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Abstract

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth
wrapped-up spatial dimension is at the root of many modern attempts
to develop new physical theories. Lacking non-null electromagnetic fields
however the theory is incomplete. Variants of the theory are explored
to find ways to introduce non-null solutions by making the fifth dimen-
sion more physical, using alternative, weaker cylinder conditions. The
Lorentz force law is investigated starting with a non-Maxwellian definition
of charge, this is assumed to be related to Maxwellian charge by ansatz.
Order of magnitude methods are used. Provided here is an exhaustive a
search as possible. Kaluza theory remains inadequate to support electro-
magnetism in full, non-null solutions are not readily shown to be admitted.
An argument is made in favour of torsion resolving this issue. Postulates
are derived from the argument for a variant theory. The charge ansatz
is shown to follow from the postulates. It is concluded that Kaluza’s
5D space and torsion need to go together. Finally, Bel super-energy is
hypothesized to be a conserved quantity.

1 Conventions

The following conventions are adopted unless otherwise specified:

Five dimensional metrics, tensors and pseudo-tensors are given the hat sym-
bol. Five dimensional indices, subscripts and superscripts are given capital
Roman letters. So for example the five dimensional Ricci flat 5-dimensional
superspace-time of Kaluza theory is given as: ĝAB , all other tensors and indices
are assumed to be 4 dimensional. Index raising is referred to a metric ĝAB if
5-dimensional, and to gab if 4-dimensional. The domain of partial derivatives
carries to the end of a term without need for brackets, so for example we have
∂agdbAc + gdbgac = (∂a(gdbAc)) + (gdbgac). Terms that might repeat dummy
variables or are otherwise in need of clarification use additional brackets. Square
brackets can be used to make dummy variables local in scope.

Space-time is given signature (+, −, −, −), Kaluza space (+, −, −, −, −) in
keeping with [1]. Under the Wheeler et al [6] nomenclature, the sign conventions
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used here to correspond with [1] are [−, ?, −]. The first dimension (index 0) is
always time and the 5th dimension (index 4) is always the topologically closed
Kaluza dimension. Universal constants defining physical units: c = 1, and G
as a constant. The scalar field component is labelled φ2 (in keeping with the
literature) only as a reminder that it is associated with a spatial dimension,
and to be taken as positive. The matrix of gcd can be written as |gcd| when
considered in a particular coordinate system to emphasize a component view.
The Einstein summation convention may be used without special mention.

Some familiar defining equations consistent with [1] (using Roman lower-case
for the general case only for ease of reference):

Γcab =
1

2
gcd(∂agdb + ∂bgda − ∂dgab) (1.0.1)

Rab = ∂cΓ
c
ab − ∂bΓcac + ΓcabΓ

d
cd − ΓcadΓ

d
bc (1.0.2)

Gab = Rab −
1

2
Rgab = −8πG

c4
Tab (1.0.3)

Fab = ∇aAb −∇bAa = ∂aAb − ∂bAa equally F = dA (1.0.4)

Any 5D exterior derivatives and differential forms could also be given a hat,
thus: d̂B̂. However, the primary interest here will be 4D forms. 4 represents
the 4D D’Alembertian.

2 Introduction

Kaluza’s 1921 theory of gravity and electromagnetism [2][3][4] using a fifth
wrapped-up spatial dimension is at the heart of many modern attempts to
develop new physical theories [1][5]. From supersymmetry to string theories
topologically closed small extra dimensions are used to characterize the vari-
ous forces of nature. It is therefore at the root of many modern attempts and
developments in theoretical physics. However it has a number of foundational
problems. It seems sensible to look at these from a classical perspective be-
fore looking at more complicated situations such as quantum gravity theories
as envisaged by Klein.

The theory assumes a (1,4)-Lorentzian Ricci flat manifold to be the under-
lying metric, split (analogously to the much later ADM formalism) as follows:

ĝAB =

[
gab + φ2AaAb φ2Aa

φ2Ab φ2

]
(2.0.1)

By inverting this metric as a matrix (readily checked by multiplication) we
get:
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ĝAB = |ĝAB |−1 =

[
gab −Aa
−Ab 1

φ2 +AiA
i

]
(2.0.2)

Maxwell’s law are automatically satisfied: dF=0 follows from dd = 0. d*F=
4π*J can be set by construction. d*J=0, conservation of charge follows also by
dd=0 in most parts of the manifold. However:

In order to write the metric in this form there is a subtle assumption, that
gab, which will be interpreted as the usual four dimensional space-time metric,
is itself non-singular. However, this will always be the case for moderate or
small values of Ax which will here be identified with the electromagnetic 4-
vector potential. The raising and lowering of this 4-vector are defined in the
obvious way in terms of gab. We have also assumed that topology is such as to
allow the Hodge star to be defined. This means that near a point charge source
the argument that leads to charge conservation potentially breaks down as the
potential may cease to be well-defined. Whereas the Toth charge that will be
defined in the sequel does not have this problem.

Assume values of φ2 around 1 and relatively low 5-dimensional metric cur-
vatures. We need not therefore concern ourselves with this assumption beyond
stating it on the basis that physically these parameters encompass tested theory.
Given this proviso Ax is a vector and φ2 is a scalar - with respect to the tensor
system defined on any 4-dimensional submanifold that can take the induced
metric g.

Kaluza’s cylinder condition (KCC) is that all partial derivatives in the 5th
dimension i.e. ∂4 and ∂4∂4 etc... of all metric components are 0. A perfect
‘cylinder’. This leads to constraints on gab given in [1] by three equations,
the field equations of Kaluza theory, where the Einstein-Maxwell stress-energy
tensor can be recognised embedded in the first equation:

Gab =
k2φ2

2

{
1

4
gabFcdF

cd − F caFbc
}
− 1

φ
{∇a(∂bφ)− gab4φ} (2.1.1)

∇aFab = −3
∂aφ

φ
Fab (2.1.2)

4φ =
k2φ3

4
FabF

ab (2.1.3)

These will be referred to as the first, second and third field equations respec-
tively. Here there is also a k term, since the formulation in [1] is more general
than that used here. In this work k=1 is used unless specified otherwise. Sign
conventions should also be checked before using such equations out of context.
It is important to note that in the variants of Kaluza theory defined here, these
field equations may not apply. They apply fully only to Kaluza’s original theory.

By looking at field equation 3 it can be seen that if the scalar field does not
vary then only null electromagnetic solutions result. The second field equation
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then also imposes no charge sources. Here the scalar term could be allowed to
vary in order to allow for non-zero FabF

ab. This falls within Kaluza’s original
theory. This potentially allows for non-null electromagnetic solutions, but there
are problems to overcome: the field equations cease being necessarily electrovac-
uum. This remains a problem even when the scalar field terms are set large,
as is sometimes done to ensure that field equation 2 is identically zero despite
scalar fluctuations.

Another foundational issue of Kaluza theory is that even with a scalar field
it does not have convincing sources of mass or charge. Field equation 2 then has
some charge sources, but it is far from clear that realistic sources are represented
by this equation. Matter (and charge) models in this work will be assumed to
be regions of the Kaluza space that are not Ricci flat in the otherwise Ricci flat
Kaluza space, just as matter/energy is analogously assumed to be in general
relativity. That is, where the 5D Einstein tensor of the Kaluza space itself is
non-zero.

Charge will be given a possible alternative definition as 5-dimensional mo-
mentum, following a known line of reasoning [8] within Kaluza theory. This
version of charge will be called Toth charge to make it distinct from Maxwellian
charge, their identity is assumed by ansatz in this work, otherwise the Lorentz
force law has no obvious explanation in the event that the electrovacuum is no
longer valid due to other fields. As momentum the Toth charge is of necessity
conserved, provided there are no irregularities in the topology of the Kaluza 5th
dimension, similarly the conservation of Maxwellian charge is normally guaran-
teed by the potential, except that this may not be valid in extreme curvatures
where the 4-vector associated with the 4-potential may cease to be a vector.

We will also assume of necessity a closed 4D spatial hypersurface as is of-
ten done in general relativity to ensure 4 dimensional causality. Although 5D
causality issues will not be explored.

The leading issue is that Kaluza theory appears to offer only null electro-
magnetic solutions, non-null electrovacuums more generally are not so easily
supported as changes in the scalar field may force divergence of the field equa-
tions from those of the electrovacuum (see field equation 1). Null electrovacuums
occur under KCC when the scalar is constant as can be seen in the field equa-
tions above. That is, non-null solutions, non-radiative electromagnetic fields,
seem to have no reserved place within the theory unless one allows the scalar
field to oscillate. A standard fix is to set the scalar field to be very large so that
its oscillations make little difference to the resulting field equations. However
this is limiting, arbitrary, and requires its own explanation. It also does not
guarantee that the field equations are electrovacuums unless further arbitrary
conditions are added. Without taking such arbitrary measures that cease to be
in the spirit of Kaluza’s original theory, the stress-energy tensor under scalar
field fluctuations is different from the Einstein-Maxwell tensor [6][7] and the
accepted derivation of the Lorentz force law (for electrovacuums [6]) can not be
assumed.

Note that in addition the derivation of the Lorentz force law within general
relativity is not without problems of principle [6]. Thus, attempting to build
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a theory around the ansatz that the Toth charge and Maxwellian charge are
equivalent under the variant cylinder conditions is persuasive - as this leads
independently of the electrovacuum to an approximate and provisional Lorentz
force law.

The scalar field will be allowed to vary. But order of magnitude limits will
be placed on it so as to allow for a variant Lorentz force law. A Lorentz force
law, rather than the electrovacuum solutions per se will thus be sought for Toth
charges, and an ansatz linking the two definitions of charge assumed here.

3 Preliminary Notes

3.1 Geometrized Units Of Mass

The full metric definition used in [1] was:

ĝAB =

[
gab + k2φ2AaAb kφ2Aa

kφ2Ab φ2

]
(3.1.1)

This gives null solutions [1] such that Gab = −k
2

2 FacF
c
b . Comparing this

with [7] (where we have Gab = 2FacF
c
b in geometrized units where G=1) the

sign difference is due to the historic use of [−, ?, −] notation here, rather than
the more modern [+,+,+] notation as defined by Wheeler et al. [6] (and as also
used by Wald [7]).

