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Abstract

The basic challenge of quantum TGD is to give a precise content to the notion of generalization
Feynman diagram and the reduction to braids of some kind is very attractive possibility inspired
by zero energy ontology. The point is that no n > 2-vertices at the level of braid strands are
needed if bosonic emergence holds true.

1. For this purpose the notion of algebraic knot is introduced and the possibility that it could
be applied to generalized Feynman diagrams is discussed. The algebraic structrures kei,
quandle, rack, and biquandle and their algebraic modifications as such are not enough. The
lines of Feynman graphs are replaced by braids and in vertices braid strands redistribute.
This poses several challenges: the crossing associated with braiding and crossing occurring
in non-planar Feynman diagrams should be integrated to a more general notion; braids are
replaced with sub-manifold braids; braids of braids ....of braids are possible; the redistribu-
tion of braid strands in vertices should be algebraized. In the following I try to abstract the
basic operations which should be algebraized in the case of generalized Feynman diagrams.

2. One should be also able to concretely identify braids and 2-braids (string world sheets) as
well as partonic 2-surfaces and I have discussed several identifications during last years.
Legendrian braids turn out to be very natural candidates for braids and their duals for
the partonic 2-surfaces. String world sheets in turn could correspond to the analogs of La-
grangian sub-manifolds or two minimal surfaces of space-time surface satisfying the weak
form of electric-magnetic duality. The latter opion turns out to be more plausible. Fi-
nite measurement resolution would be realized as symplectic invariance with respect to the
subgroup of the symplectic group leaving the end points of braid strands invariant. In ac-
cordance with the general vision TGD as almost topological QFT would mean symplectic
QFT. The identification of braids, partonic 2-surfaces and string world sheets - if correct
- would solve quantum TGD explicitly at string world sheet level in other words in finite
measurement resolution.

3. Also a brief summary of generalized Feynman rules in zero energy ontology is proposed. This
requires the identification of vertices, propagators, and prescription for integrating over al
3-surfaces. It turns out that the basic building blocks of generalized Feynman diagrams are
well-defined.

4. The notion of generalized Feynman diagram leads to a beautiful duality between the de-
scriptions of hadronic reactions in terms of hadrons and partons analogous to gauge-gravity
duality and AdS/CFT duality but requiring no additional assumptions. The model of quark
gluon plasma as s strongly interacting phase is proposed. Color magnetic flux tubes are
responsible for the long range correlations making the plasma phase more like a very large
hadron rather than a gas of partons. One also ends up with a simple estimate for the
viscosity/entropy ratio using black-hole analogy.
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1 Introduction

Ulla send me a link to an article by Sam Nelson about very interesting new-to-me notion known as
algebraic knots [6, 4], which has initiated a revolution in knot theory. This notion was introduced 1996
by Louis Kauffmann [5] so that it is already 15 year old concept. While reading the article I realized
that this notion fits perfectly the needs of TGD and leads to a progress in attempts to articulate more
precisely what generalized Feynman diagrams are.

In the following I will summarize briefly the vision about generalized Feynman diagrams, introduce
the notion of algebraic knot, and after than discuss in more detail how the notion of algebraic knot
could be applied to generalized Feynman diagrams. The algebraic structrures kei, quandle, rack, and
biquandle and their algebraic modifications as such are not enough. The lines of Feynman graphs
are replaced by braids and in vertices braid strands redistribute. This poses several challenges: the
crossing associated with braiding and crossing occurring in non-planar Feynman diagrams should be
integrated to a more general notion; braids are replaced with sub-manifold braids; braids of braids
....of braids are possible; the redistribution of braid strands in vertices should be algebraized. In the
following I try to abstract the basic operations which should be algebraized in the case of generalized
Feynman diagrams.

One should be also able to concretely identify braids and 2-braids (string world sheets) as well as
partonic 2-surfaces and I have discussed several identifications during last years. Legendrian braids
turn out to be very natural candidates for braids and their duals for the partonic 2-surfaces. String
world sheets in turn could correspond to the analogs of Lagrangian sub-manifolds or to minimal sur-
faces of space-time surface satisfying the weak form of electric-magnetic duality. The latter option
turns out to be more plausible. Finite measurement resolution would be realized as symplectic in-
variance with respect to the subgroup of the symplectic group leaving the end points of braid strands
invariant. In accordance with the general vision TGD as almost topological QFT would mean sym-
plectic QFT. The identification of braids, partonic 2-surfaces and string world sheets - if correct -
would solve quantum TGD explicitly at string world sheet level in other words in finite measurement
resolution.

Irrespective of whether the algebraic knots are needed, the natural question is what generalized
Feynman diagrams are. It seems that the basic building bricks can be identified so that one can write
rather explicit Feynman rules already now. Of course, the rules are still far from something to be
burned into the spine of the first year graduate student.

