)

The particle moving in the Kaluza dimension with velocity u, but stationary
with respect to 4D space-time, will have a special relativistic 4D rest mass (m0)
normally greater than its 5D Kaluza rest mass (mk0). We can see that the
Kaluza rest mass definition (mk0) is consistent with the orthogonal addition of
velocities as follows:

m0 =
mk0√

(1− u2)
where u = tanh[sinh−1(Q∗/(mk0))] (3.5.2)
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mrel =
m0√

(1− v2)
=

mk0√
(1− u2)

× 1√
(1− v2)

=
mk0√

(1− u2 − v2 + u2v2)
(3.5.3)

By putting u = tanh[sinh−1(Q∗/(mk0))] (keeping the hyperbolics to recall
the conversion between unidirectional proper and coordinate velocities) into the
definition of relativistic rest mass in terms of Kaluza rest mass and solving, we
get that charge, whether positive or negative, is related to the relativistic rest
mass according to the following formula:

cosh[sinh−1(Q∗/(mk0))] = m0/mk0 =
dt0
dτ∗

=
√

(Q∗/(mk0))2 + 1 (3.5.4)

Using k = 2 we also have, for a typical unit charge:

me = 9.1094× 10−28g (3.5.5)

Q∗ = 4.8032× 10−10statcoulomb = 4.8032× 3.87× 10−10+3g = 1.859× 10−6g
(3.5.6)

If we take these figures and equate me = m0 then we end up with imaginary
mk0 and imaginary proper Kaluza velocity. Obviously to detail this the Kaluza-
Cartan space would have to be adapted further in some way. However, what is
important physically is that the figures we know to be physical in 4D remain
so. And this is so.

Further issues are pertinent.
Observed electrons have static charge, angular momentum, a magnetic mo-

ment, and a flavor. The only thing distinguishing the electron from the muon
is the flavor. The mass difference between the muon and the electron is about
105 MeV, perhaps solely due to this difference in flavor. The issue of modeling
particles within a classical theory is, not surprisingly, a difficult one! Thus at
this stage the idealized hypothetical charges used here, and real particles, can
only be tentatively correlated.

It is possible to proceed without concern for the foundational issues of such
charge models or attempting to interpret this quandary, instead simply devel-
oping the mathematics as is and seeing where it leads without prejudging it.

3.6 Geodesic Motion, An Assumption

This theory assumes some sort of particle model of matter and charge is possi-
ble, that it can be added to the original theory without significantly changing
the ambient space-time solution and thus its own path, which is approximate
here as it is also in general relativity. Here however there are more complications
such as the lack of an explicit matter-charge model, and the presence of torsion.
We might imagine that what has been described is a particle whizzing around
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the fifth dimension like a roller coaster on its spiralled tracks. The cylinder
conditions can also be maintained if, instead of a 5D particle, the matter and
charge sources were rather a ‘solid’ ring, locked into place around the 5th di-
mension, rotating at some predetermined proper Kaluza velocity. Of course this
is misleading as, as has already been shown, both velocity and rest mass would
have to be complex numbers. An exact solution could perhaps involve changes
in the size of the 5th dimension. None of that is investigated here, the objective
is to see whether non-nullish solutions can be found in a variant Kaluza theory.

In Einstein-Cartan theory geodesics, or extremals, are followed by spinless
particles in 4D Einstein-Cartan theory [11]. Other particles follow different
paths when interaction with torsion is present. Auto-parallels and extremals
are two analogs of geodesics used when torsion is present, but neither of which
in the most general case determine the paths followed by all particles in Einstein-
Cartan theory. Note that spinless particles according to [11] follow extremals.
Extremals coincide with auto-parallels when torsion is completely antisymmet-
ric. Particles with spin may interact in other ways. So the assumption is that
torsion-spin coupling does not significantly effect the path of the particle, at
least to some approximation. Here we choose to use auto-parallels. Exactly
how sensitive this assumption is would require further research. Here however
it is packaged into a single clean assumption.

POSTULATE (K4): Geodesic Assumption. That any particle-like model,
that is to be identified with a charge, approximately follows 5D auto-parallels.

4 Complete Postulates Of The Kaluza-Cartan
Theory

K1-K4 previously define the core of the theory proper. A further postulate B1
is also needed to constrain the scalar field. Further, a way to deal with weak
field limits is needed to define the classical relativistic limit.

4.1 The Scalar Field

In the sequel (equation 6.4.1) it will be shown that restricting the scalar field
within a Kaluza atlas is necessary as follows at the classical limit:

LIMIT POSTULATE (B1): There is a Kaluza atlas (possibly only over a
region) such that φ2 = 1 at every point.

The use of B1 will be used sparingly so as to make the need for its appli-
cation clearer. It has been separated from the main list of postulates as being
potentially a limit, or for example not true in certain regions.

The scalar field results from the the decomposition of the Kaluza metric into
4D metric, potential vector and scalar field. It is contained within the metric
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explicitly in (3.4.1). Thus B1 is a constraint on the 5D metric via the imposition
of the Kaluza atlas structure.

Postulate B1 can be shown to follow from constraints imposed on the scalar
field via (i) the cylinder condition (new) and (ii) when all components of the
vector potential are non-zero. In other words it is a natural constraint on the
geometry physically: it’s either the scalar field that has to be constant, or the
electromagnetic field has to be zero in one or more components. ‘Torsion-normal’
coordinates in the definition of the Kaluza atlas then ensure that the constant
scalar value in the Kaluza atlas must be 1. Both these issues are dealt with in
the Appendix.

4.2 Weak Field Limits

This section gives additional postulates that can be interpreted as forming con-
ditions necessary for a classical limit.

The following additional postulates L1-L3 constitute a weak field limit that
will be applied by way of approximation for the ‘classical’ limit of behaviour.
The deviation from the 5D-Minkowski metric is given by a tensor ĥAB . This
tensor belongs to a set of small tensors that we might label O(h). Whilst
this uses a notation similar to orders of magnitude, and is indeed analogous, the
meaning here is a little different. This is the weak field approximation of general
relativity using a more flexible notation. Partial derivatives, to whatever order,
of metric terms in a particular set O(x) will be in that same set at the weak
field limit. In principle we are doing nothing more than following the weak field
limit procedure [6] of general relativity.

In the weak field approximation of general relativity, terms that consist of
two O(h) terms multiplied together get discounted and are treated as vanishing
at the limit. We might use the notation O(h2) to signify such terms. There is
the weak field approximation given by discounting O(h2) terms. But we might
also have a less aggressive limit given by, say, discounting O(h3) terms, and so
on. We can talk about weak field limits (plural) that discount O(hn) terms for
n > 1, but they are based on the same underlying construction.

LIMIT POSTULATE (L1): The metric can be written as follows in terms

of the 5D Minkowski tensor and ĥ ∈ O(h):

ĝAB = µ̂AB + ĥAB

Torsion will also be considered a weak field under normal observational con-
ditions, similarly to L1. Torsion is defined in terms of the Christoffel symbols.
Christoffel symbols are in part constructed from the partial derivatives of the
metric and that part is constrained by L1 to be O(h). The contorsion term
being the difference. See eqn(9.3.3). The contorsion (and therefore the torsion)
will be treated as O(h) accordingly:
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LIMIT POSTULATE (L2): The contorsion (and therefore the torsion) will
be an O(h) term at the weak field limits.

One further constraint is required at the weak field limit. Its use will be
minimized (both the application of the antisymmetry and the allowance for some
small symmetry terms), but it will nevertheless be important. In L3, symmetric
parts of the torsion and contorsion tensor (and their derivatives) are treated as
particularly ‘small’ in that they are small relative to any antisymmetric parts
of the torsion and contorsion tensor, torsion already assigned to O(h) by L2.

The torsion tensor will be given the following limit: It is to be weakly com-
pletely antisymmetric - a weak antisymmetric limit, this will be so even with
respect to L1 and L2. Thus the symmetric parts of the contorsion and torsion
tensors will be O(h2) at the weak field limit. All derivatives thereof follow the
same rule:

LIMIT POSTULATE (L3): The symmetric parts of the contorsion and tor-
sion tensors will be O(h2) at the weak field limits.

It is claimed that such a limit may be approached without loss of generality
of the solutions from a physical perspective. In other words at the L1-L2 weak
field limit equation (5.1.10) is compatible with the weak antisymmetric limit
L3, and poses no constraint due to the product of the potential and field also
being discounted at the weak field limit via L1.