Although k is set to 1 elsewhere in this work, yielding the metric in the
introduction, we need k = 2 to get the field equations in the geometrized units
of [7] - if the electromagnetic field tensor is to be the same.

G/c4 = 1 for k=2
= 6.674× 10−8cm3g−1s−2/c4 = 6.674× 10−8cm3g−1 × (3× 1010cm)−2/c4

= 6.674× 10−8cmg−1 × (3× 1010)−2 for c = 1

1g = 7.42× 10−29cm for k=2, c=1 (3.1.2)

Secondly, if we do use k = 1, we can adjust G’s dimensionless value to
accomodate:

Gab = −2FacF
c
b = − 8πG

c4 Tab for k=2, c=1

Gab = −F ′acF ′cb = − 8πG′

c4 T ′ab for k=1, c=1

So if Gab is the same in both cases, then F ′ab =
√

2Fab

If we define T ′ab to be formally the same as Tab, but with a substitution of F ′

terms for F terms, it will be twice as big. Then we must adjust G′ = 1
2G = 1

2 .
With this adjustment to G, we have:

1g = 1.48× 10−28cm for k=1, c=1 (3.1.3)
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So in effect we can change the scale relationship of mass to distance in order
to change the electromagnetic tensors. The tensors can represent the same
underlying reality but in different units. We can refer to these two schemes of
units as k=2 and k=1 respectively.

3.2 Kaluza Theory Is Consistent With Special Relativity
Even When 5D Momentum Is Present

In the sequel, one definition of charge (Toth charge) will be identified with
5D momentum. This is already known in the original Kaluza theory to obey
a Lorentz force-like law, but will be extended here in scope, noting that the
coincidence of Toth charge and Maxwellian charge is not guaranteed prior to
the ansatz.

That this is consistent with Special Relativity will be something that any-
body seeking confidence in Kaluza theories will want to check. The additions
of velocities in Special Relativity, for example, is not obvious. Taking two per-
pendicular velocities, u and v, and adding them yields:

s2 = u2 + v2 − u2v2

The particle moving in the Kaluza dimension, but stationary with respect
to space-time, will have a special relativistic rest mass greater than its Kaluza
rest mass. A later result needed here is:

Qtoth/M0 = −dx4/dτ relating charge, rest mass and proper Kaluza-velocity

This makes sense only because mass can be written in fundamental units
(i.e. in distance or time) and Toth charge will be defined as 5th dimensional
momentum.

Using natural conversions between units we get the Kaluza rest mass of any
presumed particle with the mass and charge comparable in magnitude to an
electron or positron to be about 1.5 × 10−54g, which is a lot smaller than the
relativistic rest mass used when considering only space-time physics. And its
proper Kaluza velocity in natural units is then about K = 6× 1026, making it
highly Kaluza-relativistic.

Much as we may be unfamilar with a Kaluza rest mass (Mk0) we can see
that it is consistent with the addition of velocities as follows:

M0 =
Mk0√

(1− u2)
where u = Qtoth/M0 (3.2.1)

Mrel =
M0√

(1− v2)
=

Mk0√
(1− u2)

× 1√
(1− v2)

=
Mk0√

(1− u2 − v2 + u2v2)
(3.2.2)
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where v is the relativistic velocity in space-time

By putting u = Qtoth/M0 into the definition of rest mass and solving, we
get that charge, whether positive or negative, is a contributor to the relativistic
rest mass according to the following formula:

M0
2 = Mk0

2 +Qtoth
2 (3.2.3)

Here the majority of mass-enery in the rest mass of such an elementary
charge is seen as being tied up in its charge. In this work elementary Toth
charges will take on these properties. Whether or not these are able to model
Maxwellian charges depends on the correspondence between Maxwellian and
Toth charge. Whether this further corresponds to real electrons and positrons
or whether similar models can describe other fundamental charge sources is
left as unascertained experimentally and analytically, but merely a tempting
suggestion of this model not to be investigated further here.

Observed electrons have static charge, angular momentum, a magnetic mo-
ment, and a flavor. The only thing distinguishing the electron from the muon is
apparently the flavor. The mass difference between the muon and the electron
is about 105 MeV, perhaps solely due to this difference in flavor. Yet here we
have a model where the unit Toth charge’s relativistic rest mass is dominated
by its Kaluza velocity. Thus at this stage the idealized charge models used here
and real particles must be considered not yet correlated.

3.3 Matter And Charge Models, A Disclaimer

The model unit Toth charge presented here, therefore remains a separate entity
from any real Maxwellian charges, merely a mathematical device to investigate
whether such models are possible. Having said that for the purposes here the
ansatz is made that in principle Maxwellian and Toth charges can be identified.

The above analysis has assumed that some sort of particle model of matter
and charge is possible, that it can be added to the original theory perhaps
without changing the space-time solution, which is impossible no less than in
general relativity. Secondly we might imagine that what has been described is a
particle whizzing around the fifth dimension like a roller coaster on its spiralled
tracks. The cylinder conditions could in fact also be maintained if, instead of
a particle, the matter-charge source was rather a ‘solid’ ring, locked into place
around the 5th dimension, rotating at some predetermined Kaluza velocity. An
exact solution could even involve changes in the size of the 5th dimension. None
of that is investigated here, the aim is to see whether non-null solutions can be
found in a Kaluza variant theory without extreme alteration.

It is an essential proviso that a physically realistic matter-charge model has
not been detailed, much less formally identified with a real charge source such
as an electron. The assumption then that such a hypothetical model would
necessarily follow (albeit approximately) geodesics is also therefore just that:
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an assumption - though not without analogs in other, experimentally valid,
classical theories.

The original Kaluza theory almost certainly does not have sufficient degrees
of freedom to allow for such a matter model to be embedded within it. More
general matter models could be assumed however to have significant enough
degrees of freedom to allow for such a model or approximation of such a model in
principle. But an actual differential geometrical model of such a matter-charge
source is presumed too difficult to produce here, even if possible. In addition,
the fact that real charge sources are quantum mechanical may also discourage
us, though a classical scale interpretation should be possible regardless.

This work assumes a limited concept of such a charge model and attempts to
investigate whether non-null solutions are possible in conjunction with a Lorentz
force law. That is, it attempts to replicate all the important features of classical
physics, without predicting or imposing its particular model of charge as the
correct one.

Geodesic Assumption: That any particle-like matter-charge models derived
from the geometry are approximately geodesic. This would need also to follow
from any applicable matter-charge model that was ultimately found to describe
unit charges.

Charge Ansatz: That the Maxwellian and Toth definitions of charge coincide
for the purposes here.

One of the confusing aspects of this work is that the field equations of Kaluza
cease to apply when such matter-charge models become part of the solution.
Therefore the Kaluza field equations are only used when they can be justified,
and going back to the Ricci tensor, from scratch, is undertaken here as necessary.
It is also important to note that in the following the Ricci flat condition of the
original Kaluza theory’s Kaluza space will not be generally valid due to the
presence of matter models, but as with vacuum solutions in general relativity
will be usable outside of matter models.

3.4 Duality Invariance Of Kaluza’s Original Theory

The dual metrics of ĝAB and gab will be discussed in this section.
ĝAB will be identified with an alternative dual metric ĥAB for some coordi-

nate system in such a way that their representations as matrices are equal. That
is, such that: |ĝAB | = |ĥAB |, such an identification will be written ĝAB ↔ ĥAB .

It follows that ĝAB ↔ ĥAB where the two alternative systems ĝAB and ĥAB
define their own notions of raising and lowering indices.

ĥAB and ĥAB can be written analogously to the original metrics as follows:

ĥAB =

[
hab + φ2BaBb φ2Ba

φ2Bb φ2

]
(3.4.1)
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ĥAB = |ĥAB |−1 =

[
hab −Ba
−Bb 1

φ2 +BiBi

]
(3.4.2)

Where analogously to the original system the raising and lowering of indices
of 4-vectors is implemented by hab.

We have the following relations by construction: gab ↔ hab and Aa ↔ Ba.
In other words they are the same system with index conventions swapped

around. Or equivalently they are dual systems.
Kaluza’s original theory is dual invariant in that if ĝAB is Ricci flat then this

is equivalent to ĥAB being Ricci flat. This follows as raising RAB = 0 within
ĝAB remains 0.

The introduction of matter models for Kaluza theory, as with general rel-
ativity, disrupts this nice property of Kaluza theory. Every matter model has
in effect an alternative formulation that would suffice as a physical description
by taking the dual system. There is something arbitrary about matter models
(also in general relativity) in this respect from the outset.

4 The Order of Magnitude of Potentials

4.1 The Electromagnetic Potentials

The contribution to the metric of a typical cgs unit of electromagnetic potential
can be calculated: It is actually dimensionless in genuinely natural units, as
must be the case for it to be related to metric components in Kaluza theory.

In cgs units the Coulomb’s force law is given by: F = Q1Q2/r
2

Similarly the potential is given by Q/r, that is charge/distance, or esu/cm.
Using [7]:

([L]3/2[M ]1/2/[T ])/[L] = ([L]1/2[M ]1/2)/[T ]) (4.1.1)

Using 1g = 7.42 × 10−29cm (eq. 8.0.3) gives 1cgs unit of potential (esu or
Statvolt) as:

1cm1/28.61× 10−15 cm1/2/s

= 2.86× 10−25(3× 1010cm/s)

1esu = 2.86× 10−25c (4.1.2)

≈ 10−25 in natural units where c = 1 (k = 2)

This is clearly a very small figure and is a comparable order of magnitude
for k = 1 for the purposes here.
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Take a single unit charge (ie of an electron) Q ≈ 5×10−10esu and the (Bohr)
radius of the hydrogen atom: r ≈ 5× 10−9cm.

The potential Ra = Q/r = 10−1esu/cm = 10−26 in natural units. Now this
potential corresponds to the strong electrical forces within the atom, but due
to the short distances may not represent strong potentials. We might need a
more realistic reference for classical potentials (Rc), in order to provide a sort of
experimental upper limit for potentials with well-behaved classical properties.
This figure could be given as a ratio Rc = h.Ra to give a sense of proportion,
where a typical bound for h will now be estimated.