2 Generalized Feynman diagrams, Feynman diagrams, and
braid diagrams

2.1 How knots and braids a la TGD differ from standard knots and braids?

TGD approach to knots and braids differs from the knot and braid theories in given abstract 3-
manifold (4-manifold in case of 2-knots and 2-braids) is that space-time is in TGD framework identified
as 4-D surface in M4 × CP2 and preferred 3-surfaces correspond to light-like 3-surfaces defined by
wormhole throats and space-like 3-surfaces defined by the ends of space-time sheets at the two light-like
boundaries of causal diamond CD.

The notion of finite measurement resolution effectively replaces 3-surfaces of both kinds with
braids and space-time surface with string world sheets having braids strands as their ends. The 4-
dimensionality of space-time implies that string world sheets can be knotted and intersect at discrete
points (counterpart of linking for ordinary knots). Also space-time surface can have self-intersections
consisting of discrete points.

The ordinary knot theory in E3 involves projection to a preferred 2-plane E2 and one assigns to
the crossing points of the projection an index distinguishing between two cases which are transformed
to each other by violently taking the first piece of strand through another piece of strand. In TGD one
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must identify some physically preferred 2-dimensional manifold in imbedding space to which the braid
strands are projected. There are many possibilities even when one requires maximal symmetries. An
obvious requirement is however that this 2-manifold is large enough.

1. For the braids at the ends of space-time surface the 2-manifold could be large enough sphere
S2 of light-cone boundary in coordinates in which the line connecting the tips of CD defines a
preferred time direction and therefore unique light-like radial coordinate. In very small knots
it could be also the geodesic sphere of CP2 (apart from the action of isometries there are two
geodesic spheres in CP2).

2. For light-like braids the preferred plane would be naturally M2 for which time direction corre-
sponds to the line connecting the tips of CD and spatial direction to the quantization axis of
spin. Note that these axes are fixed uniquely and the choices of M2 are labelled by the points of
projective sphere P 2 telling the direction of space-like axis. Preferred plane M2 emerges natu-
rally also from number theoretic vision and corresponds in octonionic pictures to hyper-complex
plane of hyper-octonions. It is also forced by the condition that the choice of quantization axes
has a geometric correlate both at the level of imbedding space geometry and the geometry of
the ”world of classical worlds”.

The braid theory in TGD framework could be called sub-manifold braid theory and certainly differs
from the standard one.

1. If the first homology group of the 3-surface is non-trivial as it when the light-like 3-surfaces
represents an orbit of partonic 2-surface with genus larger than zero, the winding of the braid
strand (wrapping of branes in M-theory) meaning that it represents a homologically non-trivial
curve brings in new effects not described by the ordinary knot theory. A typical new situation
is the one in which 3-surface is locally a product of higher genus 2-surface and line segment so
that knot strand can wind around the 2-surface. This gives rise to what are called non-planar
braid diagrams for which the projection to plane produces non-standard crossings.

2. In the case of 2-knots similar exotic effects could be due to the non-trivial 2-homology of space-
time surface. Wormhole throats assigned with elementary particle wormhole throats are homo-
logically non-trivial 2-surfaces and might make this kind of effects possible for 2-knots if they
are possible.

The challenge is to fnd a generalization of the usual knot and braid theories so that they apply
in the case of braids (2-braids) imbedded in 3-D (4-D) surfaces with preferred highly symmetry sub-
manifold of M4 × CP2 defining the analog of plane to which the knots are projected. A proper
description of exotic crossings due to non-trivial homology of 3-surface (4-surface) is needed.

2.2 Basic questions

The questions are following.

1. How the mathematical framework of standard knot theory should be modified in order to cope
with the situation encountered in TGD? To my surprise I found that this kind of mathematical
framework exists: so called algebraic knots [6, 4] define a generalization of knot theory very
probably able to cope with this kind of situation.

2. Second question is whether the generalized Feynman diagrams could be regarded as braid di-
agrams in generalized sense. Generalized Feynman diagrams are generalizations of ordinary
Feynman diagrams. The lines of generalized Feynman diagrams correspond to the orbits of
wormhole throats and of wormhole contacts with throats carrying elementary particle quantum
numbers.

The lines meet at vertices which are partonic 2-surfaces. Single wormhole throat can describe
fermion whereas bosons have wormhole contacts with fermion and antifermion at the opposite
throats as building bricks. It seems however that all fermions carry Kähler magnetic charge so
that physical particles are string like objects with magnetic charges at their ends.
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The short range of weak interactions results from the screening of the axial isospin by neutrinos
at the other end of string like object and also color confinement could be understood in this
manner. One cannot exclude the possibility that the length of magnetic flux tube is of order
Compton length.

3. Vertices of the generalized Feynman diagrams correspond to the partonic 2-surfaces along which
light-like 3-surfaces meet and this is certainly a challenge for the required generalization of braid
theory. The basic objection against the reduction to algebraic braid diagrams is that reaction
vertices for particles cannot be described by ordinary braid theory: the splitting of braid strands
is needed.