4.3 Matter, Mass, Charge and Super-Energy

Some notes on matter, mass and charge:

Definitions 4.3.1: The Kaluza-Cartan vacuum is a Ricci flat region of a
Kaluza-Cartan manifold with respect to the torsion connection definition of the
Ricci tensor. Similarly the Kaluza vacuum is a Ricci flat region with respect
to the Levi-Civita connection. They are different: R̂AB = 0 and R̂AB = 0 re-
spectively. Here they are both defined in terms of the geometry implied by the
cylinder condition. Kaluza vacuum will be associated with non-nullish electro-
magnetic solutions when there is no torsion, Kaluza-Cartan vacuum will encom-
pass all electromagnetic fields. Kaluza-Cartan matter and Kaluza mass-energy
follow as complements to their vanishing respective Ricci tensors.

(4.3.1)

The distinction here made between Kaluza-Cartan matter and Kaluza mass-
energy is that mass-energy has a fundamental divergence law, and matter (by
itself without considering energy) not. These definitions generalize the simple
assumption of a Kaluza vacuum in the absence of torsion of the original Kaluza
theory.
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Finally to make sense of the varying concepts and to draw them together
the following provisional postulate can be imposed regarding matter models,
but also Kaluza-Cartan vacuum:

SUPER-ENERGY POSTULATE (SE1): That the conserved super-energy
hypothesis (see Appendix for definition and details) applies fully to Kaluza-
Cartan space, whether Kaluza-Cartan vacuum and Kaluza-Cartan matter mod-
els.

This both ensures causality and provides a well-defined conservation law for
5D Kaluza-Cartan space can be used in place of the energy conditions currently
used in general relativity.

4.4 A Complete Set of Postulates

A complete set of postulates can now be given for this version of Kaluza-Cartan
theory:

{K1, K2, K3, K4, B1, L1, L2, L3, SE1}

Of these only {K1, K3 version2} need be fundamental to the theory. {K2,
K4, B1} relate to well-behaved assumptions. {L1, L2, L3} to a weak field limit.
And {SE1} takes the place of the energy conditions of general relativity and may
not be unique or universal, pending experimental testing or deeper analysis.

It would be nice however to give a clearer physical interpretation of some of
these postulates. K2, K4, B1 need no special justification. With the exception
of B1 there are classical analogs. The sensitivity of the theory to K4 is bounded
by L3 in that when the non-completely antisymmetric terms are zero there
is no difference between extremals and auto-parallels. B1 is shown to be a
consequence of non-zero potential field components in the Appendix, and so a
near consequence of a variable electromagnetic field, making it a surprisingly
reasonable physical postulate. K1 and K3 are foundational to the theory, core
postulates with no immediate need for interpretation. SE1, if true, stands out
as requiring specific empirical testing, and other similar energy conditions may
turn out to be better either theoretically or empirically.

Heuristically L1 gives a scale and a proportionality to tensors, in the sense
that there is a balance of contributions from different types of tensors as a result.
L2 continues this sense of proportionality so that, all other things being equal,
such tensors as for example the Einstein tensors (with and without torsion) can
be expected to be comparable in order of magnitude, in significance, to each
other. This has an impression of physical reasonableness about it.

This leaves only L3 as in any way enigmatic. A possible interpretation
is suggested in the Appendix under Torsion-Normal Coordinates, but exactly
why it should be so important in this formulation is not clear. It has many
consequences here.
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5 The Field Equations

5.1 The Cylinder Condition And Scalar Field

Here we look at how the cylinder condition affects the connection coefficients
of any coordinate system within the Kaluza atlas (using k = 1). The Appendix
(see section containing 9.7.1 and related) contains a reference for connection
coefficients working both with and without the torsion component.

The following requires the selection of coordinates (the Kaluza atlas) that set
the partial derivatives in the Kaluza dimension to zero and from the relationship
between these two and the Christoffel symbols given in Wald [7] p33 eqn (3.1.14)
as applied to a number of test vectors. Note that there is no symmetry of
the (with torsion) connection coefficients suggested here. That is, these terms
are forced zero by the fact that both the partial derivatives and the covariant
derivatives in the Kaluza direction are zero. Cf equation (1.2.1), where the
consequences of setting both the partial derivatives and the covariant derivative
to zero can be seen on the connection coefficients.

0 = 2Γ̂A4c =
∑
d

ĝAd(∂4gcd + ∂4φ
2AcAd + ∂cφ

2Ad − ∂dφ2Ac) + ĝA4∂cφ
2 − 2K̂ A

4c

(5.1.1)

0 = 2Γ̂A44 = 2
∑
d

ĝAd∂4φ
2Ad −

∑
d

ĝAd∂dφ
2 + ĝA4∂4φ

2 − 2K̂ A
44 (5.1.2)

We have:

2K̂ A
4c = ĝAd(∂cφ

2Ad − ∂dφ2Ac) + ĝA4∂cφ
2 (5.1.3)

2K̂ A
44 = −ĝAd∂dφ2 (5.1.4)

Inspecting these equations, and given that K̂A(BC) = 0 (9.3.4), and applying
A=c without summing, we have a constraint on the scalar field in terms of the
vector potential. This constraint is used to the Appendix to show how postulate
B1 is natural.

The immediate result, applying B1, φ2 = 1, is as follows (using k = 1):

2K̂ A
4c = ĝAd(∂cAd − ∂dAc) (5.1.5)

2K̂ A
44 = 0 (5.1.6)

This gives the contorsion a very clear interpretation in terms of the electro-
magnetic field.
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K̂ a
4c =

1

2
F ac (5.1.7)

K̂ 4
4c = −1

2
AdFcd (5.1.8)

We also have from (5.1.1) the following:

Γ̂4
4c + K̂ 4

4c − K̂
4

c4 = Γ̂4
4c + K̂ 4

4c = Γ̂4
c4 (5.1.9)

In the case of complete antisymmetry of torsion/contorsion, again using
(5.1.1), this specialises to:

Γ̂4
4c = 0 = K̂ 4

4c = −K̂ 4
c4 = K̂ 4

c4 = AdFcd (5.1.10)

Γ̂4
4c + K̂ 4

4c − K̂
4

c4 = Γ̂4
c4 = 0 (5.1.11)

In particular (5.1.10) presents too tight a constraint on electromagnetism as
it employs more degrees of freedom than any gauge conditions. For this reason
non-completely antisymmetric torsion is allowed, yet constrained at the weak
field limits by L3. Using (5.1.9) for the last equation of (5.1.13), in the general
case we have:

K̂ 4
[4c] + K̂ 4

(4c) = K̂ 4
4c = −1

2
AdFcd

K̂ 4
c4 = 0 = −K̂ 4

[4c] + K̂ 4
(c4) (5.1.12)

K̂ 4
[4c] = K̂ 4

(4c) =
1

2
K̂ 4

4c = −1

4
AdFcd

K̂ 4
c4 = Γ̂4

4c = 0

K̂ 4
4c = Γ̂4

c4 = −1

2
AdFcd (5.1.13)

We can see from this section why postulate L3 is necessary, that is, why
some non-completely antisymmetric torsion terms must be allowed, and yet
their orders of magnitudes are bounded at the classical general relativistic limit
via L3 to establish the Lorentz force law (see later).

5.2 The First Field Equation With Torsion, k = 1

The first field equation in this theory is somewhat complicated (5.2.3), but
an analysis here will show that Kaluza-Cartan theory and the original Kaluza
theory share a limit for certain nullish solutions.