We can select the units associated with the Christoffel symbols, or equally
the coordinate system if we so choose to label it with units, to be small enough
for a usual range of fields so that the various orders of magnitude are set small.

Here we exploit the fact that locally we can choose coordinates, even if only
infinitesimally, that are Minkowskian. In talking about potentials in classical
physics we are referring to a vector that has gauge freedom to the extent it can
be set to 0 at any point and then the potentials in the coordinate system are
relative to that origin. Setting coordinates to be locally flat at the origin is the
same procedure in Kaluza theory.

This is important since we want to estimate Rc, a sensible bound for typical
potentials which have been experimentally tested to satisfy the laws of classical
(relativistic) electromagnetism. And so if we can select our origin arbitrarily to
be, say, the centre of an experiment, we always have a region with arbitraily
low potentials against which the potentials in the experiment are to be defined
or measured. This avoids the problem of having an experiment where all the
potentials are set large - they can be gauged away with a judicious choice of
coordinate system.

As a case in point, imagine we are testing the effects of the Lorentz force law
due to the ionosphere. If we set the Earth’s surface to be zero potential, we will
end up with high potentials in the ionosphere, and vice versa. But since when
has an experiment tested the Lorentz force law throughout the entire trajectory
of a slow charged particle from ionosphere to Earth? We may test it repeatedly
over a range of a few metres if the particle is slow and over a long distance
if the particle is very fast. Generally a slow particle will not stay slow if it is
accelerated by a field over a great distance, and if it does the experiment will
not be clean as the slowness will be caused by impacts with other particles or
fields.

The reason for this distinction is that the Lorentz force law will later be
derived such that it is conditional on the velocity of the particle. If it is fast it
will satisfy the Lorentz force law more accurately, if it is slow it may not and
other terms might be involved - depending on Rc. In the ionosphere for example
we have approximately 150V/m wherever we may be. It is whether this figure is
large or small relative to the spatial extent of the experiment that becomes the
issue under this consideration, not the potentials per se. And therefore it relates
to the velocities of the particles. Similarly we may get very high fields indeed
under experiments in the laboratory that are of necessity far less extensive than
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the distance from Earth to the ionophere.
Fast particles therefore present one problem over longer distances, and the

scale of the experiment (and the corresponding potentials) can be set accordingly
shorter for slower particles.

In order to estimate our h in Rc = h.Ra we need to define the experiment
we are looking at. For these purposes we can look at two extremes that have
comparable energies: Firstly 150V/m over a vacuum of 1km (comparable to the
potential differences created by the ionosphere over long distances), secondly
150KV over a vacuum of 1m (a high voltage experiment if it is to be sustained
for any duration of time). They are both high in terms of the potentials involved
and will act as a guide to the estimate of h. The second is perhaps easier to deal
with experimentally. A clean experiment over larger scales may be unfeasible
except perhaps in space.

We can then look at the maximum 4-potential that the second experiment
defines and define this to be Rc, from which we can estimate h relative to this
level of experimental testing. As it pertains to the orders of magnitude that
will be used here an approximate idea of this figure is useful to make the scales
meaningful. If the accepted tested level of classical electromagnetism is higher
or lower than the 150KV used here it is a simple matter to scale h accordingly.

Both the above set-ups have a 150KV potential difference, which is about
500 Statvolts. This gives a h of about 5000, and,

O(f) ≈ Rc ≈ 10−22, k = 2 (4.1.3)

4.2 The Metric Components of O(v)

Using k=2 we can estimate one possible O(v) by looking at the the Schwarzchild
Solution for the Earth. The differences from unity (or negative unity) of the
terms depends on 2GM/r, in this case 2M/r in natural units.

2× [6× 1024kg × 1000g/kg]/[6000km× 105cm/km] = 2× 1019g/cm

Using 1g = 7.42 × 10−29cm, and when k=2, with a comparable order of
magnitude for k=1:

O(v) ≈ 10−9 (4.2.1)

O(v) is considerably larger in significance than O(f).

5 The Cylinder Conditions And Electromagnetic
Limits

We will start with a weak field limit that can be assumed at the usual classical
scale. Terms such as AaAb will be bounded O(v2) as opposed to terms not thus
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multiplied such as ĝab or simply Aa. The latter either being bounded O(v) or
the difference from 1 being bounded O(v). Our Kaluza space-time solutions,
at the usual classical limit, are to be approximately 5-Lorentzian. O(v) will be
taken to be a small term at the usual classical limit. In addition, the units will
be assumed to be such that derivatives of O(v) i.e. O(v+) and O(v++) will
also all be small, where O(v+) and O(v++) are the order of magnitude of first
and second derivatives (with corresponding units) respectively.

An electromagnetic limit will be assumed as required, where the scalar field
is set to being approximately the identity: φ2 ≈ 1

Now, this simple declaration turns out to be quite complicated. For one
thing at the usual classical scale it will be automatically approximately 1 by the
weak field limit as a minimum constraint, at least to O(v). But this in itself
won’t make it any closer to unity than the electric potentials are to 0 relative
to other weak fields. For the electromagnetic limit we want more than that.

We will define it in terms of three orders of magnitude:

φ2 = 1 to O(s), and,

∂Aφ
2 is O(s+). We can also have:

∂A∂Bφ
2 is O(s+ +)

(5.0.1)

This distinction will be of fundamental importance later. O(s) will be no
more significant than O(v), with the possibility of turning out to be a lot smaller
in significance. O(s+) and O(s++) could have units s−1 and s−2 respectively
and will thus not be comparable to O(s) in a simple way. Similarly we can have
the additional levels of bounding for the derivatives of electromagnetic tensors
defined as follows:

Aa is O(f), and,

∂AA
a as O(f+). We can also have:

∂A∂BA
a as O(f + +)

(5.0.2)

Noting that in any situation the tightest of any two applied bounds domi-
nates. Noting also the same unit considerations as previously.

The other fields, the 4D metric and the electromagnetic potential vector will
be given a similar order of magnitude constraint so that their derivatives in the
direction of the Kaluza dimension are bounded as follows:

∂4ĝAB is O(δ+)
(5.0.3)
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KCC is the limiting case where it is identically 0. This implies also that
∂4ĝ

AB is O(δ+) via a consideration of divergence of the metric being 0. Now of
course this bound as defined above is not yet a constraint until O(δ+) is defined.
So this device allows us to weaken the cylinder condition as required.

A basic reasonable constraint might be to ensure that at least such oscilla-
tions are not greater than the general order of magnitude of the electromagnetic
fields, otherwise we would have another limit. Thus:

O(δ+) ≤ O(f+) (5.0.4)

The use of the symbol + to identify when a derivative has been taken is easy
to misuse. A symbol such as O(X+) will be related to O(X ) via proportionality
with some constant that will depend not only on the terms and functions in
question, such as frequencies, but also on the units being used. Later such
orders of magnitude with the same units will be multiplied by each other. This
can be made more concrete by giving O(f) a numerical value to set the scale.
By default we can set this value to some classical reference potential, a figure
that gives a reasonable bound to the level for which the well-behaved properties
of a classical system have actually been tested. We might similarly have another
classical reference to define O(v).

Similarly, relative to this (by some constant and some unit) O(f+) will be
taken to be defined, though any constants of proportionality and any units will
not be specified. Typical estimates for such an order of magnitude could be
taken from an ensemble of experiments of interest. The use of the ≤ and <<
symbols in comparing orders of magnitudes will be used to express the idea
that one order of magnitude can be or is smaller than the other when compared
numerically.

We also need a few rules for dealing with orders of magnitude. One could
be that if O(X) = O(v) and O(X) ≤ O(v) then generally O(X+) = O(v+) and
O(X+) ≤ O(v+) respectively. This will be called proportionality . It should of
course be invoked with care and may not in the most general case be valid.

Similarly, distributivity: terms such as O(f+)O(f+) and O(f)O(f + +) -
where the terms are all based on the same underlying order O(f) - will be
considered the same order of magnitude without further consideration. We
might observe the reasonableness of this by considering the chain rule. Similarly
for consistency we also need to extend it over different underlying terms. This
however will be used more cautiously.

Two other complementary limits can be defined: the strong electromagnetic
and the strong scalar limit respectively. These will both be when oscillations in
the other are absolute zero. The scalar limit would not usually be applied at
the same time as either of the electromagnetic limits.

Further a resonant cylinder condition is defined. This needs some discussion
before stating the final definition.
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The objective of the Resonant Cylinder Condition is to weaken KCC but
not in the same way as having simply an order of magnitude limit for derivative
terms in the direction of the Kaluza dimension. The Resonant Cylinder Condi-
tion (RCC) takes a loop around the Kaluza 5th dimension (one that is locally
normal to the supposed space-time embeddings). The idea is then that various
components, derivatives and tensors oscillate around this loop, in a way reminis-
cent of resonance, whilst maintaining an average value that can be represented
(approximately) as a tensor in a representative space-time. This will be applied
to any tensors, pseudo-tensors or related terms that might be meaningful on a
sample 4D manifold chosen to represent space-time, and any raisings or lower-
ing of those terms in terms of the 4D metric. In particular any terms which
consist of repeated differentiation of another term, and where one or more of
those derivatives is a covariant derivative in the direction of the Kaluza dimen-
sion, must average to less significant than would otherwise be expected. This
is because the tensor thus differentiated must start at a certain value, and in
passing round the loop return to it, give or take small errors.

In this work we shall be primarily interested in derivatives or double deriva-
tives of tensors whose elements are constructed from the metric components
that contain a ∂4 operator or can be written in such a way. Such derivatives
will average a small order of magnitude round a loop, with a small error that
will be O(v+) times the significance of the original tensor (of which the deriva-
tives are taken) due to the Christoffel symbol used in converting between partial
and covariant derivatives. We have O(Y+) = O(v+)O(X) where the ostensible
order of magnitude of term O(Y+) was O(X+). So for example if it is the
derivative in the Kaluza dimension of a normal metric component O(v), then
the derivative is ostensibly O(v+), but the formula here gives O(v+)O(v) due
to the cylindricity.