The notion of bosonic emergence [12] however suggests that 3-vertex and possible higher vertices
correspond to the splitting of braids rather than braid strands. By allowing braids which come
from both past and future and identifying free fermions as wormhole throats and bosons as
wormhole contacts consisting of a pair of wormhole throats carrying fermion and antifermion
number, one can understand boson excanges as recombinations without anyneed to have splitting
of braid strands. Strictly and technically speaking, one would have tangles like objects instead
of braids. This would be an enormous simplification since n > 2-vertices which are the source
of divergences in QFT:s would be absent.

4. Non-planar Feynman diagrams are the curse of the twistor approach and I have already earlier
proposed that the generalized Feynman amplitudes and perhaps even twistorial amplitudes could
be constructed as analogs of knot invariants by recursively transforming non-planar Feynman
diagrams to planar ones for which one can write twistor amplitudes. This forces to answer two
questions.

(a) Does the non-nonplanarity of Feynman diagrams - completely combinatorial objects iden-
tified as diagrams in plane - have anything to do with the non-planarity of algebraic knot
diagrams and with the non-planarity of generalized Feynman diagrams which are purely
geometric objects?

(b) Could these two kind of non-planarities be fused to together by identifying the projection 2-
plane as preferred M2 ⊂M4. This would mean that non-planarity in QFT sense is defined
for entire braids: braid A can have virtual crossing with B. Non-planarity in the sense of
knot theory would be defined for braid strands inside the braids. At vertices braid strands
are redistributed between incoming lines and the analog of virtual crossing be identifiable
as an exchange of braid strand between braids. Several kinds of non-planarities would be
present and the idea about gradual unknotting of a non-planar diagram so that a planar
diagram results as the final outcome might make sense and allow to generalize the recursion
recipe for the twistorial amplitudes.

(c) One might consider the possibility that inside orbits of wormhole throats defining the
lines of Feynman diagrams the R-matrix for integrable QFT in M2 (only permutations of
momenta are allowed) describes the dynamics so that one obtains just a permutation of
momenta assigned to the braid strands. Ordinary braiding would be described by existing
braid theories. The core problem would be the representation of the exchange of a strand
between braids algebraically.

3 Brief summary of algebraic knot theory

3.1 Basic ideas of algebraic knot theory

In ordinary knot theory one takes as a starting point the representation of knots of E3 by their plane
plane projections to which one attach a ”color” to each crossing telling whether the strand goes over
or under the strand it crosses in planar projection. These numbers are fixed uniquely as one traverses
through the entire knot in given direction.

The so called Reidermeister moves are the fundamental modifications of knot leaving its isotopy
equivalence class unchanged and correspond to continuous deformations of the knot. Any algebraic
invariant assignable to the knot must remain unaffected under these moves. Reidermeister moves as

http://tgd.wippiespace.com/public_html/tgdquant/tgdquant.html#emergence
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such look completely trivial and the non-trivial point is that they represent the minimum number of
independent moves which are represented algebraically.

In algebraic knot theory topological knots are replaced by typographical knots resulting as planar
projections. This mapping of topology to algebra and this is always fascinating. It turns out that
the existing knot invariants generalize and ordinary knot theory can be seen as a special case of the
algebraic knot theory. In a loose sense one can say that the algebraic knots are to the classical knot
theory what algebraic numbers are to rational numbers.

Virtual crossing is the key notion of the algebraic knot theory. Virtual crossing and their rules of
interaction were introduced 1996 by Louis Kauffman as basic notions [1]. For instance, a strand with
only virtual crossings should be replaceable by any strand with the same number of virtual crossings
and same end points. Reidermeister moves generalize to virtual moves. One can say that in this
case crossing is self-intersection rather than going under or above. I cannot be eliminated by a small
deformation of the knot. There are actually several kinds of non-standard crossings: examples listed
in figure 7 of [6]) are virtual, flat, singular, and twist bar crossings.

Algebraic knots have a concrete geometric interpretation.

1. Virtual knots are obtained if one replaces E3 as imbedding space with a space which has non-
trivial first homology group. This implies that knot can represent a homologically non-trivial
curve giving an additional flavor to the unknottedness since homologically non-trivial curve can-
not be transformed to a curve which is homologically non-trivial by any continuous deformation.

2. The violent projection to plane leads to the emergence of virtual crossings. The product (S1 ×
S1)×D, where (S1×S1) is torus D is finite line segment, provides the simplest example. Torus
can be identified as a rectangle with opposite sides identified and homologically non-trivial knots
correspond to curves winding n1 times around the first S1 and n2 times around the second S1.
These curves are not continuous in the representation where S1 × S1 is rectangle in plane.

3. A simple geometric visualization of virtual crossing is obtained by adding to the plane a handle
along which the second strand traverses and in this manner avoids intersection. This visualiza-
tion allows to understand the geometric motivation for the the virtual moves.