Looking at the Ricci tensor, but here with torsion (using equations 9.7.7
repeatedly, and the cylinder condition as required):
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R̂ab = ∂C Γ̂Cba − ∂bΓ̂CCa + Γ̂CbaΓ̂DDC − Γ̂CDaΓ̂DbC

R̂ab = ∂cΓ̂
c
ba − ∂bΓ̂cca + Γ̂CbaΓ̂DDC − Γ̂CDaΓ̂DbC

R̂ab = ∂cΓ̂
c
ba − ∂bΓ̂cca + Γ̂CbaΓ̂ddC − Γ̂CdaΓ̂dbC (5.2.1)

Doing the same for the without torsion definitions (using equations 9.7.6
repeatedly, and the cylinder condition as required):

R̂ab = ∂CẑCba − ∂bẑCCa + ẑCbaẑDDC − ẑCDaẑDbC

R̂ab = ∂cẑcba − ∂bẑcca +
1

2
∂b(A

dFad) + ẑcbaẑDDc − ẑCDaẑDbC (5.2.2)

In the original Kaluza theory the Ricci curvature of the 5D space is set to 0.
The first field equation (2.3.1) comes from looking at the Ricci curvature of the
space-time that results. An advantage of this is the conservation law (3.3.10).
We show that this identification of electromagnetism with the Kaluza vacuum is
not possible if we wish to reproduce electromagnetism sufficiently, even with the
presence of torsion. Setting R̂ab = 0 (as would be required, that is, identifying
electromagnetic fields with the Kaluza vacuum):

Rab = Rab − R̂ab

= ∂czcba − ∂bzcca − ∂cẑcba + ∂bẑcca −
1

2
∂b(A

dFad) +
1

2
∂b(A

dFad +AaF
c
c )

+zcbazddc −zcdazdbc − ẑcbaẑDDc + ẑCDaẑDbC

= −1

2
∂c(AbF

c
a +AaF

c
b ) + zcbazddc −zcdazdbc − ẑcbaẑDDc + ẑCDaẑDbC

= −1

2
∂c(AbF

c
a +AaF

c
b ) + zcbazddc −zcdazdbc

−ẑcbaẑDDc + ẑcDaẑDbc + ẑ4
DaẑDb4

= −1

2
∂c(AbF

c
a +AaF

c
b ) + zcbazddc −zcdazdbc

−(zcba+
1

2
(AbF

c
a +AaF

c
b ))(zddc+

1

2
(AdF

d
c +AcF

d
d ))−(zcba+

1

2
(AbF

c
a +AaF

c
b ))(−1

2
AdFcd)

+(zcda+
1

2
(AdF

c
a +AaF

c
d ))(zdbc+

1

2
(AbF

d
c +AcF

d
b ))+(

1

2
F c
a )(−Adzdbc+

1

2
(∂bAc+∂cAb))

+(−Aczcda +
1

2
(∂dAa + ∂aAd))(

1

2
F d
b ) + (−1

2
AdFad)(−

1

2
AcFbc)

= −1

2
∂c(AbF

c
a +AaF

c
b )

−1

2
(AbF

c
a +AaF

c
b )zddc

+
1

2
zcda(AbF

d
c +AcF

d
b )+

1

2
(AdF

c
a +AaF

c
b )zdbc+

1

2
(AdF

c
a +AaF

c
d )

1

2
(AbF

d
c +AcF

d
b )
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+
1

2
F c
a (−Adzdbc +

1

2
(∂bAc + ∂cAb))

+(−Aczcda +
1

2
(∂dAa + ∂aAd))

1

2
F d
b +

1

4
AdFadA

cFbc

= −1

2
Ab∂cF

c
a −

1

2
Aa∂cF

c
b −

1

2
(∂cAb)F

c
a −

1

2
(∂cAa)F c

b −
1

2
(AbF

c
a +AaF

c
b )zddc

+
1

2
zcdaAbF d

c +
1

2
AaF

c
b zdbc +

1

4
(AdF

c
a +AaF

c
d )(AbF

d
c +AcF

d
b )

+
1

4
F c
a (∂bAc + ∂cAb) +

1

4
(∂dAa + ∂aAd)F

d
b +

1

4
AdFadA

cFbc

= −1

2
Ab∂cF

c
a −

1

2
Aa∂cF

c
b

−1

2
(∂cAb)F

c
a −

1

2
(∂cAa)F c

b +
1

4
F c
a (∂bAc + ∂cAb) +

1

4
(∂dAa + ∂aAd)F

d
b

−1

2
(AbF

c
a +AaF

c
b )zddc +

1

2
zcdaAbF d

c +
1

2
AaF

c
b zdbc

+
1

4
(AdF

c
a +AaF

c
d )(AbF

d
c +AcF

d
b ) +

1

4
AdFadA

cFbc

= −1

2
Ab∂cF

c
a −

1

2
Aa∂cF

c
b +

1

2
FacF

c
b

−1

2
(AbF

c
a +AaF

c
b )zddc +

1

2
zcdaAbF d

c +
1

2
AaF

c
b zdbc

+
1

4
(AdF

c
a +AaF

c
d )(AbF

d
c +AcF

d
b ) +

1

4
AdFadA

cFbc (5.2.3)

The electrovacuum terms for a nullish electromagnetic field can be seen em-
bedded in this equation as the third term, this shows that we are not producing
a completely new theory from Kaluza’s original theory. Kaluza-Cartan theory
has a limit in common with Kaluza theory. Taking O(h3) L1-L3 weak field clar-
ifies this. Only the first three terms (5.2.3) survive, of which the first two are
charge terms and the latter is the stress-energy of nullish solutions. However, if
the charge terms are ignored then there is a lack in the above equation of likely
significant terms to provide any other type of solution, non-nullish electromag-
netic fields in particular. It is therefore too restrictive when the scalar field is
constant just like Kaluza’s original theory.

For this reason we can try an alternative formulation of electromagnetism
in order to obtain a fuller range of geometries via the torsion bearing Ricci
tensor instead: R̂AB = 0. That is by identifying electromagnetism with the
Kaluza-Cartan vacuum this time. Using (5.2.1) gives:

Rab = Rab − R̂ab = ∂czcba − ∂bzcca + zcbazddc −zcdazdbc
−∂cΓ̂cba + ∂bΓ̂

c
ca − Γ̂CbaΓ̂ddC + Γ̂CdaΓ̂dbC (5.2.4)
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Detailing each term here without a specific point to make is not profitable,
is lengthy, and shall not be undertaken. There are however clearly more degrees
of freedom than before, and this is the main requirement. There is a limit in
common for both formulations of electromagnetism when there is no appreciable
torsion (noting that nullish solutions under the first formulation need no such
torsion). More generally allowing torsion terms allows for non-nullish electro-
magnetic fields. Similarly other formulations of electromagnetism are likely to
provide the required degrees of freedom. However in all cases it is necessary
to show that prospective electromagnetic solutions also obey the Lorentz force
law as the general relativistic Einstein-Maxwell equation will not be satisfied
in general. This will be done later. Here the fairly simple principle has been
shown via the first field equation that releasing the Kaluza constraint on van-
ishing (torsionless) Ricci curvature is an effective way to obtain the required
missing solutions. It is further required that Maxwell’s laws without sources be
approximately satisfied. This will be studied via the second field equation.

5.3 The Second Field Equation With Torsion

Rederivation of the second field equation under the cylinder condition:

R̂a4 = ∂CẑC4a − ∂4ẑCCa + ẑC4aẑDDC − ẑCDaẑD4C
= ∂cẑc4a + ẑc4aẑDDc − ẑcDaẑD4c = ∂cẑc4a + ẑc4aẑddc − ẑcdaẑd4c

=
1

2
∂cF

c
a +

1

2
F cazddc +

1

4
F caA

dFcd −
1

2
(zcda +

1

2
(AdF

c
a +AaF

c
d ))F dc

Looking at this at an O(h2) L1-L3 weak field limit (re-inserting general k):

R̂a4 →
k

2
∂cF

c
a (5.3.1)

This couldn’t be a clearer (albeit approximate at the O(h2) weak field limit)
conception of Maxwell charge. This coincides with the Einstein (without tor-
sion) tensor at the same limit, thus providing an alternative conception of the
conservation of Maxwell charge locally (cf 6.1.1):

Ĝa4 → R̂a4 →
k

2
∂cF

c
a (5.3.2)

On the other hand, by definition (and the cylinder condition, and 9.7.7), we
immediately get:

R̂a4 = 0 (5.3.3)

Whereas R̂4b simplifies at the O(h2) weak field limit to:

R̂4b →
1

2
∂cF

c
b − ∂cK̂

c
b4 + ∂bK̂

c
c4 (5.3.4)
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This is also approximately conserved Maxwell charge (re-inserting general
k) given at the O(h2) L1-L3 weak field limit. Using L3 and equation (5.1.7):

R̂4b → k∂cF
c
b (5.3.5)

This means that the Kaluza-Cartan vacuum may not have stray charges in
it of any significance, which is a required quality of a sourceless electromagnetic
field. Any low significance charge source, further, necessarily implies antisym-
metric components of the Kaluza-Cartan Ricci tensor: 1

2 (R̂4a − R̂a4), which at
the completely antisymmetric (and also weak field) limit implies also no spin
sources by (9.4.9). The Kaluza-Cartan vacuum can not contain significant spin
sources.