We will model this as follows, also embracing the idea that the size of the
Kaluza dimension has an upper bound: Take an O(X+) resonant term (i.e. a
derivative in the fifth dimension of another term of order O(X)). Consider the
situation where this term itself has been multiplied by another term of magni-
tude O(v), and whose derivatives are therefore O(v+), and thus the compound
term of the O(X+) term and the O(v) term may not be as insignificant due
to the skewed nature of multiplication when taking averages. Let this multiple
then be controlled or delimited by a constant B that is inversely proportional
to the size of the Kaluza dimension.

We could then give a compound term that would otherwise locally be about
O(X+)O(v), by looking at its constituents, a reduced effective order of magni-
tude O(Y+)O(v) ≈ O(X+)O(v)/B on account of the small Kaluza dimension
constraint and averaging around the loop. We might generalize this without
loss: a resonant term that should otherwise be O(X+) is instead given O(Y+) ≈
O(X+)/B, for some B approximately inversely related to the size of the Kaluza
dimension, and we might further rescale this so that B = A × O(v+)/O(f+)
for future convenience. This is now a fairly simple definition for RCC.

This might be particularly important, and different from a simple bound, in
the case that a compound term were given averaged order O(X+)O(X+)/B,
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but having two constituents both of averaged order O(X+)/B. However such a
distinction is not consistent with the distributivity property if required. So the
term must in fact be O(X+)O(X+)/B2 to be consistent with distributivity.

For double derivatives we would obtain O(X + +)/B2 with respect to RCC.

The original Kaluza theory assumed KCC. So weakening KCC (whether
by RCC or otherwise) requires particular care in that the original Kaluza’s
field equations and conclusions derived from them can nolonger be assumed, in
particular the Kaluza field equations.

6 Charge, 5DMomentum And The Lorentz Force

Toth [8] derives a Lorentz-like force law where there is a static scalar field and
Kaluza’s cylinder condition applies. The resulting ‘charge’ is the momentum
term in the fifth dimension and it is not apparent how this relates to the Maxwell
current, except as Toth states via ‘formal equivalence’. While this result is not
new, Toth’s calculation is used here as the starting point for a more detailed
calculation.

A derivation is given of the Lorentz force law applicable to the Toth cur-
rent. Toth makes several assumptions in his calculation. First that the scalar
field is constant near the charge, and secondly the Kaluza cylinder condition
(KCC). Toth also assumes a single point particle, not necessarily the case here,
and constant mass-charge. These issues relate in this context to finding such a
matter model as a solution. Here the KCC is relaxed, and both the Resonant
Cylinder Condition is applied and an alternative Weak Cylinder Condition de-
fined. Results are compared. The Geodesic Assumption must also be made
for matter-charge models in this context. Oscillations of the scalar field are
included (indices have been omitted from order of magnitude terms for clarity
of presentation). Details of Chrisfoffel symbol terms can be found in a later
section for reference.

Γ̂c4b = 1
2g
cd(δ4ĝbd + δbĝ4d − δdĝ4b) + 1

2 ĝ
c4(δ4ĝb4 + δbĝ44 − δ4ĝ4b) =

1
2g
cd[δb(φ

2Ad)− δd(φ2Ab)] + 1
2g
cdδ4ĝbd + 1

2 ĝ
c4δbĝ44 =

1
2φ

2gcd[δbAd − δdAb] + 1
2g
cdAdδbφ

2 − 1
2g
cdAbδdφ

2 + 1
2g
cdδ4ĝbd + 1

2 ĝ
c4δbφ

2 =
1
2φ

2F cb + 1
2g
cdAdδbφ

2 − 1
2g
cdAbδdφ

2 + 1
2g
cdδ4ĝbd + 1

2 ĝ
c4δbφ

2 =
1
2φ

2F cb − 1
2g
cdAbδdφ

2 + 1
2g
cdδ4ĝbd =

1
2φ

2F cb +O(s+)O(f) +O(δ+)
(6.0.1)

Γ̂c44 = 1
2 ĝ

cD(δ4ĝ4D + δ4ĝ4D − δDĝ44) = O(δ+) - 1
2g

cdδdφ
2 = O(δ+) +O(s+)

(6.0.2)

We have:
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Γ̂cab = 1
2g
cd(δagdb + δbgda − δdgab)

+ 1
2g
cd(δa(φ2AaAb)+δb(φ

2AaAb)−δd(φ2AaAb))+ 1
2 ĝ
c4(δaĝ4b+δbĝ4a−δ4ĝab)

= Γcab +O(f2)O(δ+) + (O(f+) +O(δ+))O(f)

(6.0.3)

So:

0 = d2xa

dτ2 + Γ̂aBC
dxB

dτ
dxC

dτ

= d2xa

dτ2 + Γ̂abc
dxb

dτ
dxc

dτ + Γ̂a4c
dx4

dτ
dxc

dτ + Γ̂ab4
dxb

dτ
dx4

dτ + Γ̂a44
dx4

dτ
dx4

dτ

= d2xa

dτ2 +Γ̂abc
dxb

dτ
dxc

dτ +φ2F ab
dxb

dτ
dx4

dτ +(O(δ+)+O(s+)O(f))dx
b

dτ
dx4

dτ +(O(δ+)+

O(s+))dx
4

dτ
dx4

dτ
(6.0.4)

Setting the Toth charge-to-mass ratio to:

Qt/m = −φ2 dx
4

dτ
(6.0.5)

Or equally setting the Toth charge to −φ2mdx4

dτ where m is the rest mass of
the charge carrier, we derive a Lorentz-like law:

d2xa

dτ2 +(Γabc+((O(f+)+O(δ+))O(f)+O(f2)O(δ+)))dx
b

dτ
dxc

dτ = (Qt/m)F ab
dxb

dτ +

(O(δ+) +O(f)O(s+))dx
b

dτ
dx4

dτ + (O(δ+) +O(s+))dx
4

dτ
dx4

dτ

(6.0.6)

We would need to zero most of the orders of magnitude terms here to get
the Lorentz force law itself. This however would be the same constraints as the
null solutions of Kaluza’s original theory. That is, Kaluza’s original theory is
suggestive of a link between Toth and Maxwellian charge by making the Lorentz
force law for Toth charge apparent. This is assumed throughout this work via
the Charge Ansatz. The order of magnitude terms on the left can all be removed
as less significant than the O(v+) Christoffel symbol elements in general.

d2xa

dτ2 +Γabc
dxb

dτ
dxc

dτ = (Qt/m)F ab
dxb

dτ +(O(δ+)+O(f)O(s+))dx
b

dτ
dx4

dτ +(O(δ+)+

O(s+))dx
4

dτ
dx4

dτ
(6.0.7)

One other immediate observation is that throwing away the first O(δ+) term
would simplify (6.0.7). This could be done by KCC automatically, or RCC with
provisos.

In the case of RCC we would seem to need to have O(δ+) << O(f+).
O(v+) ≈ O(f+) would ensure this as O(δ+) << O(v+) by RCC. The trouble
is we do not want to be constrained to O(v+) ≈ O(f+).

We therefore instead need B to be sufficiently large, B >> O(v+)/O(f+).
So O(v+4)/B ≡ averaged[O(δ+)] << O(f+). That is, A >> 1. Where the
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subscript 4 is to be interpreted as a specialization to derivatives in the Kaluza
dimension.

We might also simplify it without RCC, guessing the applicability of the
following constraint to get rid of the first O(δ+), and calling the result the
Weak Cylinder Condition (WCC):

O(δ+) << O(f+) [WCC] (6.0.8)

The result in any case is:

d2xa

dτ2 +Γabc
dxb

dτ
dxc

dτ = (Qt/m)F ab
dxb

dτ +O(f)O(s+)dx
b

dτ
dx4

dτ +(O(δ+)+O(s+))dx
4

dτ
dx4

dτ

(6.0.9)

We can then apply the following reasonable constraint (reasonable in that it
follows from O(s+) ≤ O(f+) which simply means we are at an electromagnetic
rather than a scalar limit):

O(f)O(s+) << O(f+) (6.0.10)

To get:

d2xa

dτ2 + Γabc
dxb

dτ
dxc

dτ = (Qt/m)F ab
dxb

dτ + (O(δ+) +O(s+))dx
4

dτ
dx4

dτ

(6.0.11)

So for the two variant cylinder conditions investigated here, there is only
one term which strays from a formal equivalence to the experimentally valid
Lorentz force law, remembering the important difference between Toth and
Maxwell charges, provided we make use of the Charge Ansatz.

This is the (O(δ+) +O(s+)) term:

−Γ̂c44 = − 1
2 ĝ

cD(δ4ĝ4D + δ4ĝ4D − δDĝ44) = O(δ+) + 1
2g

cdδdφ
2 = O(δ+) +

O(s+)
= −gcDδ4g4D+ 1

2g
cDδDφ

2

= −gcdδ4g4d − 1
2g

c4δ4φ
2+ 1

2g
cdδdφ

2

(6.0.12)

Whether using RCC or WCC:

d2xa

dτ2 + Γabc
dxb

dτ
dxc

dτ = (Qt/m)F ab
dxb

dτ − (gcDδ4g4D− 1
2g

cDδDφ
2)dx

4

dτ
dx4

dτ

[LFL1] (6.0.13)
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Note that however we constrain the size of the Kaluza dimension with RCC
we can not eliminate the O(s+) term 1

2g
cdδdφ

2 unless we discard the scalar field
fluctuations also, we therefore keep all the relevant terms in hope that we may
later somehow cancel them out. In this way an exhaustive a search as possible
is undertaken. It follows, however, from the preceding that we most likely have:

O(δ+) <<<< O(f+) (6.0.14)

O(s+) <<<< O(f+) (6.0.15)

Where the <<<< symbol expresses the extra extreme constraint imposed by

the uncancellable and inescapably large dx4

dτ term. Or an equivalent formulation
with averages using the RCC. It might be noted that this extra strong condition
starts to make the RCC condition look moot, as we have here a condition that
seems to suggest WCC is needed in anycase. The only alternative, whether
RCC is averaged or not, is a more specialized contraint:

O(Γ̂c44) <<<< O(f+) (6.0.16)

To be precise O(A) <<<< O(B) is such that O(A) << O(B)dx
a

dτ /
dx4

dτ for

some smallest electron velocity dxa

dτ at which the Lorentz force law works, ie has
been tested to be accurate. We might need to set this arbitrarily small on the

one hand, or settle for a lower bound on the other. For dxa

dτ /
dx4

dτ to be equal to

O(f), where O(f) = Rc as estimated previously, requires dxa

dτ = 104. But the
Lorentz force law certainly works for lower proper velocities than this! - despite
the tantalising relative proximity to a more acceptable figure, relative that is
to the very large numbers being used here. We have O(A) <<<< O(f+) as
stronger than O(A) << O(f+)O(f) by some margin. It frustratingly can’t quite
be made to be absorbed into << O(f+)O(f), it remains a tighter constraint
even than that.