This geometric interpretation is natural in TGD framework where the plane to which the projection
occurs corresponds to M2 ⊂M4 or is replaced with the sphere at the boundary of S2 and 3-surfaces
can have arbitrary topology and partonic 2-surfaces defining as their orbits light-like 3-surfaces can
have arbitrary genus.

In TGD framework the situation is however more general than represented by sub-manifold braid
theory. Single braid represents the line of generalized Feynman diagram. Vertices represent something
new: in the vertex the lines meet and the braid strands are redistributed but do not disappear or
pop up from anywhere. That the braid strands can come both from the future and past is also an
important generalization. There are physical argments suggesting that there are only 3-vertices for
braids but not higher ones [2]. The challenge is to represent algebraically the vertices of generalized
Feynman diagrams.

3.2 Algebraic knots

The basic idea in the algebraization of knots is rather simple. If x and y are the crossing portions
of knot, the basic algebraic operation is binary operation giving ”the result of x going under y”, call
it x . y telling what happens to x. ”Portion of knot” means the piece of knot between two crossings
and x . y denotes the portion of knot next to x. The definition is asymmetrical in x and y and the
dual of the operation would be y / x would be ”the result of y going above x”. One can of course
ask, why not to define the outcome of the operation as a pair (x / y, y . x). This operation would
be bi-local in a well-defined sense. One can of course do this: in this case one has binary operation
from X ×X → X ×X mapping pairs of portions to pairs of portions. In the first case one has binary
operation X ×X → X.

The idea is to abstract this basic idea and replace X with a set endowed with operation . or /
or both and formukate the Reidermeister conditions given as conditions satisfied by the algebra. One
ends up to four basic algebraic structures kei, quandle, rack, and biquandle.
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1. In the case of non-oriented knots the kei is the algebraic structure. Kei - or invontary quandle-is
a set X with a map X ×X → X satisfying the conditions

(a) x . x = x (idenpotency, one of the Reidemeister moves)

(b) (x . y) . y =x (operation is its own right inverse having also interpretation as Reidemeister
move)

(c) (x . y) . z = (x . z) . (y . z) (self-distributivity)

Z([t])/(t2) module with x . y = tx+ (1− t)y is a kei.

2. For orientable knot diagram there is preferred direction of travel along knot and one can distin-
guish between . and its right inverse .−1. This gives quandle satisfying the axios

(a) x . x = x

(b) (x . y) .−1 y = (x .−1 y) . y = x

(c) (x . y) . z = (x . z) . (y . z)

Z[t±1] nodule with x . y = tx+ (1− t)y is a quandle.

3. One can also introduce framed knots: intuitively one attaches to a knot very near to it. More
precise formulation in terms of a section of normal bundle of the knot. This makes possible
to speak about self-linking. Reidermeister moves must be modified appropriately. In this case
rack is the appropriate structure. It satisfied the axioms of quandle except the first axiom since
corresponding operation is not a move anymore. Rack axioms are eqivalent with the requirement
that functions fy : X → X defined by fy(x)x.y) are automorphisms of the structure. Therefore
the elements of rack represent its morphisms. The modules over Z[t±1, s]/s(t+ s− 1) are racks.
Coxeter racks are inner product spaces with x . y obtained by reflecting x across y.

4. Biquandle consists of arcs connecting the subsequent crossings (both under- and over-) of ori-
ented knot diagram. Biquandle operation is a map B : X×X → X×X of order pairs satisfying
certain invertibility conditions together with set theoretic Yang-Baxter equation:

(B × I)(I ×B)(B × I) = (I ×B)(B × I)(I ×B) .

Here I : X → X is the identity map. The three conditions to which Yang-Baxter equation
decomposes gives the counterparts of the above discussed axioms. Alexander biquandle is the
module Z(t±1, s±1 with B(x, y) = (ty + (1 − ts)x, sx) where one has s 6= 1. If one includes
virtual, flat and singular crossings one obtains virtual/singular aundles and semiquandles.

4 Generalized Feynman diagrams as generalized braid dia-
grams?

Zero energy ontology suggests the interpretation of the generalized Feynman diagrams as generalized
braid diagrams so that there would be no need for vertices at the fundamental braid strand level. The
notion of algebraic braid (or tangle) might allow to formulate this idea more precisely.

4.1 Could one fuse the notions of braid diagram and Feynman diagram?

The challenge is to fuse the notions of braid diagram and Feynman diagram having quite different
origin.

1. All generalized Feynman diagrams are reduced to sub-manifold braid diagrams at microscopic
level by bosonic emergence (bosons as pairs of fermionic wormhole throats). Three-vertices
appear only for entire braids and are purely topological whereas braid strands carrying quantum
numbers are just re-distributed in vertices. No 3-vertices at the really microscopic level! This is
an additional nail to the coffin of divergences in TGD Universe.
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2. By projecting the braid strands of generalized Feynman diagrams to preferred plane M2 ⊂M4

(or rather 2-D causal diamond), one could achieve a unified description of non-planar Feynman
diagrams and braid diagrams. For Feynman diagrams the intersections have a purely combina-
torial origin coming from representations as 2-D diagrams.

