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Abstract. We present deterministic primality test for Fermat
numbers , Fn = 22

n

+ 1 , where n ≥ 2 . Essentially this test is
similar to the Lucas-Lehmer primality test for Mersenne numbers.

1. Introduction.

Fermat numbers were first studied by Pierre de Fermat , who conjuc-
tured that all Fermat numbers are prime. This conjecture was refuted
by Leonhard Euler in 1732 when he showed that F5 is composite . It is
known that Fn is composite for 5 ≤ n ≤ 32 . Question,are there infin-
itely many Fermat primes is still an open problem . In 1856 Edouard
Lucas has developed primality test for Mersenne numbers . Test was
improved by Lucas in 1878 and Derrick Lehmer in 1930 s. The test
uses a sequence Si defined by S0 = 4 and Si+1 = Si

2 − 2 for i ≥ 1 .
Mersenne number Mp is prime if and only if Mp divides Sp−2 .

In this paper we give primality test for Fermat numbers using quartic
recurrsive equation : Si = S4

i−1 − 4S2
i−1 + 2 . The test uses a sequence

defined by this recursion .

2. The test and Proof of correctness

2.1. The test. Let Fn = 22n + 1 with n ≥ 2 . In pseudocode the test
might be written :

//Determine if Fn = 22n + 1 is prime
FermatPrime(n)
var S = 8
var F = 22n + 1
repeat 2n−1 − 1 times :
S = (((S × S)− 2)× ((S × S)− 2)− 2) (mod F )
if S = 0 return PRIME else return COMPOSITE
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2.2. Proof of correctness. Let us define sequence Si as :

Si =

{
8 if i = 0;

(S2
i−1 − 2)2 − 2 otherwise .

Theorem 2.1. Fn = 22n + 1, (n ≥ 2) is a prime if and only if Fn
divides S2n−1−1 .

Proof. Let us define ω = 4 +
√

15 and ω̄ = 4−
√

15 and then define
Ln to be ω22n + ω̄22n , we get L0 = ω + ω̄ = 8 , and
Ln+1 = ω22n+2

+ ω̄22n+2
= (ω22n+1

)2 + (ω̄22n+1
)2 =

= (ω22n+1
+ ω̄22n+1

)2 − 2 · ω22n+1 · ω̄22n+1
=

= ((ω22n + ω̄22n)2 − 2 · ω22n · ω̄22n)2 − 2 · ω22n+1 · ω̄22n+1
=

= ((ω22n + ω̄22n)2 − 2 · (ω · ω̄)2
2n

)2 − 2 · (ω · ω̄)2
2n+1

and since ω · ω̄ = 1 we get :
Ln+1 = (L2

n − 2)2 − 2

Because the Ln satisfy the same inductive definition as the sequence
Si , the two sequences must be the same .

Proof of necessity :

If 22n + 1 is prime then S2n−1−1 is divisible by 22n + 1

We rely on simplification of the proof of Lucas-Lehmer test by Oys-
tein J. R. Odseth , see [1].First notice that 3 is quadratic non-residue
(mod Fn) and that 5 is quadratic non-residue (mod Fn) . Euler’s cri-
terion then gives us :

3
Fn−1

2 ≡ −1 (mod Fn) and 5
Fn−1

2 ≡ −1 (mod Fn)
On the other hand 2 is a quadratic-residue (mod Fn) , Euler’s crite-
rion gives:

2
Fn−1

2 ≡ 1 (mod Fn)
Next define σ = 2

√
15 , and define X as the multiplicative group of

{a+ b
√

15|a, b ∈ ZFn} .We will use following lemmas :

Lemma 2.1. : (x+ y)Fn = xFn + yFn (mod Fn)
Lemma 2.2. : aFn ≡ a (mod Fn) (Fermat little theorem)

Then in group X we have :

(6 + σ)Fn ≡ (6)Fn + (σ)Fn (mod Fn) =
= 6 + (2

√
15)Fn (mod Fn) =
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= 6 + 2Fn · 15
Fn−1

2 ·
√

15 (mod Fn) =

= 6 + 2 · 3Fn−1
2 · 5Fn−1

2 ·
√

15 (mod Fn) =
= 6 + 2 · (−1) · (−1) ·

√
15 (mod Fn) =

= 6 + 2
√

15 (mod Fn) = (6 + σ) (mod Fn)

We chose σ such that ω = (6+σ)2

24
. We can use this to compute ω

Fn−1
2

in the group X :

ω
Fn−1

2 = (6+σ)Fn−1

24
Fn−1

2

= (6+σ)Fn

(6+σ)·24
Fn−1

2

≡ (6+σ)
(6+σ)·(−1)

(mod Fn) = −1 (mod Fn)

where we use fact that :