5.4 The Third Field Equation With Torsion, k = 1

This section shows how torsion releases the constraint of the third torsionless
field equation (2.3.3), thus allowing non-nullish solutions. The constraint that
the Ricci tensor be zero leads to no non-nullish solutions in the original Kaluza
theory. This is caused by setting R̂44 = 0 in that theory and observing the
terms. The result is that (when the scalar field is constant) 0 = FcdF

cd in the
original Kaluza theory. The same issue arises here:

We have:

R̂44 = ∂CẑC44 − ∂4ẑCC4 + ẑC44ẑDDC − ẑCD4ẑD4C
= 0− 0 + 0− ẑCD4ẑD4C = −ẑcd4ẑd4c

= −1

4
F cdF

d
c (5.4.1)

The result is that whilst we can have non-nullish solutions, we can only have
them outside of a Kaluza vacuum, for example in a Kaluza-Cartan vacuum.

By definition (and the cylinder condition, and 9.7.7), we immediately get:

R̂44 = 0 (5.4.2)

There is no reason in general for equation (5.4.1) to be 0, and so non-nullish
solutions are generally available in the presence of torsion providing we are not
constrained to the Kaluza vacuum as with Kaluza’s original theory.

6 The Lorentz Force Law

Toth [8] derives a Lorentz-like force law where there is a static scalar field and
Kaluza’s cylinder condition applies in the original Kaluza theory. The resulting
‘charge’ is the momentum term in the fifth dimension and it was not apparent
how this related to the Maxwell current, except as Toth states via ‘formal equiv-
alence’. Toth’s calculation is extended here and clarification obtained. Here we
make use of the Geodesic Assumption K4. First the identification of Toth charge
and Maxwell charge is investigated.
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6.1 Toth Charge

Now to investigate the relationship between Toth charge and Maxwell charge.
For this we need the O(h2) weak field limit defined by L1 (cf equation 5.3.2)
and discounting O(h2) terms:

Ĝa4 = R̂a4 − 1

2
ĝa4R̂ = R̂a4 − 1

2
(−Aa)R̂ → R̂a4

R̂a4 = ∂CẑC4a − ∂4ẑC a
C + ẑCbaẑDDC − ẑC a

D ẑDbC

Ĝa4 → R̂a4 = ∂cẑc4a (6.1.1)

Putting k back in, and by using Appendix equation (9.9.1) for the Christoffel
symbol, we get:

R̂a4 → 1

2
∂ckF

ac (6.1.2)

And so by (3.3.10),

J∗a → −
αk

2
∂cF

c
a (6.1.3)

So Toth and Maxwell charges are related by a simple formula. The right
hand side being Maxwell’s charge current (see p.81 of [6]), and has the correct
sign to identify a positive Toth charge Q∗ with a positive Maxwell charge source
4πQM , whenever αk > 0. In the appropriate space-time frame, and Kaluza atlas
frame, using (3.3.9), and approaching the O(h2) limit given by L1 (L2 and L3
aren’t used):

4πQM → +
2

αk
Q∗ (6.1.4)

6.2 A Lorentz-Like Force Law

The Christoffel symbols and the geodesic equation are the symmetric ones de-
fined in the presence of completely antisymmetric torsion. We will here initially
use k = 1, a general k can be added in later.

Γ̂c(4b) = 1
2g
cd(δ4ĝbd + δbĝ4d − δdĝ4b) + 1

2 ĝ
c4(δ4ĝb4 + δbĝ44 − δ4ĝ4b) =

1
2g
cd[δb(φ

2Ad)− δd(φ2Ab)] + 1
2g
cdδ4ĝbd + 1

2 ĝ
c4δbĝ44 =

1
2φ

2gcd[δbAd − δdAb] + 1
2g
cdAdδbφ

2 − 1
2g
cdAbδdφ

2 + 1
2g
cdδ4ĝbd + 1

2 ĝ
c4δbφ

2 =
1
2φ

2F cb + 1
2g
cdAdδbφ

2 − 1
2g
cdAbδdφ

2 + 1
2g
cdδ4ĝbd + 1

2 ĝ
c4δbφ

2 =
1
2φ

2F cb − 1
2g
cdAbδdφ

2 + 1
2g
cdδ4ĝbd = 1

2φ
2F cb − 1

2g
cdAbδdφ

2

(6.2.1)
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Γ̂c44 = 1
2 ĝ

cD(δ4ĝ4D + δ4ĝ4D − δDĝ44) = - 1
2g

cdδdφ
2

(6.2.2)

We have:

Γ̂c(ab) = 1
2g
cd(δagdb + δbgda − δdgab)

+ 1
2g
cd(δa(φ2AdAb)+δb(φ

2AaAd)−δd(φ2AaAb))+ 1
2 ĝ
c4(δaĝ4b+δbĝ4a−δ4ĝab)

= Γc(ab) + 1
2g
cd(δa(φ2AdAb) + δb(φ

2AaAd)− δd(φ2AaAb))
−Ac(δaφ2Ab + δbφ

2Aa)

(6.2.3)

So, for any coordinate system within the maximal atlas:

0 = d2xa

dτ2 + Γ̂a(BC)
dxB

dτ
dxC

dτ

= d2xa

dτ2 + Γ̂a(bc)
dxb

dτ
dxc

dτ + Γ̂a(4c)
dx4

dτ
dxc

dτ + Γ̂a(b4)
dxb

dτ
dx4

dτ + Γ̂a44
dx4

dτ
dx4

dτ

= d2xa

dτ2 + Γ̂a(bc)
dxb

dτ
dxc

dτ + (φ2F ab − gadAbδdφ2)dx
b

dτ
dx4

dτ −
1
2g

adδdφ
2 dx4

dτ
dx4

dτ

(6.2.4)

Taking φ2 = 1 and the charge-to-mass ratio to be:

Q′/mk0 =
dx4

dτ
(6.2.5)

We derive a Lorentz-like force law:

d2xa

dτ2
+ Γ̂a(bc)

dxb

dτ

dxc

dτ
= −(Q′/mk0)F ab

dxb

dτ
(6.2.6)

Putting arbitrary k and variable φ back in we have:

d2xa

dτ2
+Γ̂a(bc)

dxb

dτ

dxc

dτ
= −k(Q′/mk0)(φ2F ab −gadAbδdφ2)

dxb

dτ
− 1

2
gadδdφ

2 dx
4

dτ

dx4

dτ
(6.2.7)

6.3 Constant Toth Charge

Having derived a Lorentz-like force law we look also at the momentum of the
charge in the Kaluza dimension. We look at this acceleration as with the Lorentz
force law. We have, with torsion (and k = 1):

0 =
d2x4

dτ2
+ Γ̂4

(BC)

dxB

dτ

dxC

dτ
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=
d2x4

dτ2
+ Γ̂4

(bc)

dxb

dτ

dxc

dτ
+ Γ̂4

(4c)

dx4

dτ

dxc

dτ
+ Γ̂4

(b4)

dxb

dτ

dx4

dτ
+ Γ̂4

44

dx4

dτ

dx4

dτ

=
d2x4

dτ2
+ Γ̂4

(bc)

dxb

dτ

dxc

dτ
+ 2Γ̂4

(4c)

dx4

dτ

dxc

dτ
+

1

2
Adδdφ

2 dx
4

dτ

dx4

dτ
(6.3.1)

6.4 Unitary Scalar Field And Torsion

Both equations above (6.2.7) and (6.3.1) have a term that wrecks havoc to any
similarity with the Lorentz force law proper, the terms at the end. Both terms
can however be eliminated by setting the scalar field to 1. This is postulate B1.

The two equations under B1 become (for all k):

d2xa

dτ2
+ Γ̂a(bc)

dxb

dτ

dxc

dτ
= −k(Q′/mk0)F ab

dxb

dτ
(6.4.1)

d2x4

dτ2
+ Γ̂4

(bc)

dxb

dτ

dxc

dτ
= −k2(Q′/mk0)AcF

c
b

dxb

dτ
(6.4.2)

This certainly looks more hopeful. The more extreme terms have disap-
peared, the general appearance is similar to the Lorentz force law proper. The
right hand side of (6.4.2) is small, but in any case the well-behaved nature of
charge follows from local momentum conservation (divergence of the torsionless
Einstein tensor) and the consequential constraints on charge models.