For braid diagrams the intersections have different origin and non-planarity has different mean-
ing. The crossings of entire braids analogous to those appearing in non-planar Feynman dia-
grams should define one particular exotic crossing besides virtual crossings of braid strands due
to non-trivial first homology of 3-surfaces.

3. The necessity to choose preferred plane M2 looks strange from QFT point of view. In TGD
framework it is forced by the number theoretic vision in which M2 represents hyper-complex
plane of sub-space of hyper-octonions which is subspace of complexified octonions. The choice of
M2 is also forced by the condition that the choice of quantization axes has a geometric correlate
both at the level of imbedding space geometry and the geometry of the ”world of classical
worlds”.

4. Also 2-braid diagrams defined as projections of string world sheets are suggestive and would be
defined by a projections to the 3-D boundary of CD or to M3 ⊂M4. They would provide a more
concrete stringy illustration about generalized Feynman diagram as analog of string diagram.
Another attractive illustration is in terms of dance metaphor with the boundary of CD defining
the 3-D space-like parquette. The duality between space-like and light-like braids is expected to
be of importance.

The obvious conjecture is that Feynman amplitudes are a analogous to knot invariants constructible
by gradually reducing non-planar Feynman diagrams to planar ones after which the already existing
twistor theoretical machinery of N = 4 SYMs would apply [16].

4.2 Does 2-D integrable QFT dictate the scattering inside the lines of
generalized Feynman diagrams

The preferred plane M2 (more precisely, 2-D causal diamond having also interpretation as Penrose
diagram) plays a key role as also the preferred sphere S2 at the boundary of CD. It is perhaps not
accident that a generalization of braiding was discovered in integrable quantum field theories in M2.
The S-matrix of this theory is rather trivial looking: particle moving with different velocities cross
each other and suffer a phase lag and permutation of 2-momenta which has physical effects only in
the case of non-identical particles. The R-matrix describing this process reduces to the R-matrix
describing the basic braiding operation in braid theories at the static limit.

I have already earlier conjectured that this kind of integrable QFT is part of quantum TGD [3].
The natural guess is that it describes what happens for the projections of 4-momenta in M2 in
scattering process inside lines of generalized Feynman diagrams. If integrable theories in M2 control
this scattering, it would cause only phase changes and permutation of the M2 projections of the
4-momenta. The most plausible guess is that M2 QFT characterized by R-matrix describes what
happens to the braid momenta during the free propagation and the remaining challenge would be to
understand what happens in the vertices defined by 2-D partonic surfaces at which re-distribution of
braid strands takes place.

4.3 How quantum TGD as almost topological QFT differs from topological
QFT for braids and 3-manifolds

One must distinguish between two topological QFTs. These correspond to topological QFT defining
braid invariants and invariants of 3-manifolds respectively. The reason is that knots are an essential
element in the procedure yielding 3-manifolds. Both 3-manifold invariants and knot invariants would
be defined as Wilson loops involving path integral over gauge connections for a given 3-manifold with
exponent o non-Abelkian f Chern-Simons action defining the weight.

1. In TGD framework the topological QFT producing braid invariants for a given 3-manifold is
replaced with sub-manifold braid theory. Kähler action reduces Chern-Simons terms for pre-
ferred extremals and only these contribute to the functional integral. What is the counterpart of

http://tgd.wippiespace.com/public_html/tgdquant/tgdquant.html#quthe
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topological invariance in this framework? Are general isotopies allowed or should one allow only
sub-group of symplectic group of CD boundary leaving the end points of braids invariant? For
this option Reidermeister moves are undetectable in the finite measurement resolution defined
by the subgroup of the symplectic group. Symplectic transformations would not affect 3-surfaces
as the analogs of abstract contact manifold since induced Kähler form would not be affected and
only the imbedding would be changed.

In the approach based on inclusions of HFFs gauge invariance or its generalizations would
represent finite measurement resolution (the action of included algebra would generate states
not distiguishable from the original one).

2. There is also ordinary topological QFT allowing to construct topological invariants for 3-
manifold. In TGD framework the analog of topological QFT is defined by Chern-Simons-Kähler
action in the space of preferred 3-surfaces. Now one sums over small deformations of 3-surface
instead of gauge potentials. If extremals of Chern-Simons-Kähler action are in question, symplec-
tic invariance is the most that one can hope for and this might be the situation quite generally.
If all light-like 3-surfaces are allowed so that only weak form of electric-magnetic duality at them
would bring metric into the theory, it might be possible to have topological invariance at 3-D
level but not at 4-D level. It however seems that symplectic invariance with respect to subgroup
leaving end points of braids invariant is the realistic expectation.