Under such constraints we have the Lorentz force law proper:

d2xa

dτ2
+ Γabc

dxb

dτ

dxc

dτ
≈ (Qt/m)F ab [LFL2] (6.0.17)

7 Introducing Torsion

7.1 The Basic Equations

Where necessary Cartan torsion will be admitted. But only where all other
routes have failed. In this way any introduction of the additional complexity of
torsion will be empirically necessary under the ansatz. Empirically necessary,
that is, only if it is shown to work.

For both 5D and 4D manifolds (i.e. dropping the hats and indices notation
for a moment), torsion will be introduced into the Christoffel symbols as follows,
using the notation of Hehl [14]:
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1

2
(Γkij − Γkji) = S k

ij (7.1.1)

This relates to the notation of Kobayashi and Nomizu [15] and Wald [7] as
follows:

T ijk = 2Sjk
i ≡ Γijk − Γikj (7.1.2)

We have the contorsion tensor K k
ij [14] as follows, and a number of relations

[14]:

Γkij =
1

2
gkd(∂igdj + ∂jgdi − ∂dgij)−K k

ij = {kij}−K k
ij (7.1.3)

K k
ij = −S k

ij + S k
j i
− Skij = −K k

i j (7.1.4)

With torsion included, the geodesic/auto-parallel equation becomes [14]:

d2xk

ds2
+ Γk(ij)

dxi

ds

dxj

ds
= 0 (7.1.5)

Reintroducing the hat and index dimension, the following simple constraint
prevents the torsion tensor dominating in the Lorentz force law:

O(Ŝ C
AB ) ≤ O(Γ̂CAB + K̂ C

AB ) ∀A,B and C ∈ {a,b,c,4} (7.1.6)

On the left hand side of [LFL1](6.0.13) the torsion term is part of the 4D
Christoffel symbol (noting its dependence here on torsion), whereas the right
hand term contribution is:

−Γ̂a(4c)
dx4

dτ

dxc

dτ
− Γ̂a(b4)

dxb

dτ

dx4

dτ
= (2K̂a

(4b) + 2{̂a4b})
dxb

dτ

dx4

dτ
(7.1.7)

This leaves the Lorentz force law formally unchanged when torsion is totally
antisymmetric. Empirically the torsion component of the Christoffel symbol
in [LFL2](6.0.17), at the classical limit, must be considered small relative to
the Christoffel symbol. And thus the geodesics, and hence the classical scale
geometries, both with and without torsion, must be for some reason approxi-
mately equivalent. By (7.1.3),(7.1.4),(7.1.5),(7.1.7) and total antisymmetry the
geodesic equations do indeed become the same.

Antisymmetry of Torsion Ansatz: total antisymmetry of the torsion tensor
is to be assumed at the usual classical limit in the sense that S k

(ij) = S k
(i j) =

Sk(ij).

It is noted that Einstein-Cartan theory, that adds torsion to the dynamics of
relativity theory is most probably a minimal ω-consistent extension of general
relativity [16][17] and therefore the use of (fully antisymmetric) torsion is not
only natural, but arguably a necessity on philosophical and physical grounds.
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7.2 A Brief Consistency Check

Having secured the Lorentz force law it is worth looking also at the assumption
that the velocity of the charge does not change. Whilst under the charge ansatz
momentum is indeed conserved, it is still necessary to show that lack of proper
acceleration of the charged particle in the Kaluza dimension is feasible: that such
a model has a chance of being consistent. We therefore look at this acceleration
in exactly the same way as the previous investigation of the Lorentz force law:

0 = d2x4

dτ2 + Γ̂4
BC

dxB

dτ
dxC

dτ

= d2x4

dτ2 + Γ̂4
bc
dxb

dτ
dxc

dτ + Γ̂4
4c
dx4

dτ
dxc

dτ + Γ̂4
b4
dxb

dτ
dx4

dτ + Γ̂4
44
dx4

dτ
dx4

dτ

(7.2.1)

The last term once again vanishes only for sufficiently small O(s+) and
O(δ+) or if we make it a special constraint. The torsion, if admitted, of the two
middle terms, cancels as before, when antisymmetry is invoked.

2Γ̂4
4c
dx4

dτ
dxc

dτ - the two middle terms added together with a cancelling torsion,

give: −(AdFcd + O(f)O(δ+) + O(f)O(s+) + ĝ44∂cφ
2) dx4

dτ
dxc

dτ . That is signif-
icantly smaller than the comparable term in the Lorentz force law. That is,
given small enough O(s+) << O(f+) for the last term and sufficiently small

O(δ+). Thus, if dxc

dτ is small relative to dx4

dτ (so that we can also discount the
first Christoffel symbol terms) we have that the 5th dimensional acceleration of
the charge is small relative to any Lorentz forces.

This reasoning here is independent of whether there is a torsion tensor (even
when not totally antisymmetric) as the torsion components are constrained to
be of the same orders of magnitude as the Christoffel symbols.

7.3 Belinfante-Rosenfeld Stress Energy Tensor

The Einstein tensor defined using a torsion bearing connection will be labelled
κP̂ , it need not be symmetric. The constant is included here only because
of the Gravitational constant, to be consistent with the literature. P̂ is the
Einstein-Cartan stress-energy or canonical energy-momentum tensor.

The Belinfante-Rosenfeld [15] stress-energy tensor B̂ is a symmetric adjust-
ment of P̂ that adjusts for spin currents as sources. It can be defined equally
for the 5D case. It is equivalent to the original Einstein tensor Ĝ [15] but is
formed explicitly from the torsion bearing connection via P̂ .

8 Analysing The Alternative Field Equations

The next step is to investigate the alternative field equations in a little more
detail in order to identify where we might find non-null electromagnetic fields.
Or at least the various constraints that may be placed on them that could lead
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to inconsistencies. Noting that we are not yet considering matter models, but
still the electrovacuum, or electroscalar ‘Kaluza’ vacuum.

The field equations in the introduction are related, but here we do not assume
KCC but investigate the effect of the other possible cylinder conditions. This is
done by setting the Ricci tensor to zero and looking at its components via the
Christoffel symbols. This is done here over a range of limits and constraints.
Initially torsion is not invoked.

The Christoffel Symbols Before Taking A Limit

2Γ̂ABC =
∑
d ĝ

AD(∂B ĝCD + ∂C ĝDB − ∂DĝBC)

=
∑
d ĝ

Ad(∂B ĝCd + ∂C ĝdB − ∂dĝBC)
+ ĝA4(∂B ĝC4 + ∂C ĝ4B − ∂4ĝBC)

2Γ̂Abc =
∑
d ĝ

Ad(∂bgcd + ∂cgdb − ∂dgbc)
+
∑
d ĝ

Ad(∂bφ
2AcAd + ∂cφ

2AdAb − ∂dφ2AbAc)
+ ĝA4(∂bφ

2Ac + ∂cφ
2Ab − ∂4gbc − ∂4φ2AbAc)

2Γ̂A4c =
∑
d ĝ

Ad(∂4gcd + ∂4φ
2AcAd + ∂cφ

2Ad − ∂dφ2Ac) + ĝA4∂cφ
2

2Γ̂A44 = 2
∑
d ĝ

Ad∂4φ
2Ad −

∑
d ĝ

Ad∂dφ
2 + ĝA4∂4φ

2

The Strong Electromagnetic Limit φ2 = 1

2Γ̂Abc =
∑
d ĝ

Ad(∂bgcd+∂cgdb−∂dgbc) +
∑
d ĝ

Ad(∂bAcAd+∂cAdAb−∂dAbAc)
+ ĝA4(∂bAc + ∂cAb − ∂4gbc − ∂4AbAc)

2Γ̂A4c =
∑
d ĝ

Ad(∂4gcd + ∂4AcAd + ∂cAd − ∂dAc)
Γ̂A44 =

∑
d ĝ

Ad∂4Ad

Simplifying...

2Γ̂abc = 2Γabc +
∑
d g

ad(AbFcd +AcFbd) +Aa∂4gbc +Aa∂4AbAc
2Γ̂4

bc = −
∑
dA

d(∂bgcd + ∂cgdb − ∂dgbc)−
∑
dA

d(AbFcd +AcFbd)
− (1 +

∑
iAiA

i)(∂4gbc + ∂4AbAc) + (∂bAc + ∂cAb)

2Γ̂a4c =
∑
d g

ad(∂4gcd + ∂4AcAd) +
∑
d g

adFcd
2Γ̂4

4c = −
∑
dA

d(∂4gcd + ∂4AcAd)−
∑
dA

dFcd
Γ̂a44 =

∑
d g

ad∂4Ad
Γ̂4
44 = −

∑
dA

d∂4Ad

2Γ̂abc = 2Γabc + gad(AbFcd +AcFbd)+ (terms << O(f)O(f+)), whether using
WCC or averaged RCC.

The Strong Scalar Limit: Ai = 0
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2Γ̂Abc =
∑
d ĝ

Ad(∂bgcd + ∂cgab − ∂dgbc) −ĝA4∂4gbc
2Γ̂A4c =

∑
d ĝ

Ad∂4gcd + ĝA4∂cφ
2

2Γ̂A44 = −
∑
d ĝ

Ad∂dφ
2 + ĝA4∂4φ

2

Simplifying...