6.5 The Lorentz Force Law

It is necessary to confirm that equation (6.4.1) not only looks like the Lorentz
force law formally, but is indeed the Lorentz force law. Multiplying both sides
of (6.4.1) by dτ

dτ ′
dτ
dτ ′ , where τ ′ is an alternative affine coordinate frame, gives:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
= −k dτ

dτ ′
(Q′/mk0)F ab

dxb

dτ ′
(6.5.1)

Given Q∗ = Q′ dτdτ∗ and therefore mk0

m0
Q∗ = Q′ dτdt0 by definition, we can set

the frame such that τ ′ = t0 via the projected 4D space-time frame of the charge.
And the Lorentz force is derived:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
= −k(Q∗/m0)F ab

dxb

dτ ′
(6.5.2)

In order to ensure the correct Lorentz force law using the conventions of Wald
[7] p69, this can be rewritten as follows, using the antisymmetry of F ab = −F ab:
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= k(Q∗/m0)F ab
dxb

dτ ′
(6.5.3)

Using (6.1.4) as its L1 weak field limit is approached, this can be rewritten
again in terms of the Maxwell charge:

→ k(
αk

2
(4πQM )/m0)F ab

dxb

dτ ′
(6.5.4)

The result is that we must relate G and k to obtain the Lorentz force law
in acceptable terms:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
→ (QM/m0)F ab

dxb

dτ ′

k = 2
√

G (6.5.5)

This shows that the Lorentz force law proper can be derived approaching the
limit for (6.1.4), and provides a constraint in so doing. The L3 limit therefore is
required to ensure correspondence with standard physics. In all other respects
this derivation is considerably general, and is valid given only the postulates of
the present theory.

7 Analysis Of The Electromagnetic Field; Super-
energy

In this theory the sourceless electromagnetic field has been identified with van-
ishing Ricci curvature, where the Ricci curvature, in contradistinction from the
original Kaluza theory, is defined in terms of the torsion tensor. This is the
Kaluza-Cartan vacuum as opposed to the Kaluza vacuum. The Kaluza-Cartan
vacuum has tight restrictions on the presence of charge and spin sources: it ap-
proximately follows the sourceless Maxwells laws, in that respect quite similar
to the original Kaluza theory.

All particles following auto-parallels obey the Lorentz force law. It is as-
sumed in this theory that particle-like charge sources follow auto-parallels. The
derivation of the Lorentz force law works for all auto-parallel following paths
whether charged or not however. The derivation is quite general. In the absence
of non-completely anti-symmetric torsion this is essentially geodesic motion.

The fundamental conservation/divergence-free law for mass-energy belongs
to the (torsionless) Einstein tensor. Noting that what we really mean by conser-
vation also requires energy conditions. The complement of the Kaluza-Cartan
vacuum is therefore called Kaluza-Cartan matter (rather than mass-energy).
Matter and fields are able to transfer Kaluza mass-energy (the complement of
the Kaluza vacuum) to and from each other. Unlike (torsionless) mass-energy
the divergence law for Kaluza-Cartan matter depends on the torsion tensor as
seen by combining (9.4.5) and (9.4.7). It is only vanishing at the completely
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antisymmetric limit. We thus have no a priori guarantee that a Kaluza-Cartan
vacuum (when not also a Kaluza vacuum) might not just evolve so as to cease
being a Kaluza-Cartan vacuum even when there are energy conditions imposed.

By imposing the conserved super-energy hypothesis, SE1, causality is im-
posed. The result is that on Kaluza vacuums well-behaved characteristics glob-
ally are ensured, but more importantly causality is also imposed on Kaluza-
Cartan vacuums. This imposes the time evolution of Maxwell’s laws at least
locally and approximately. This is why SE1 is imposed. Equally other methods
could be applied, provided the results are similar.

Toth charge is also fundamental in its conservation under definition (3.3.10).
Though perhaps not in the way usually understood. Here it is a part of (torsion-
less) 5D mass-energy conservation. The correlation with Maxwell charge comes
from the weak field limit L1. See identity (6.1.4). But it is the Toth charge that
is fundamentally part of a conservation law.

With respect to spin, spin current obeys the fundamental divergence law
(9.4.5). This is then also a fundamental quantity in Kaluza-Cartan theory, and
complementary to (torsionless) mass-energy in that sense. It is divergence-free
relative to the 5D torsion connection.

In all matters of divergence and conservation we must note the well-behaved
postulates such as K2. Otherwise topology can be manipulated to create con-
tradictory results.

Maxwell charge requires spin, at least at a local O(h2) L1-L3 weak field
and completely antisymmetric limit. This follows from (9.4.9) and (5.3.5). By
definition of Toth charge, components of 5D (torsionless) mass-energy are also
required. A matter model defined by Kaluza-Cartan matter can have charge, but
stray charges in a Kaluza-Cartan vacuum region are limited in significance by
the weak field assumptions. Further a minimum component of Kaluza-Cartan
matter and (torsionless) conserved mass-energy is required to form a charge
model, in addition to the (with torsion) divergence-free spin. The weak field
assumptions therefore keep a certain amount of matter and spin assigned and
bound to any charge model. And even if such diverge far from these limits, they
must be reassigned and rebound upon return. L3 though difficult to interpret
seems to be particularly important.

Since Maxwell charge is not necessarily conserved in this theory but merely
identified with the conserved (with respect to the torsionless connection) Toth
charge at the weak field limit, it is the spin that becomes the fundamental
quantity (9.4.5) that gives matter models their character. (Torsionless) mass-
energy is also important but does not distinguish matter from fields, a distinction
that is needed: What we mean by matter, intuitively, whilst at first glance
Kaluza-Cartan matter, is perhaps more fundamentally characterized by its spin
content.

Approximate conservation or divergence laws arise at the weak field anti-
symmetric limit: (9.4.7), and that implied by applying this in turn to (9.4.9).
The result is the appearance of Maxwell charge as a significant term in (9.4.9),
via (5.3.5) and (5.3.3) - approximately divergence-free (relative to the torsion
connection). Components of the spin current/charge also get identified at this
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limit with the Maxwell current/charge.

Matter models (here omitting the Kaluza-Cartan prefix) are more broadly
any region where a significant (in the sense that it can not be discounted by
L1-L3) amount of charge, spin or matter is present. The presence of charge
ensures the presence of spin, both ensuring the presence of matter at this limit.
The problem of spins cancelling out is a non-issue as there is an additional
dimension whose spin components must be more obviously cumulative with
increased charge, at least until the L3 limit ceases to be valid. Consistent with
observation matter does not necessarily imply the presence of spin or charge,
but in itself cannot be distinguished as fundamentally separate over time from
adjacent fields. The quantity is not in itself necessarily conserved or divergence-
free, and mass-energy is free to pass from Kaluza-Cartan vacuum to Kaluza-
Cartan matter and vice versa. Spin is therefore more fundamental in matter-
charge-spin particle models and in characterising them as distinct from any
surrounding fields. This can be interpreted as shedding light on the nature of
matter and an explanation as to why local matter is such a hard thing to define
in general relativity.

8 Conclusion

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth wrapped-
up spatial dimension is inspiration for many modern attempts to develop new
physical theories. However for a number of reasons it is generally considered
untenable in itself.

A cylinder condition was imposed as with Kaluza’s original theory. A num-
ber of other constraints and definitions were provided. This cylinder condition
however was based on torsion. The result was the appearance of missing and
needed electromagnetic fields and a new definition of charge in terms of the 5D
momentum. Conservation of charge was generalized into the vanishing diver-
gence of the torsionless Einstein tensor. The new definition of kinetic charge
and the Maxwellian charge coincide at an appropriate limit. In order to obtain
the missing electromagnetic fields it was necessary to generalize Kaluza’s origi-
nal theory to the vanishing of the Ricci tensor defined in terms of torsion. This
led to a complex analysis of what constitutes matter, charge, spin, mass and
energy.