4.4 Could the allowed braids define Legendrian sub-manifolds of contact
manifolds?

The basic questions concern the identification of braids and 2-braids. In quantum TGD they cannot
be arbitrary but determined by dynamics providing space-time correlates for quantum dynamics. The
deformations of braids should mean also deformations of 3-surfaces which as topological manifolds
would however remain as such. Therefore topological QFT for given 3-manifold with path integral
over gauge connections would in TGD correspond to functional integral of 3-surfaces corresponding
to same topology even symplectic structure. The quantum fluctuating degrees of freedom indeed
correspond to symplectic group divided by its subgroup defining measurement resolution.

What is the dynamics defining the braids strands? What selects them? I have considered this
problem several times. Just two examples is enough here.

1. Could they be some special light-like curves? Could the condition that the end points of the
curves correspond to rational points in some preferred coordinates allow to select these light-like
curves? But what about light-like curves associated with the ends of the space-time surface?

2. The solutions of modified Dirac equation [5] are localized to curves by using the analog of periodic
boundary conditions: the length of the curve is quantized in the effective metric defined by the
modified gamma matrices. Here one however introcuced a coordinate along light-like 3-surface
and it is not clear how one should fix this preferred coordinate.

1. Legendrian and Lagrangian sub-manifolds

A hint about what is missing comes from the observation that a non-vanishing Chern-Simons-
Kähler form A defines a contact structure [2] at light-like 3-surfaces if one has A ∧ dA 6= 0. This
condition states complete non-intebrability of the distribution of 2-planes defined by the condition
Aµt

µ = 0, where t is tangent vector in the tangent bundle of light-like 3-surface. It also states that
the flow lines of A do not define global coordinate varying along them.

1. It is however possible to have 1-dimensional curves for which Aµt
µ = 0 holds true at each

point. These curves are known as Legendrian sub-manifolds to be distinguished from Lagrangian
manifolds for which the projection of symplectic form expressible locally as J = dA vanishes. The
set of this curves is discrete so that one obtains braids. Legendrian knots are the simplest example
of Legendrian sub-manifolds and the question is whether braid strands could be identified as
Legendrian knots. For Legendrian braids symplectic invariance replaces topological invariance
and Legendrian knots and braids can be trivial in topological sense. In some situations the
property of being Legendrian implies un-knottedness.

http://en.wikipedia.org/wiki/Contact_geometry#Legendrian_submanifolds_and_knots
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2. For Legendrian braid strands the Kähler gauge potential vanishes. Since the solutions of the
modified Dirac equation are localized to braid strands, this means that the coupling to Kähler
gauge potential vanishes. From physics point of view a generalization of Legendre braid strand
by allowing gauge transformations A → A + dΦ looks natural since it means that the coupling
of induced spinors is pure gauge terms and can be eliminated by a gauge transformation.

2. 2-D duals of Legendrian sub-manifolds

One can consider also what might be called 2-dimensional duals of Legendrian sub-manifolds.

1. Also the one-form obtained from the dual of Kähler magnetic field defined as Bµ = εµνγJνν
defines a distribution of 2-planes. This vector field is ill-defined for light-like surfaces since
contravariant metric is ill-defined. One can however multiply B with the square root of metric
determining formally so that metric would disappear completely just as it disappears from Chern-
Simons action. This looks however somewhat tricky mathematically. At the 3-D space-like ends
of space-time sheets at boundaries of CD Bµ is however well-defined as such.

2. The distribution of 2-planes is integrable if one has B∧dB = 0 stating that one has Beltrami field:
physically the conditions states that the current dB feels no Lorentz force. The geometric content
is that B defines a global coordinate varying along its flow lines. For the preferred extremals
of Kähler action Beltrami condition is satisfied by isometry currents and Kähler current in the
interior of space-time sheets. If this condition holds at 3-surfaces, one would have an global time
coordinate and integrable distribution of 2-planes defining a slicing of the 2-surface. This would
realize the conjecture that space-time surface has a slicing by partonic 2-surfaces. One could
say that the 2-surfaces defined by the distribution are orthogonal to B. This need not however
mean that the projection of J to these 2-surfaces vanishes. The condition B ∧ dB = 0 on the
space-like 3-surfaces could be interpreted in terms of effective 2-dimensionality. The simplest
option posing no additional conditions would allow two types of braids at space-like 3-surfaces
and only Legendrian braids at light-like 3-surfaces.

These observations inspire a question. Could it be that the conjectured dual slicings of space-
time sheets by space-like partonic 2-surfaces and by string world sheets are defined by Aµ and Bµ

respectively associated with slicings by light-like 3-surfaces and space-like 3-surfaces? Could partonic
2-surfaces be identified as 2-D duals of 1-D Legendrian sub-manifolds?

The identification of braids as Legendrian braids for light-like 3-surfaces and with Legendrian braids
or their duals for space-like 3-surfaces would in turn imply that topological braid theory is replaced
with a symplectic braid theory in accordance with the view about TGD as almost topological QFT.
If finite measurement resolution corresponds to the replacement of symplectic group with the coset
space obtained by dividing by a subgroup, symplectic subgroup would take the role of isotopies in
knot theory. This symplectic subgroup could be simply the symplectic group leaving the end points
of braids invariant.