Γ̂abc = Γabc
2Γ̂4

bc = − 1
φ2 ∂4gbc

2Γ̂a4c =
∑
d g

ad∂4gcd
2Γ̂4

4c = 1
φ2 ∂cφ

2

2Γ̂a44 = −
∑
d g

ad∂dφ
2

2Γ̂4
44 = 1

φ2 ∂4φ
2

Constraints on the Ricci tensor

5D Ricci curvature R̂ = 0 (outside of matter models) produces the following:

R̂ab = ∂C Γ̂Cab − ∂bΓ̂CaC + Γ̂CabΓ̂
D
CD − Γ̂CaDΓ̂DbC = 0 (8.0.1)

Rab = ∂cΓ
c
ab − ∂bΓcac + ΓcabΓ

d
cd − ΓcadΓ

d
bc (8.0.2)

Rab = Rab − R̂ab= (∂cΓ
c
ab − ∂cΓ̂cab)− ∂4Γ̂4

ab +(−∂bΓcac + ∂bΓ̂
c
ac) + ∂bΓ̂

4
a4

(ΓcabΓ
d
cd − Γ̂cabΓ̂

d
cd) −Γ̂cabΓ̂

4
c4 − Γ̂4

abΓ̂
4
44 −Γ̂4

abΓ̂
d
cd

(−ΓcadΓ
d
bc + Γ̂cadΓ̂

d
bc) +[Γ̂ca4Γ̂4

bc + Γ̂4
adΓ̂

d
b4] +Γ̂4

a4Γ̂4
b4

(8.0.3)

These produce 10 constraints plus a symmetry condition, or equivalently
16 constraints component-by-component. Looking at it as 10 constraints by
a symmetry condition is more useful, the 10 constraints corresponding to the
10 unknowns of the metric, the symmetry condition then being looked at sep-
arately: by inspection of the above (without torsion), we have that ∂bΓ̂

4
a4 is

symmetric at the strong scalar limit. A similar symmetry condition holds at
the strong electromagnetic limit, and more generally. There is, however, no
constraint imposed on the strong scalar limit:

∂bΓ̂
4
a4 = ∂b(

1
φ2 ∂aφ

2) = ∂a( 1
φ2 ∂bφ

2)

←→ (∂b
1
φ2 )∂aφ

2 + 1
φ2 ∂b∂aφ

2 = (∂a
1
φ2 )∂bφ

2 + 1
φ2 ∂a∂bφ

2

←→ (∂b
1
φ2 )∂aφ

2 = (∂a
1
φ2 )∂bφ

2

(8.0.4)
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Which is already symmetric by the chain rule. Whereas more generally
(without torsion) we have the symmetry of:

−∂bΓcac + ∂bΓ̂
c
ac + ∂bΓ̂

4
a4 ([SEM1] 8.0.5)

This leads to gauge-like constraints on the fields which may well be contrary
to both WCC and RCC. However this was not proven by the author.

[SEM1] will not be used here to draw conclusions about WCC or RCC

Further possible constraints on the field equations may be obtained by in-
specting the other components of R̂:

R̂44 = ∂C Γ̂C44 − ∂4Γ̂C4C + Γ̂C44Γ̂DCD − Γ̂C4DΓ̂D4C = 0 ([SEM2] 8.0.6)

R̂a4 = ∂C Γ̂Ca4 − ∂4Γ̂CaC + Γ̂Ca4Γ̂DCD − Γ̂CaDΓ̂D4C = 0 ([SEM3] 8.0.7)

The first equation [SEM2]8.0.6 means that all electromagnetic fields must
be null when there is no torsion, no scalar field, nor a physical Kaluza dimension
as will become clear in the following. The second relates to the Charge Ansatz.
For future references and full generality we include the torsion dependent terms.

R̂44 = 0 = ∂cΓ̂
c
44 + ∂4Γ̂4

44 − ∂4Γ̂c4c − ∂4Γ̂4
44 + Γ̂C44Γ̂DCD − Γ̂C4DΓ̂D4C

= ∂cΓ̂
c
44 − ∂4Γ̂c4c + Γ̂c44Γ̂DcD + Γ̂4

44Γ̂D4D − Γ̂c4DΓ̂D4c − Γ̂4
4DΓ̂D44

= ∂cΓ̂
c
44 − ∂4Γ̂c4c + Γ̂c44Γ̂dcd + Γ̂4

44Γ̂d4d − Γ̂c4dΓ̂
d
4c − Γ̂4

4dΓ̂
d
44 −Γ̂c44K

4
c4+Γ̂c44K

4
4c

= ∂cΓ̂
c
44 − ∂4Γ̂c4c + Γ̂c44Γ̂dcd + Γ̂4

44Γ̂d4d − Γ̂c4dΓ̂
d
4c − Γ̂4

4dΓ̂
d
44 +2Γ̂c44Ŝ

4
c4

(8.0.8)

Whether using (6.0.14), (6.0.15) or imposing the additional (somewhat ar-
bitrary) constraint of (6.0.16), the ∂cΓ̂

c
44 term makes no significant contribution

(a significant contribution has to be at least O(f+)O(f+) as will become ap-
parent). And this is true whether using WCC, RCC or even adding a torsion
tensor.

The −∂4Γ̂c4c term, independently of (6.0.14), (6.0.15) and (6.0.16), shows
the difficulty of using WCC to adapt to double derivatives: O(δ + +) should
be proportionately smaller than simply the << O(f + +) that WCC gives,
in order to take into account the small Kaluza dimension. But there is not
yet an algorithm associated with the definition of WCC to investigate this,
so we extend it such that O(δ + +) = O(δ+)O(δ+) to be consistent across
the chain rule, i.e. via distributivity. Similar problems exist when taking it
over potentials. Hereafter full expansion of WCC across the chain rule using
distributivity is assumed. This makes WCC more similar to RCC than originally
expected. However in what follows WCC fails to provide the necessary terms
and is discontinued. Assuming (6.0.16), RCC is however shown to be borderline
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with respect to admitting sufficient terms to allow non-null solutions (We can
ignore torsion by (7.1.6), its addition will add the same order of magnitude
again):

2∂4Γ̂c4c = ∂4(gcd(∂4gcd)) + ∂4g
cd(∂4AcAd) + ∂4(gcdFcd) + ∂4(gc4∂cφ

2)

(8.0.9)

We have under WCC, with chain rule algorithm (distributivity), some small
terms:

O(δ+)O(δ+) +O(δ+)O(δ+)O(f) +O(δ+)O(f+) +O(δ+)O(f)O(s+)

Where we have been channelled into multiplying by an extra O(f) in the
last term due to the preceding discussion on consistency across the chain rule
and distributivity. Without such the last term might have been O(δ+)O(s+).
But still not significant under WCC. If however the distributivity property was
disallowed, then the first term might become significant. In such cases however
we are really dealing with the resonance concept for which RCC was introduced.

We have under RCC with (6.0.16) some terms as follows (assuming distribu-
tivity again):

O(v++)/B2+O(v+)O(f)O(f+)/B2+O(v+)O(f+)/B+O(f+)O(v+)/B2

Whilst the others are small, the first term is:

O(v + +)O(f+)O(f+)/A2O(v+)O(v+) = O(f+)O(f+)/A2O(v)

Although it seems very close to call using orders of magnitude estimates, we
can see that this term could be O(f+)O(f+) if A were not very large. This is at
a level where experimental concerns start to be significant. This tricky situation
is tantalising and led to many forced attempts by the author to find a way to
make it work. But such a successful resolution is not presented here.

The question of using (6.0.16) is also itself rather arbitrary and in no way
presents us with an ideal consequence in any case.

Assuming that WCC can not be used to obtain the desired components in
the rest of the terms, which is now also shown, we drop WCC as insufficient.

RCC on the other hand has been brought close to a sufficient order of mag-
nitude, but only by assuming (6.0.16), and will therefore continue to be used.

Further problems and doubts arise with respect to (6.0.16) and RCC how-
ever, due to a simple observation of the necessary term: it is a derivative of
another term in the Kaluza direction. Thus we would expect it to be precisely
zero if tracing the term around any loop we arrived back at where we started.
It is thus a particularly unconvincing term to have in such a critical role. It
therefore needs further investigation, and ideally comparison with a superior
alternative:
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Torsion is added at the end of the calculation to the significant Christoffel
symbols, the reason for using torsion is readily seen - it is an alternative resolu-
tion that does not require RCC and (6.0.16), and provides the required degrees
of freedom in a far simpler and more convincing way.

∂4Γ̂c4c = +Γ̂c44Γ̂dcd + Γ̂4
44Γ̂d4d − Γ̂c4dΓ̂

d
4c − Γ̂4

4dΓ̂
d
44 + 2Γ̂c44Ŝ

4
c4 (8.0.10)

Expanding each term, discounting insignificant contributions (but not yet
selecting RCC over WCC), and before considering torsion we have:

Γ̂c44 = gcd∂4Ad − 1
2g
cd∂dφ

2 which is in any case <<<< O(f+)

Γ̂4
44 = 1

2∂4φ
2 −Ad∂4Ad + 1

2A
d∂dφ

2

2Γ̂dcd = 2Γdcd + gde(∂cAdAe)−Ad(∂cAd + ∂dAc − ∂4gcd)
2Γ̂4

4d = −Ae(∂4gde + ∂4AdAe + ∂dAe − ∂eAd) + ĝ44∂dφ
2

2Γ̂c4c = gcd(∂4gcd + ∂4AcAd + ∂cAd − ∂dAc) + ĝc4∂cφ
2

2Γ̂a4c = gad(∂4gcd + ∂4AcAd + ∂cAd − ∂dAc) + ĝa4∂cφ
2

This reduces to the two middle terms after applying distributivity to the
first term. Both the first and the last pure Christoffel term (and therefore also
the torsion containing term) then being bounded by << O(f+)O(f+).

The second term is, under WCC: ([the lowest ofO(s+) orO(δ+)] +O(f)O(δ+)+
O(f)O(s+)) times (O(δ+) + O(f+) + O(f)O(s+)) which is << O(f+)O(f+)
as required to discard it provided O(s+) ≤ O(f+).