Restrictions to the geometry and certain symmetries were handled by reduc-
ing the maximal atlas to a reduced Kaluza atlas that automatically handled the
restrictions and symmetries without further deferment to general covariance.
Physically this represents the notion presented that in 4D charge is a generally
covariant scalar, whereas in 5D, charge is entirely dependent on the frame. That
this is meaningful stems from the global property of a small wrapped-up fifth
spatial dimension with cylinder condition, even if this seems to be difficult to
rationalize with quantization of charge. Roughly the Kaluza atlas is a choice of
subatlas for which the partial derivatives in the Kaluza direction are vanishing.
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This led to useful constraints on the connection coefficients for all coordinate
systems in the Kaluza atlas. Decomposition of the 5D metric into a 4D metric
and a vector and scalar part was exploited.

Classical electrodynamics is rederived in the spirit of Kaluza’s original the-
ory but more fully. Gravity and electromagnetism are unified in a way not
fully achieved by general relativity, Einstein-Cartan theory or Kaluza’s origi-
nal theory. The collocation of torsion with electromagnetism is different from
many other Einstein-Cartan theories where the torsion is often bound to mat-
ter models. Here certain specific components of torsion are an essential part
of electromagnetism, and other components of torsion could potentially exist
outside of matter models, perhaps with detectable consequences. The scalar
field (which is present in the original Kaluza theory), on the other hand, was
fixed constant. This was to ensure the Lorentz force law.

Some interesting results such as that spin and charge can exist only in the
presence of matter (at a particular limit) were derived. An issue is raised as
to when the limit postulates that characerterize the classical general relativistic
limit break-down and how that relates to real phenomena.

One outstanding issue is that realistic charge models are not possible without
involving imaginary numbers (imaginary proper velocities in the Kaluza dimen-
sion and imaginary Kaluza rest mass). Obviously to detail this the Kaluza-
Cartan space would have to be adapted further in some way. But on the other
hand limiting the theory solely to the 4D resultant space-time region or mani-
fold, and applying a realistic charge model by hand need cause no such problems
provided the net result makes sense, provided all the 4D numbers are real. Bar-
ring this failure to provide realistic charge models, which poses challenges to
the 5D theory, the postulates currently required are straight forward. It is in
a certain sense a simple theory. In effect all we have is a 5D manifold with a
covariant cylinder condition on one spatial dimension defined with respect to an
approximately completely antisymmetric metric torsion tensor limit, with cer-
tain well-defined weak fields and limits. Interpretation of many of the postulates
can be made in physically appealing terms.

Super-energy was here introduced to resolve problems of causality, time evo-
lution and stability.

The core theory is given by K1-4 (core postulates), plus L1-L2 (more em-
pirically justified limits), and L3. The scalar field is set constant by B1. SE1
introduces super-energy and posits its conservation. This replaces the need to
worry too much about energy conditions as in general relativity, but is not
unique in its contribution to the theory: other alternatives could be applied.

Why go to all this effort to unify electromagnetism and gravitation and
to make electromagnetism fully geometric? Because experimental differences
could be detectable given sufficient technology on the one hand, and, on the
other, simply because such an attempt at unification might be right or lead
in the right direction. Such an attempt may also widen the search. This the-
ory differs from both general relativity and Einstein-Cartan theory and may be
empirically testable. Also the expected ω-consistency of Einstein-Cartan the-
ory together with the derivation of a Lorentz force law via the Kaluza part of
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the theory gives a theoretical motivation, as does the fact that the other ap-
proaches beyond general relativity have not fulfilled their promise in terms of
approaching unification. Attempting to extend and unify classical theory prior
to a unification with quantum mechanics may even be a necessary step in a
future unification whether this turns out to be the right way or not. It may be
that current attempts are more difficult than necessary as the problem may not
yet have been framed correctly.

It is often asserted that the true explanation for gravitational theory and
space-time curvatures will most likely, by reductionist logic, emerge out of its
constituent quantum phenomena. Such an approach has merit, but is overly
optimistic, and does not optimize the search [23]. Before constituent quan-
tum parts can be properly defined and subdivided the larger scale whole must
have been present initially to then be so divided. Something of the context is
evidently missing from quantum mechanics, general relativity or both on ac-
count of the difficulty of squaring the two. The dividing and putting together
of parts assumes a context, and a context assumes a whole [22]. Implicitly re-
ductionism assumes contextual knowledge. There is paradoxically an implicit
non-reductionist assumption within reductionism. Generally we may take our
conception of such a whole for granted, but we should bear in mind that this is
a limited approach, speaking more of our limitations and need for easy concepts
than of reality. And indeed it represents the assumption of a limit in the theo-
retical sense. Taking a global perspective can be more difficult but may also be
more insightful and more general. A more holistic (in the sense of non-reduction
or post-reductionist, but nevertheless empirical) approach is required at both
the large and small scale. Therein perhaps lies many conceptual difficulties.
Such considerations are further justification for the approach attempted here to
unify gravity with electromagnetism and this may also yield insights required
to unify gravity with the other forces.

9 Appendix

9.1 Geometrized Charge

The geometrized units, Wald [7], give a relation for mass in terms of fundamental
units. This leads to an expression for Toth charge in terms of Kaluza momentum
when k = 2 and G = 1.

G = 1 = 6.674× 10−8cm3g−1s−2 = 6.674× 10−8cm3g−1 × (3× 1010cm)−2

= 6.674× 10−8cmg−1 × (3× 1010)−2

1g ≈ 7.42× 10−29cm for c=1, G=1 (9.1.1)

1g ≈ G/c2cm for c=1, G=1 (9.1.2)

For k = 2, c=1, G=1 we have:

1statcoulomb = 1cm3/2s−1g1/2 = cm1/2 × (7.42× 10−29cm)1/2/(3.00× 1010)
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= 8.61× 10−15cm/(3× 1010) ≈ 2.87× 10−25cm ≈ 3.87× 103g (9.1.3)

Using cgs (Gaussian) units and the cgs versions of G and c, ie G = 6.67 ×
10−7cm3g−1s−1 and c = 3× 1010cms−1, the charge can be written in terms of
5D proper momentum P4 as follows:

1statcoulomb = 1cm3/2s−1g1/2 = 1(cm/s)cm1/2g1/2 =
c√
G
g.cm/s

Q∗ =
c√
G
P4 (9.1.4)

9.2 Proper Kaluza Velocity As A Scalar

This section shows that the proper velocity W (written as a vector) with only
one component in the Kaluza dimension is invariant under 4D space-time boosts
orthogonal to it. The proper Kaluza velocity therefore is a constant with respect
to local coordinate changes within a Kaluza atlas. It could be claimed that this
result should follow in any case from the definition of proper velocity if the local
coordinate transformation is only in the 4 dimensions of space-time, however
this is not true for rotations - a rigorous proof is always better. The result here
simply says that with respect to the Kaluza atlas the value is a scalar.

W4 = dx4/dτ proper velocity in a stationary space-time frame, but following the particle

U4 =
W4√

1 +W4
2

coordinate velocity using proper velocity formula

Using orthogonal addition of coordinate velocities formula to boost space-
time frame by orthogonal coordinate velocity V:

V = (V, 0, 0, 0)

U = (0, 0, 0, U4)

Coordinate velocity vector in new frame, using the orthogonal velocity ad-
dition formula:

U = V +
√

1− V 2 U

So,

U4 =
√

1− V 2
W4√

1 +W 2
4

Define proper velocity in new frame: W, using proper velocity definition:
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W 4 =
U4√

1− V 2 − U4
2

=

√
1− V 2 W4√

1+W 2
4√

1− V 2 − (
√

1− V 2 W4√
1+W 2

4

)2

=
W4√

1 +W 2
4

√
1− ( W4√

1+W 2
4

)2

=
W4√

1 +W 2
4 −W 2

4

= W4

(9.2.1)

W4 = W4 is the result required

9.3 Introducing The Geometry Of Torsion

5D Cartan torsion will be admitted. This will provide extra and required de-
grees of freedom since the cylinder condition (K3) would be too tight to yield
interesting geometry otherwise. It is noted that Einstein-Cartan theory, that
adds torsion to the dynamics of relativity theory is most probably a minimal
ω-consistent extension of general relativity [13][14] and therefore the use of tor-
sion is not only natural, but arguably a necessity on philosophical and physical
grounds. That argument can also be applied here. What we have defined by
this addition can be called Kaluza-Cartan theory as it takes Kaluza’s theory
and adds torsion. We assume that the torsion connection is metric.