4.5 An attempt to identify the constraints on the braid algebra

The basic problems in understanding of quantum TGD are conceptual. One must proceed by trying
to define various concepts precisely to remove the many possible sources of confusion. With this in
mind I try collect essential points about generalized Feynman diagrams and their relation to braid
diagrams and Feynman diagrams and discuss also the most obvious constraints on algebraization.

Let us first summarize what generalized Feynman diagrams are.

1. Generalized Feynman diagrams are 3-D (or 4-D, depends on taste) objects inside CD × CP2.
Ordinary Feynman diagrams are in plane. If finite measurement resolution has as a space-time
correlate discretization at the level of partonic 2-surfaces, both space-like and light-like 3-surfaces
reduce to braids and the lines of generalized Feynman diagrams correspond to braids. It is
possible to obtain the analogs of ordinary Feynman diagrams by projection to M2 ⊂M4 defined
uniquely for given CD. The resulting apparent intersections would represent ne particular kind
of exotic intersection.
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2. Light-like 3-surfaces define the lines of generalized Feynman diagrams and the braiding results
naturally. Non-trivial first homology for the orbits of partonic 2-surfaces with genus g > 0 could
be called homological virtual intersections.

3. It zero energy ontology braids must be characterized by time orientation. Also it seems that
one must distinguish in zero energy ontology between on mass shell braids and off mass shell
braid pairs which decompose to pairs of braids with positive and negative energy massless on
mass shell states. In order to avoid confusion one should perhaps speak about tangles insie CD
rather than braids. The operations of the algebra are same except that the braids can end either
to the upper or lower light-like boundary of CD. The projection to M2 effectively reduces the
CD to a 2-dimensional causal diamond.

4. The vertices of generalized Feynman diagrams are partonic 2-surfaces at which the light-like
3-surfaces meet. This is a new element. If the notion of bosonic emergence is accepted no
n > 2-vertices are needed so that braid strands are redistributed in the reaction vertices. The
redistribution of braid strands in vertices must be introduced as an additional operation some-
what analogous to . and the challenge is to reduce this operation to something simple. Perhaps
the basic operation reduces to an exchange of braid strand between braids. The process can be
seen as a decay of of braid with the conservation of braid strands with strands from future and
past having opposite strand numbers. Also for this operation the analogs of Reidermeister moves
should be identified. In dance metaphor this operation corresponds to a situation in which the
dancer leaves the group to which it belongs and goes to a new one.

5. A fusion of Feynman diagrammatic non-planarity and braid theoretic non-planarity is needed
and the projection to M2 could provide this fusion when at least two kinds of virtual crossings
are allowed. The choice of M2 could be global. An open question is whether the choice of M2

could characterize separately each line of generalized Feynman diagram characterized by the
four-momentum associated with it in the rest system defined by the tips of CD. Somehow the
theory should be able to fuse the braiding matrix for integrable QFT in M2 applying to entire
braids with the braiding matrix for braid theory applying at the level of single braid.

Both integral QFTs in M2 and braid theories suggest that biquandle structure is the structure
that one should try to generalized.

1. The representations of resulting bi-quandle like structure could allow abstract interesting infor-
mation about generalized Feynman diagrams themselves but the dream is to construct gener-
alized Feynman diagrams as analogs of knot invariants by a recursive procedure analogous to
un-knotting of a knot.

2. The analog of bi-quandle algebra should have a hierarchical structure containing braid strands at
the lowest level, braids at next level, and braids of braids...of braids at higher levels. The notion
of operad would be ideal for formulating this hierarchy and I have already proposed that this
notion must be essential for the generalized Feynman diagrammatics. An essential element is the
vanishing of total strand number in the vertex (completely analogous to conserved charged such
as fermion number). Again a convenient visualization is in terms of dancers forming dynamical
groups, forming groups of groups forming .....

I have already earlier suggested [3] that the notion of operad [3] relying on permutation group and
its subgroups acting in tensor products of linear spaces is central for understanding generalized
Feynman diagrams. n → n1 + n2 decay vertex for n-braid would correspond to ”symmetry
breaking” Sn → Sn1 × Sn2 . Braid group represents the covering of permutation group so that
braid group and its subgroups permuting braids would suggest itself as the basic group theoretical
notion. One could assign to each strand of n-braid decaying to n1 and n2 braids a two-valued
color telling whether it becomes a strand of n1-braid or n2-braid. Could also this ”color” be
interpreted as a particular kind of exotic crossing?

3. What could be the analogs of Reidermaster moves for braid strands?

(a) If the braid strands are dynamically determined, arbitrary deformations are not possible.
If however all isotopy classes are allowed, the interpretation would be that a kind of gauge

http://tgd.wippiespace.com/public_html/tgdquant/tgdquant.html#quthe
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choice selecting one preferred representation of strand among all possible ones obtained by
continuous deformations is in question.