The second term is, under RCC: (O(s+)/B+O(f)O(f+)/B+O(f)O(s+))
times (O(v+)/B+O(f)O(f+)/B+O(f+)+O(f)O(s+)). This is likewise small.

The significant term remains, relative to which the others are small, and so
this becomes the constraint:

∂4Γ̂c4c = −Γ̂c4dΓ̂
d
4c

∂4Γ̂c4c = (gce(∂4gde+∂4AdAe+∂dAe−∂eAd)+ĝa4∂dφ
2)(gdf (∂4gcf+∂4AcAf+

∂cAf − ∂fAc) + ĝa4∂cφ
2)

Whether simplified by WCC or RCC, we get the constraint:

∂4Γ̂c4c = −gce(Fde)gdf (Fcf ) = FabF
ab (8.0.11)

Which is the definition of null solutions when the LHS is 0. This is the final
check required before discarding WCC, for which indeed the LHS is insignificant
in magnitude. Whether the LHS is able to be O(f+)O(f+) is the issue for
RCC, in this way non-null solutions may be permitted. The nature of the key
term suggests not. RCC should most likely be discarded, it does not lead to a
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satisfactory resolution, unless errors of the correct order of magnitude can be
found in the Lorentz force law experimentally - an unlikely prospect.

At this point we can put the torsion tensor back in (with respect to the
significant orders of magnitude) as follows:

0 = ∂4Γ̂c4c = ∂4{̂c4c} − ∂4K̂
c

4c = −[gce(Fde)− K̂ c
4d ][gdf (Fcf )− K̂ d

4c ]

= −[(F cd )− K̂ c
4d ][(F dc )− K̂ d

4c ]

= −FcdF cd + 2K̂ c
4d F

d
c − K̂

c
4d K̂

d
4c where all terms are O(f+)O(f+)

([SEM2b] 8.0.12)

Regardless of WCC or RCC, or even KCC, torsion potentially breaks the
[SEM2]8.0.6 constraint that forces Kaluza theory solutions to be null. This
breaking of [SEM2]8.0.6 occurs regardless of the total antisymmetry of the
torsion tensor. It is also consistent with (7.1.6).

9 Experimental Considerations And Postulates

From the discussion previously two possible ways to allow for non-null elec-
tromagnetic solutions were apparent: firstly using RCC and the arbitrary con-
straint (6.0.16), along with ignoring doubts concerning the feasibility of the term
in question. Secondly, simply the introduction of torsion into the scheme.

Of the two possibilities the second might be prefered on grounds of elegance
alone, in particular the ω-consistency of torsion in general relativity is philosoph-
ically encouraging, but perhaps alone not sufficient to convince. The difficulty
of finding a convincing term is not in itself proof that the RCC approach has
failed, though perhaps a more astute analysis might eventually provide it. The
apparent arbitrariness of (6.0.16) does not preclude the possibility that there is
a totally good explanation for it, and that it is in fact correct. Nevertheless, al-
though it has not been provided here, a convincing theoretical reason to discard
this possibility may well exist. The brief consistency check when introducing
torsion, for example, also provides a bound on O(δ+) and O(s+) that may be
useful in this.

In addition to purely deductive methods, however, experimental validity
must also be investigated. They are quicker, easier and often more reliable than
a very theoretical argument, even though purely theoretical arguments may
have the potential to be correct. The Lorentz force law has been well tested. In
particular it has been tested via Coulomb’s law, applicable in the case of electric
fields which interest us here as being non-null. It has been tested to very great
accuracy.

We can see from the discussion accompanying the derivation of (6.0.7) that
B is needed to be sufficiently large, and therefore that A must be sufficiently
large, otherwise the O(δ+) term mentioned, gcd∂4ĝbd, will start to be significant
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and affect the Lorentz force law. And this will happen quite quickly. For an
error in the Lorentz force law of 1 in 1000, we would need an O(A) ≈ 1000,
but we would not be concerned for many more orders of magnitude than that.
Thus accuracy in the testing of the Lorentz force law, furnishes directly a lower
bound on A.

On the other hand the discussion of [SEM2]8.0.6 requires a small A. That
is, it provides an upper bound: O(A2) ≈ 1/O(v). This is to make the term
gcd∂4ĝcd large enough. An estimate of 1/

√
O(v) ≈ 104.5 (see 4.2.1) gives us just

such an upper bound for A, and it is apparently well below lower bounds for A
given by experimental accuracy known for the Lorentz force law. Though it is
not the purpose here to go into experimental details. We have, within the limits
of the methods used, a contradiction.

Thus we have actually shown that neither relaxing cylindricity, nor allow-
ing for scalar field oscillations readily furnishes us with the required non-null
solutions, nor are they necessary even as contributory factors. But rather it has
been shown that torsion is both likely necessary and is in any case sufficient to
resolve [SEM2]8.0.6 and extend the range of Kaluza theory solutions to include
such essentials as static electric fields - notwithstanding further constraints from
[SEM3]8.0.7 to be investigated shortly.

What has been presented then is an argument to suggest the use of torsion
in Kaluza theory as a key feature to resolve some of its foundational issues.
We have argued for discarding attempts at using weaker cylindricity and/or
oscillations of the scalar field, despite the fact that investigating this was the
original intent of the work.

10 Summary of Postulates

We have arrived at a 5D Kaluza theory with torsion, that is, where the Ricci
flat part of Kaluza space includes the torsion tensor in the defining connection,
and total antisymmetry of torsion is assumed. The following order of magnitude
constraints are imposed on various terms to provide an electromagnetic/usual
classical limit:

O(δ+) <<<< O(f+)
O(s+) <<<< O(f+)
O(Ŝ C

AB ) ≤ O(Γ̂CAB + K̂ C
AB ) ∀A,B and C ∈ {a,b,c,4}

That is: (6.0.14),(6.0.15) and (7.1.6)

Other broad assumptions were made and are still needed: the Geodesic
Assumption, causality (and the existence of a hypersurface), suitable topology
and so on. But these, although needed for the limit of general relativity, are not
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part of the theory per se. Similalry loosening the above constraints may yield
empirically testable hypotheses.

Despite the length and complexity of the argument we have in fact arrived
at straight forward postulates, and require none of the messiness previously
entertained. The froth has boiled down to a few simple ideas. Nor indeed, it
has been argued, are there other clear ways forward. An exhaustive a search
as possible has been attempted. The above, or substantially similar postulates,
appear to be the most natural selection of postulates. We can interpret the total
antisymmetry of torsion ansatz as simply defining a limit without torsion effects
on the Lorentz force law, and as yet uncalculated (presumably small) effects on
the details of the field equations. Non-asymmetry and observable effects are not
discounted out of hand.

11 Non-Null Solutions And Degrees of Freedom

In order to check that we do indeed have enough degrees of freedom to allow for
non-null fields, [SEM3]8.0.7 will now be investigated. The postulates previously
stated make the calculation far easier.

R̂a4 = ∂C Γ̂Ca4 − ∂4Γ̂CaC + Γ̂Ca4Γ̂DCD − Γ̂CaDΓ̂D4C = 0 ([SEM3] 11.0.1)

Torsion terms will be kept, terms strictly less than O(f++) or O(f+)O(v+)
will be discarded.

R̂a4 = ∂cΓ̂
c
a4 +∂4Γ̂4

a4−∂4Γ̂cac−∂4Γ̂4
a4 +Γ̂ca4Γ̂DcD+Γ̂4

a4Γ̂D4D− Γ̂caDΓ̂D4c− Γ̂4
aDΓ̂D44

= ∂cΓ̂
c
a4−∂4Γ̂cac+Γ̂ca4Γ̂dcd+Γ̂ca4Γ̂4

c4+Γ̂4
a4Γ̂d4d−Γ̂cadΓ̂

d
4c−Γ̂ca4Γ̂4

4c−Γ̂4
adΓ̂

d
44

= ∂cΓ̂
c
a4−∂4Γ̂cac+Γ̂ca4Γ̂dcd+Γ̂4

a4Γ̂d4d−Γ̂cadΓ̂
d
4c−Γ̂4

adΓ̂
d
44+Γ̂ca4(K̂ 4

4c −K̂ 4
c4 )

Removing small terms due to Postulates:

R̂a4 = 0 = ∂cΓ̂
c
a4 + Γ̂ca4Γ̂dcd − Γ̂cadΓ̂

d
4c

Γ̂ca4 = 1
2 [ĝcd(∂4gad + ∂4φ

2AaAd + ∂aφ
2Ad − ∂dφ2Aa) + ĝc4∂aφ

2]−K̂ c
a4

Γ̂d4c = 1
2 [ĝde(∂4gce + ∂4φ

2AcAe + ∂cφ
2Ae − ∂eφ2Ac) + ĝd4∂cφ

2]−K̂ d
4c

∂cΓ̂
c
a4 = 1

2∂cF
c
a − ∂cK̂

c
a4

Γ̂ca4Γ̂dcd = [ 12F
c
a − K̂

c
a4 ][Γdcd]

−Γ̂cadΓ̂
d
4c = −[Γcad][

1
2F

d
c − K̂

d
c4 ]

0 =
1

2
∂cF

c
a −∂cK̂

c
a4 + [

1

2
F ca − K̂

c
a4 ][Γdcd]− [Γcad][

1

2
F dc − K̂

d
c4 ] ([SEM3b] 11.0.2)
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Setting K̂ c
a4 to 0 or to 1

2F
c
a does nothing but rederive null solutions via

[SEM2b]8.0.12 and anti-symmetry. These are not the solutions we are looking
for. That there should be other solutions is determined by the fact that via
[SEM2b]8.0.12 and [SEM3]8.0.7 there are only 5 constraints on K̂ c

a4 , yet be-
ing anti-symmetric we have 6 degrees of freedom. This provides room to look
for explicit non-null solutions. There is no reason here to think that non-null
solutions are prohibited.