For both 5D and 4D manifolds (i.e. dropping the hats and indices notation
for a moment), torsion will be introduced into the connection coefficients as
follows, using the notation of Hehl [11]. Metricity of the torsion tensor will be
assumed [19], the reasonableness of which (in the context of general relativity
with torsion) is argued for in [20] and [21]:

1

2
(Γkij − Γkji) = S k

ij (9.3.1)

This relates to the notation of Kobayashi and Nomizu [12] and Wald [7] as
follows:

T ijk = 2Sjk
i ≡ Γijk − Γikj (9.3.2)

We have the contorsion tensor K k
ij [11] as follows, and a number of relations

[11]:

Γkij =
1

2
gkd(∂igdj + ∂jgdi − ∂dgij)−K k

ij = zkij−K k
ij (9.3.3)
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K k
ij = −S k

ij + S k
j i
− Skij = −K k

i j (9.3.4)

Notice how the contorsion is antisymmetric in the last two indices.

With torsion included, the auto-parallel equation becomes [11]:

d2xk

ds2
+ Γk(ij)

dxi

ds

dxj

ds
= 0 (9.3.5)

Γk(ij) = zkij+Sk(ij) − S
k

(j i)
= zkij+2Sk(ij) (9.3.6)

Only when torsion is completely antisymmetric is this the same as the ex-
tremals [11] which give the path of spinless particles and photons in Einstein-
Cartan theory: extremals are none other than geodesics with respect to the
Levi-Civita connection.

d2xk

ds2
+ zkij

dxi

ds

dxj

ds
= 0 (9.3.7)

With complete antisymmetry we have many simplifications such as:

K k
ij = −S k

ij (9.3.8)

9.4 Stress-Energy And Conservation Laws

Inspired by the Belinfante-Rosenfeld procedure [12][15], by defining the torsion-
less Einstein tensor in terms of torsion bearing components, yields what can be
interpreted as extra spin-spin coupling term X̂AB :

ĜAB = ĜAB + V̂AB + X̂AB (9.4.1)

V̂AB = −1

2
∇̂C(σ̂ABC + σ̂BAC + σ̂CBA) (9.4.2)

Where σ is defined as the spin tensor in Einstein-Cartan theory. However,
here we do not start with spin (and some particle Lagrangians), but with the
torsion tensor. So instead the spin tensor is defined in terms of the torsion
tensor using the Einstein-Cartan equations. Here spin is explicitly defined in
terms of torsion:

σ̂ABC = 2ŜABC + 2ĝAC Ŝ
D

BD − 2ĝBC Ŝ
D

AD (9.4.3)

This simplifies definition (9.4.2):

V̂AB = −1

2
∇̂C(σ̂CBA) = −∇̂C(ŜCBA + ĝCAŜ

D
BD − ĝBAŜ D

CD ) (9.4.4)
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By considering symmetries and antisymmetries we get a divergence law:

∇̂BV̂ AB = 0 (9.4.5)

The Case Of Complete Antisymmetry

Note that the mass-energy-charge divergence law for the torsionless Einstein
tensor is in terms of the torsionless connection, but the spin source divergence
law here is in terms of the torsion-bearing connection. However, for completely
antisymmetric torsion we have:

∇̂C ĜAB = 4̂C ĜAB + K̂ D
CA ĜDB + K̂ D

CB ĜAD
So,

∇̂AĜAB = 0 + 0 + K̂A D
B ĜAD = −K̂ AD

B ĜAD
= −K̂ AD

B ĜDA = +K̂ DA
B ĜDA = +K̂ AD

B ĜAD = 0 (9.4.6)

∇̂A(ĜAB + X̂AB) = 0 (9.4.7)

And so there is a stress-energy divergence law with respect to the torsion
connection also, at least in the completely antisymmetric case.

Further, still assuming complete antisymmetry of torsion, by definition of
the Ricci tensor:

R̂AB = R̂AB + K̂ C
DA K̂

D
BC − ∂CK̂

C
BA − K̂

C
BA ẑDDC + K̂ C

DA ẑDDC − K̂
C

DB ẑDAC
= R̂AB − K̂ C

AD K̂ D
BC − ∇̂

C ŜABC (9.4.8)

Ĝ[AB] = R̂[AB] = −∇̂C ŜABC = −V̂AB (9.4.9)

−V̂AB is the antisymmetric part of ĜAB at this limit. And X̂AB is a sym-
metric spin-torsion coupling adjustment - again only in the case of completely
antisymmetric torsion.

These divergence laws can function as 5D Kaluza-Cartan ‘conservation’ laws,
given postulate K2, in the presence of positivity conditions.

9.5 Torsion-Normal Coordinates

By using the same argument as in Wald [7] p. 41-42 normal coordinates can be
defined about any point also in the presence of torsion using the auto-parallel
equation. Completely anti-symmetric torsion yields the same normal coordi-
nates as without torsion, the paths varying only when non-completely anti-
symmetric terms intervene.

Postulate L3 means that local normal and local torsion-normal coordinates
will be comparable. This gives an interpretation of L3 that is more intuitive.
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9.6 The Physicality Of The Constancy Of The Scalar Field

For this section the Einstein summation rule is not applied. Using eqn(5.1.3)
and the anti-symmetry of the last two indices of contorsion:

0 = 2K̂ c
4c = ĝcd(∂cφ

2Ad − ∂dφ2Ac) + ĝc4∂cφ
2 (9.6.1)

= gcdφ2(∂cAd − ∂dAc) + gcd(Ad∂cφ
2 −Ac∂dφ2)−Ac∂cφ2 (9.6.2)

Using properties of derivatives of scalar fields ([7] eqn 3.1.10):

= gcdφ2(∂cAd − ∂dAc) + gcd(Ad4cφ2 −Ac4dφ2)−Ac∂cφ2 (9.6.3)

From this we get:

0 = Âc∂cφ
2 (9.6.4)

This works to the extent φ2 can be decomposed from the metric as a scalar
field. Without Einstein summation this shows that the postulate B1 is physically
reasonable when the vector potential components are non-zero.

9.7 The Christoffel Symbols And Connection Coefficients

Here we assume only the definitions of the Christoffel symbols and the cylinder
condition. (Without torsion terms shown, k set to 1)

2ẑABC =
∑
d ĝ

AD(∂B ĝCD + ∂C ĝDB − ∂DĝBC)

=
∑
d ĝ

Ad(∂B ĝCd + ∂C ĝdB − ∂dĝBC)
+ ĝA4(∂B ĝC4 + ∂C ĝ4B − ∂4ĝBC)

2ẑAbc =
∑
d ĝ

Ad(∂bgcd + ∂cgdb − ∂dgbc)
+
∑
d ĝ

Ad(∂bφ
2AcAd + ∂cφ

2AdAb − ∂dφ2AbAc)
+ ĝA4(∂bφ

2Ac + ∂cφ
2Ab − ∂4gbc − ∂4φ2AbAc)

2ẑA4c =
∑
d ĝ

Ad(∂4gcd + ∂4φ
2AcAd + ∂cφ

2Ad − ∂dφ2Ac) + ĝA4∂cφ
2

2ẑA44 = 2
∑
d ĝ

Ad∂4φ
2Ad −

∑
d ĝ

Ad∂dφ
2 + ĝA4∂4φ

2

(9.7.1)

The Electromagnetic Limit φ2 = 1

Now putting in φ2 = 1,

2ẑAbc =
∑
d ĝ

Ad(∂bgcd+∂cgdb−∂dgbc) +
∑
d ĝ

Ad(∂bAcAd+∂cAdAb−∂dAbAc)
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+ ĝA4(∂bAc + ∂cAb − ∂4gbc − ∂4AbAc)
2ẑA4c =

∑
d ĝ

Ad(∂4gcd + ∂4AcAd + ∂cAd − ∂dAc)
ẑA44 =

∑
d ĝ

Ad∂4Ad
(9.7.2)

Simplifying...