24
Fn−1

2 = (2
Fn−1

2 )3 · (3Fn−1
2 ) ≡ (13) · (−1) (mod Fn) = −1 (mod Fn)

So we have shown that :

ω
Fn−1

2 ≡ −1 (mod Fn)

If we write this as ω
22

n
+1−1
2 = ω22

n−1
= ω22

n−2 ·ω22
n−2 ≡ −1 (mod Fn)

,multiply both sides by ω̄22
n−2

, and put both terms on the left hand
side to write this as :
ω22

n−2
+ ω̄22

n−2 ≡ 0 (mod Fn)

ω22(2
n−1−1)

+ ω̄22(2
n−1−1) ≡ 0 (mod Fn)⇒ S2n−1−1 ≡ 0 (mod Fn)

Since the left hand side is an integer this means therefore that S2n−1−1

must be divisible by 22n + 1 .

Proof of sufficiency :

If S2n−1−1 is divisible by 22n + 1 , then 22n + 1 is prime

We rely on simplification of the proof of Lucas-Lehmer test by J. W.
Bruce , see [2].If 22n + 1 is not prime then it must be divisible by some
prime factor F less than or equal to the square root of 22n + 1 . From
the hypothesis S2n−1−1 is divisible by 22n + 1 so S2n−1−1 is also multiple
of F , so we can write :

ω22(2
n−1)

+ ω̄22(2
n−1)

= K · F , for some integer K . We can write this
equality as :

ω22
n−2

+ ω̄22
n−2

= K · F
Note that ω · ω̄ = 1 so we can multiply both sides by ω22

n−2
and rewrite



4 PREDRAG TERZIC

this relation as :
ω22

n−1
= K · F · ω22

n−2 − 1 . If we square both sides we get :

ω22
n

= (K · F · ω22
n−2 − 1)2

Now consider the set of numbers a + b
√

15 for integers a and b where
a+ b

√
15 and c+ d

√
15 are considered equivalent if a and c differ by a

multiple of F , and the same is true for b and d . There are F 2 of these
numbers , and addition and multiplication can be verified to be well-
defined on sets of equivalent numbers. Given the element ω (considered
as representative of an equivalence class) , the associative law allows
us to use exponential notation for repeated products : ωn = ω · ω · · ·ω
, where the product contains n factors and the usual rules for expo-
nents can be justified . Consider the sequence of elements ω, ω2, ω3...
. Because ω has the inverse ω̄ every element in this sequence has an
inverse . So there can be at most F 2 − 1 different elements of this
sequence. Thus there must be at least two different exponents where
ωj = ωk with j < k ≤ F 2 . Multiply j times by inverse of ω to get
that ωk−j = 1 with 1 ≤ k − j ≤ F 2 − 1 .
So we have proven that ω satisfies ωn = 1 for some positive exponent
n less than or equal to F 2 − 1 . Define the order of ω to be smallest
positive integer d such that ωd = 1 . So if n is any other positive integer
satisfying ωn = 1 then n must be multiple of d . Write n = q ·d+r with
r < d . Then if r 6= 0 we have 1 = ωn = ωq·d+r = (ωd)q ·ωr = 1q ·ωr = ωr

contradicting the minimality of d so r = 0 and n is multiple of d .

The relation ω22
n

= (K ·F ·ω22
n−2 − 1)2 shows that ω22

n

≡ 1 (mod F )
. So that 22n must be multiple of the order of ω . But the relation

ω22
n−1

= K · F · ω22
n−2 − 1 shows that ω22

n−1 ≡ −1 (mod F ) so the
order cannot be any proper factor of 22n , therefore the order must be
22n . Since this order is less than or equal to F 2 − 1 and F is less or
equal to the square root of 22n +1 we have relation : 22n ≤ F 2−1 ≤ 22n

. This is true only if 22n = F 2− 1⇒ 22n + 1 = F 2 . We will show that
Fermat number cannot be square of prime factor .

Theorem 2.2. Any prime divisor p of Fn = 22n + 1 is of the form
k · 2n+2 + 1 whenever n is greater than one .

Proof. For proof see [3]
�

So prime factor F must be of the form k · 2n+2 + 1 , therefore we can
write :
22n + 1 = (k · 2n+2 + 1)2

22n + 1 = k2 · 22n+4 + 2 · k · 2n+2 + 1



PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION5

22n = k · 2n+3 · (k · 2n+1 + 1)

The last equality cannot be true since k · 2n+1 + 1 is an odd number
and 22n has no odd prime factors so 22n +1 6= F 2 and therefore we have
relation 22n < F 2 − 1 < 22n which is contradiction so therefore 22n + 1
must be prime .

�
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