We do however have, when torsion is included, the 16 constraints associated
with setting the 5D Ricci tensor to 0, that is the constraints associated with
[SEM1]8.0.5. 10 of which can be assigned to delimiting the 4D metric and 5
of the other 6 to the remaining components of the 5D metric, which although
it includes the electromagnetic fields does not include the torsion which, via
the preceding, determines nullity and non-nullity. Here we see that we are left
with 1 extra constraint. This could be used to constrain any component of the
torsion tensor, leaving no particular constraint on K̂ c

a4 and thus allowing enough
degrees of freedom, exactly 1 degree of freedom, for non-null electromagnetic
fields, relative to the relevant constraints: [SEM2b]8.0.12 and [SEM3b]11.0.2.
The 6 degrees of freedom might equally be paired off with torsion terms that
do not depend on nullity/non-nullity, i.e the K̂ c

ab terms. Either way we have
enough degrees of freedom available thanks to the torsion.

The outstanding issue is the Charge Ansatz. Until this point no attempt to
justify this ansatz has been made, apart from the fact that its assumption has
been necessary. This will now be investigated.

12 The Nature Of Charge

In general relativity at a weak field limit the conservation of momentum-energy
can be given in terms of the stress-energy tensor as follows [9]. Energy:

∂T̂ 00

∂t
+
∂T̂ i0

∂xi
= 0 (12.0.1)

Momentum in the j direction:

∂T̂ 0j

∂t
+
∂T̂ ij

∂xi
= 0 (12.0.2)

This can be applied equally to Kaluza theory (with matter models that are
not Ricci flat in the Kaluza space). It needs to be applied to the underlying
(not here Ricci flat) Kaluza space. We have a description of conservation of
momentum in the 5th dimension as follows:

∂T̂ 04

∂t
+
∂T̂ i4

∂xi
= 0 (12.0.3)
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This is accurate at the weak field limit, and so is valid at the usual classical
scale. We also have by the postulates the situation where i=4 can be treated
as small. Thus the conservation of ‘charge’ becomes the property of a 4-vector
current at the usual classical scale, which we know to be conserved:

V = (T̂ 04, T̂ 14, T̂ 24, T̂ 34) (12.0.4)

∂0T̂
04 + ∂1T̂

14 + ∂2T̂
24 + ∂3T̂

34 = 0 (12.0.5)

(V is a vector for the same reasons as the vector potential is a vector.)

At this point we can calculate this ‘current’ in terms of the metric and
Ricci tensor, noting that even with torsion present the original Einstein tensor
constructed from the torsion free connection and metric can still be used. We
have two connections on one manifold. And two possible Einstein tensors. The
Einstein-Cartan stress-energy tensor P̂ with torsion may be asymmetric.

For the moment we shall ignore torsion, and revert to the Einstein tensor Ĝ
and torsion free connection.

We can identify the current with the following components of the 5D (torsion
free) Einstein tensor by discounting small terms, and thus consistently with
(6.0.5) and the previous derivations of the Lorentz force law:

V ≈ (R̂04 − 1/2ĝ04R̂, R̂14 − 1/2ĝ14R̂, R̂24 − 1/2ĝ24R̂, R̂34 − 1/2ĝ34R̂) (12.0.6)

V ≈ (R̂04, R̂14, R̂24, R̂34) due to O(f) terms in the metric. (12.0.7)

The following parts of the Ricci tensor will be looked at due to its significance
O(f + +):

X̂a4 = ∂C Γ̂Ca4 − ∂4Γ̂CaC (12.0.8)

Regardless of torsion (if we repeat this calculation for the torsion bearing
Einstein tensor P̂ ) the other part of the Ricci tensor will have a significance
<< O(f + +) since, being always compounded of two Christoffel symbols, it
starts off bounded by O(v+)O(v+). We need only one of the Christoffel symbols
to be O(f+) and we have already an order of significance less than O(f + +)
via distributivity. That there is always such a term follows from the fact that
at least one of each pair of Christoffel symbols in the remaining part of the
Ricci tensor will have an index that is 4. This then also makes insignificant any
contribution from the corresponding torsion tensors. The terms are simplified
and discarded using the Postulates and distributivity, and by comparing relative
significances.

2V ≈ 2X̂a4 = ∂C [ĝCD(∂aĝD4 +∂4ĝDa−∂Dĝa4)]−∂4[ĝCD(∂aĝDC +∂C ĝDa−
∂DĝaC)]
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≈ ∂C [ĝCD(∂aĝD4 + ∂4ĝDa − ∂Dĝa4)]
≈ ∂C [ĝCD(∂aĝD4 − ∂Dĝa4)]
≈ ∂c[ĝcd(∂aĝd4 − ∂dĝa4)]
≈ ∂c(∂aĝc4 − ∂cĝa4)
≈ −∂c(∂aAc − ∂cAa)
≈ −∂cF ac

(12.0.9)

This, as the explicit equation of Maxwellian charge sources (albeit approxi-
mate), provides justification for the approximate, but consistent, association of
Toth charge with Maxwell charge. It is no longer an ansatz as such at all, but
now follows from the Postulates.

However we have here ignored the torsion tensor. This doesn’t necessarily
matter as the sought for property of zero divergence in the (torsion free) Einstein
tensor will still present a conservation law. In particular the kinematic momenta
and energies are equivalent for both connections as, as mentioned in section 7
in relation to total asymmetry (and now also noting the Geodesic Assumption),
the geodesic paths followed by particles with momentum and energy are the
same. But it would be better to have it defined in terms of the torsion bearing
connection and hence in terms of P̂ . This can be done via the Belinfante-
Rosenfeld tensor B̂. Since B̂ is equivalent to Ĝ [15] we immediately have the
required result in terms of tensors defined by torsion and the torsion bearing
connection.

13 Bel Super-Energy

As has been noted, the geodesics are the same with and without torsion - when
the torsion tensor is totally asymmetric at least. Torsion plays a role only in
defining the field equations that occur due to coupling with electromagnetism.
The Kaluza space (outside of matter models) is Ricci flat with torsion, yet the
geodesics are the same as if it were Ricci flat without torsion. That means the
(generalized) Bel super-energy tensor is conserved [11][12], that its divergence
is zero outside of matter models. In free space in general relativity the Bel-
Robinson super-energy tensor is similarly conserved [7]. The Bel tensor is the
super-energy tensor associated with the Weyl tensor (which is all that is left
of the geometry after the Ricci tensor has been removed). Its non-divergence
ensures the Weyl tensor is causal [10] if the Kaluza space is globally hyperbolic,
and therefore provides causality in the theory. In 4 and 5 dimensions the (gener-
alized) Bel super-energy tensor is conveniently symmetric. It has the dominant
energy property [11][12]. It is well placed to replace the energy conditions of
general relativity.

As such a hypothesis is proposed - The Bel Super-Energy Condition: that
the (generalized) Bel tensor (of the Kaluza space) is conserved by matter/charge
models.
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This might lead to testable predictions, for example, if changes in the di-
ameter of the Kaluza dimension were allowed. It can also be noted that even
negative masses would behave causally under this constraint, thus foundational
issues pertaining to 4-geons (or in this case 5-geons) are potentially resolvable:
we might be allowed small amounts of negative mass to form the 5-geons, pro-
vided Bel super-energy was conserved, without disruptions to causality.

14 Conclusion

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth wrapped-
up spatial dimension is at the root of many modern attempts to develop new
physical theories. Lacking non-null electromagnetic fields however the theory is
incomplete.

This work sought to investigate the issue of non-null electromagnetic solu-
tions in Kaluza variant theories by the method of an order of magnitude analysis
under various assumptions, such as variant cylinder conditions, and making the
ansatz that charge can be identified with 5D momentum - the initial justifica-
tion for which was the ease of derivation of the Lorentz force law under limited
circumstances.

The non-null solutions were not found by relaxing the cylinder condition or
allowing for scalar fields, and further the Lorentz force law was maintained best
with respect to Toth charges by maintaining a tight cylinder condition and very
limited scalar field oscillations. This was despite a search that tried to be as
exhaustive as possible. Attempts at using both the scalar field and various 5th
dimensional oscillations proved tantalising but ultimately ineffective. And the
program to find non-null solutions as a result of these two factors failed.

The derivation of the Lorentz force law was not, however, impaired by the
admission of torsion. And at the same time adding torsion along with reasonable
and necessary constraints meant that unhelpful bounds on the field equations
were loosened considerably. Further, enough degrees of freedom for the sought
for non-null solutions were found. And this was achieved without the help of
weakening the cylinder conditions or a significant fluctuating scalar field.

We can therefore conclude that when 5D momentum is to be identified with
Maxwellian charge, and when there is no (or very weak) scalar field, that the
cylinder condition must be more or less as given by Kaluza, and that torsion is
necessary to get non-null electromagnetic fields, such as static electric fields. It
was also noted that in any case Einstein-Cartan theory is a natural and necessary
extension of general relativity via ω-consistency, thus the use of torsion is really
very natural, and all the more so with the resulting resolution to the foundational
issues of Kaluza theory.

The identification of 5D momentum and charge is shown to be a conse-
quence of the new Postulates developed through the paper, and in particular
the presence of torsion that allows the Postulates to offer the full range of elec-
tromagnetic solutions.

Some theorists investigate relativity theory with torsion, and some theorists
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investigate Kaluza or Kaluza Klein theories. Here it is shown why it makes sense
to investigate both together, and in particular why Kaluza theory should have
torsion added. This work has resolved foundational issues associated with clas-
sical Kaluza theory and provided motivation for further investigation. Further,
the coupling such as it is between the torsion tensor and other tensors (primarily
the electromagnetic field) means that there are, in principle, testable phenom-
ena, though the effects may be small. This assumes that the field equations
do not always perfectly reduce to electrovacuum solutions, which in any case is
unlikely. This hypothesis awaits definitive proof or disproof via explicit calcu-
lation of the variant field equations. The overall purpose of the theory is the
same as that of Kaluza, to provide an explanation for all classical electromag-
netic phenomena in terms of geometry. The variant theory merges two serious
attempts at unifying electromagnetism and gravity. The argument justifies this
on the grounds of necessity.

The testable hypothesis was proposed that Bel super-energy may be con-
served by matter/charge models to act as an energy condition.

15 Aknowledgements

With thanks to Viktor Toth.
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