2ẑabc = 2zabc +
∑
d g

ad(AbFcd +AcFbd) +Aa∂4gbc +Aa∂4AbAc
2ẑ4

bc = −
∑
dA

d(∂bgcd + ∂cgdb − ∂dgbc)−
∑
dA

d(AbFcd +AcFbd)
− (1 +

∑
iAiA

i)(∂4gbc + ∂4AbAc) + (∂bAc + ∂cAb)
2ẑa4c =

∑
d g

ad(∂4gcd + ∂4AcAd) +
∑
d g

adFcd
2ẑ4

4c = −
∑
dA

d(∂4gcd + ∂4AcAd)−
∑
dA

dFcd
ẑa44 =

∑
d g

ad∂4Ad
ẑ4

44 = −
∑
dA

d∂4Ad

(9.7.3)

The Scalar Limit Ai = 0

The scalar limit is similarly defined,

2ẑAbc =
∑
d ĝ

Ad(∂bgcd + ∂cgab − ∂dgbc) −ĝA4∂4gbc
2ẑA4c =

∑
d ĝ

Ad∂4gcd + ĝA4∂cφ
2

2ẑA44 = −
∑
d ĝ

Ad∂dφ
2 + ĝA4∂4φ

2

(9.7.4)

Simplifying...

ẑabc = zabc
2ẑ4

bc = − 1
φ2 ∂4gbc

2ẑa4c =
∑
d g

ad∂4gcd
2ẑ4

4c = 1
φ2 ∂cφ

2

2ẑa44 = −
∑
d g

ad∂dφ
2

2ẑ4
44 = 1

φ2 ∂4φ
2

(9.7.5)

The Electromagnetic Limit And Cylinder Condition

By applying equations (5.1.13) and the cylinder condition in order to simplify
terms of the electromagnetic limit with k = 1, and without torsion noting that
these Christoffel symbols are symmetric in the lower indices:

2ẑabc = 2zabc + (AbF
a
c +AcF

a
b )

2ẑ4
bc = −

∑
dA

d(∂bgcd + ∂cgdb − ∂dgbc) + (∂bAc + ∂cAb)
= −2Adzdbc + (∂bAc + ∂cAb)
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2ẑa4c = F a
c

ẑ4
4c = − 1

2A
dFcd and ẑa44 = ẑ4

44 = 0

(9.7.6)

Now with torsion used to define the connection coefficients, using equations
(5.1.13) and others from that section, and noting that these connection coeffi-
cients are not necessarily symmetric in the lower indices:

2Γ̂abc = gad(∂bgcd + ∂cgdb − ∂dgbc) + (AbF
a
c +AcF

a
b )− 2K̂ a

bc

= 2zabc + (AbF
a
c +AcF

a
b )− 2K̂ a

bc

2Γ̂4
bc = −

∑
dA

d(∂bgcd + ∂cgdb − ∂dgbc) + (∂bAc + ∂cAb)

−Ad(AbFcd +AcFbd)− 2K̂ 4
bc

= −2Adzdbc + (∂bAc + ∂cAb)−Ad(AbFcd +AcFbd)− 2K̂ 4
bc

Γ̂a4c = 0 and Γ̂4
4c = Γ̂a44 = Γ̂4

44 = 0
Γ̂4
c4 = − 1

2A
dFcd

Γ̂ac4 = 1
2F

a
c − K̂

a
c4

(9.7.7)

9.8 The Conserved Super-Energy Hypothesis

The Generalized Bel tensor for a Lorentz manifold (or simply Bel tensor) is
the super-energy tensor associated with the (torsionless) Riemannian curvature
[17]. The discussion here requires metricity from the torsion connection.

The definition of super-energy tensor does not require that torsion be van-
ishing in either the connection or any of the defining tensors [17], and the im-
portant dominant super-energy property [17] follows in all cases. However here
the 5D torsionless definition will be primarily used. This leads to the causality
of the Rieman tensor [16] under specific conditions without deference to energy
conditions. The super-energy tensor definition depends on the antisymmetries
of the Riemannian tensor definition, that is [17] that it is a double symmet-
ric (2,2)-form. The definition of the super-energy tensor with respect to basic
properties such as it being a 4-tensor are dependent on the admissibility of the
interpretation of the Riemann tensor as a (2,2)-form.

Now the Riemann tensor can be written as [12] (not using hat, index or
cursive notation, indicating the most general case, but using indices that show
compatibility of conventions with eqn 1.2.2):

Riakb = ∂kΓiba − ∂bΓika + ΓcbaΓikc − ΓckaΓibc (9.8.1)

It is a (2,2)-form if its antisymmetries are as follows: R[ia][kb]. This is clearly
the case for [k,b]. For [i,a] it is a known result provided that the torsion-bearing
connection is metric. The argument requires the torsion analog of Wald’s equa-
tion (3.2.12) [7] and then follows for the same reasons as given there for the
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torsionless case. Thus generalized Bel super-energy is a (2,2)-form whether
defined in terms of the torsion or not.

In [16] the derivation of the causality of the fields underlying any particular
super-energy tensor is given in terms of the divergence of the field’s super-
energy tensor. A divergence condition is given that ensures causality of the
underlying field associated with any such super-energy tensor. The divergence of
the generalized Bel tensor would therefore need to be bounded by this condition
if the Riemannian curvature were to remain causal. This condition is theorem
4.2 in [17].

A sufficient case would be if the divergence of the superenergy tensor were
zero (and assuming global hyperbolicity -i.e. postulate K2). The important de-
tails are on page 4 of [16]. The argument does not require that the definition be
torsion free. Thus the vanishing divergence of the generalized Bel tensor would
yield causal Riemannian curvature assuming the Riemann tensor remained a
(2,2)-form (as indicated above), with no deferment to energy conditions in both
the case when torsion is used to define the Bel tensor and when it isn’t.

On p24 of [17] we have a calculation of this divergence under vanishing tor-
sion, and it can be seen that when the Ricci curvature is zero that the divergence
of super-energy is also zero. This however references symmetry properties (in
addition to antisymmetry properties) and thus further consideration of the case
with torsion would be required to extend or generalize this theorem. Theorem
6.1 on p25 of [17] may well not apply in the case that the tensors and connection
are defined in terms of torsion. Nevertheless it nicely characterizes an important
property of the Kaluza vacuum, that it can not be a source of Bel super-energy.

The Conserved Super-Energy Hypothesis: is that the divergence of the
Generalized Bel superenergy tensor be vanishing (when defined with respect to
the torsionless connection and torsion free tensors) over a Kaluza-Cartan space
that does have torsion.

This then ensures the causality sought for Kaluza-Cartan vacuums, as well
as over any Kaluza-Cartan matter.

It can be noted that in 4D and 5D in particular, see p29 of [17], the torsionless
generalized Bel tensor has the nice property of being completely symmetric. It
is curious that it should be completely symmetric precisely in the 4D and 5D
cases.

Theorem 6.1 of [17] (not proven for its torsion analog) links divergence of
torsionless generalized Bel super-energy with what Senovilla et al [17] call the
matter current.

The divergence of the Bel super-energy is given as follows [17] (still not using
the hat, cursive or index notation but understanding that torsion is omitted from
the definitions):

∇aBablm = Rb lr sJ
msr +Rb mr sJ

lsr − 1

2
glmRbrsyJ

syr (9.8.2)
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Jlmb = −Jmlb ≡ ∇lRmb −∇mRlb (9.8.3)

Jlmb = 0 then implies conservation of (torsionless) generalized Bel super-
energy. We can put this in the 5D hat notation used here as follows:

∇̂AB̂ABLM = R̂B L
R SĴ

MSR + R̂B M
R S Ĵ

LSR − 1

2
ĝLMR̂BRSY Ĵ SY R (9.8.4)

ĴLMB = −ĴMLB ≡ ∇̂LR̂MB − ∇̂MR̂LB (9.8.5)

By the conserved super-energy hypothesis this would have to be satisfied
even by matter and charge models to ensure causality.

9.9 Raised Levi-Civita Christoffel Symbols

Following the same procedure as with Christoffel symbols of the first and second
kind a raised version of the Christoffel symbols can be derived, a third kind.
It takes the value that would be guessed at (a guess because you can not raise
across partial derivatives without caution) by inspecting the elements of the
Christoffel symbol of the second kind and raising each element individually.

Starting from the covariant derivative of the raised metric tensor being zero:

∇igjk = 0 = ∂igjk + Γjik + Γkij

Cycling indices we have:

0 = ∂kgij + Γikj + Γjki

0 = ∂jgki + Γkji + Γijk

Adding the first two and subtracting the third:

∂igjk + ∂kgij − ∂jgki = 2Γjik

So, exactly as would be guessed:

Γijk =
1

2
(∂jgik + ∂kgji − ∂igjk) (9.9.1)
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