(b) Second option is that braid strands are dynamically determined within finite measurement
resolution so that one would have braid theory in given length scale resolution.

(c) Third option is that topological QFT is replaced with symplectic QFT: this option is
suggested by the possibility to identify braid strands as Legendrian knots or their duals.
Subgroup of the symplectic group leaving the end points of braids invariant would act
as the analog of continous transformations and play also the role of gauge group. The
new element is that symplectic transformations affect partonic 2-surfaces and space-time
surfaces except at the end points of braid.

4. Also 2-braids and perhaps also 2-knots could be useful and would provide string theory like
approach to TGD. In this case the projections could be performed to the ends of CD or to M3,
which can be identified uniquely for a given CD.

5. There are of course many additional subtleties involved. One should not forget loop correc-
tions, which naturally correspond to sub-CDs. The hierarchy of Planck constants and number
theoretical universality bring in additional complexities.

All this looks perhaps hopelessly complex but the Universe around is complex even if the basic
principles could be very simple.

5 About string world sheets, partonic 2-surfaces, and two-
knots

String world sheets and partonic 2-surfaces provide a beatiful visualization of generalized Feynman
diagrams as braids and also support for the duality of string world sheets and partonic 2-surfaces as
duality of light-like and space-like braids. Dance metaphor is very helpful here.

1. The projection of string world sheets and partonic 2-surfaces to 3-D space replaces knot projec-
tion. In TGD context this 3-D of space could correspond to the 3-D light-like boundary of CD
and 2-knot projection would correspond to the projection of the braids associated with the lines
of generalized Feynman diagram. Another identification would be as M1×E2, where M1 is the
line connecting the tips of CD and E2 the orthogonal complement of M2.

2. Using dance metaphor for light-like braiding, braids assignable to the lines of generalized Feyn-
man diagrams would correspond to groups of dancers. At vertices the dancing groups would
exchange members and completely new groups would be formed by the dancers . The number of
dancers (negative for those dancing in the reverse time direction) would be conserved. Dancers
would be connected by threads representing strings having braid points at their ends. During
the dance the light-like braiding would induce space-like braiding as the threads connecting the
dancers would get entangled. This would suggest that the light-like braids and space-like braid-
ings are equivalent in accordance with the conjectured duality between string-world sheets and
partonic 2-surfaces. The presence of genuine 2-knottedness could spoil this equivalence unless
it is completely local.

Can string world sheets and partonic 2-surfaces get knotted?

1. Since partonic 2-surfaces (wormhole throats) are imbedded in light-cone boundary, the preferred
3-D manifolds to which one can project them is light-cone boundary (boundary of CD). Since
the projection reduces to inclusion these surfaces cannot get knotted. Only if the partonic 2-
surfaces contains in its interior the tip of the light-cone something non-trivial identifiable as
virtual 2-knottedness is obtained.

2. One might argue that the conjectured duality between the descriptions provided by partonic 2-
surfaces and string world sheets requires that also string world sheets represent trivial 2-braids.
I have shown earlier that nontrivial local knots glued to the string world sheet require that M4
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time coordinate has a local maximum. Does this mean that 2-knots are excluded? This is not
obvious: TGD allows also regions of space-time surface with Euclidian signature and generalized
Feynman graphs as 4-D space-time regions are indeed Euclidian. In these regions string world
sheets could get knotted.

What happens for knot diagrams when the dimension of knot is increased to two? According to
the articles of Nelson [6] and Carter [4] the crossings for the projections of braid strands are replaced
with more complex singularities for the projections of 2-knots. One can decompose the 2-knots to
regions surrounded by boxes. Box can contain just single piece of 2-D surface; it can contain two
intersection pieces of 2-surfaces as the counterpart of intersecting knot strands and one can tell which
of them is above which; the box can contain also a discrete point in the intersection of projections of
three disjoint regions of knot which consists of discrete points; and there is also a box containing so
called cone point. Unfortunately, I failed to understand the meaning of the cone point.

For 2-knots Reidemeister moves are replaced with Roseman moves. The generalization would allow
virtual self intersections for the projection and induced by the non-trivial second homology of 4-D
imbedding space. In TGD framework elementary particles have homologically non-trivial partonic
2-surfaces (magnetic monpoles) as their building bricks so that even if 2-knotting in standard sense
might be not allowed, virtual 2-knotting would be possible. In TGD framework one works with a
subgroup of symplectic transformations defining measurement resolution instead of isotopies and this
might reduce the number of allowed moves.

5.1 The dynamics of string world sheets and the expression for Kähler
action

The dynamics of string world sheets is an open question. Effective 2-dimensionality suggests that
Kähler action for the preferred extremal should be expressible using 2-D data but there are several
guesses for what the explicit expression could be, and one can only make only guesses at this moment
and apply internal consistency conditions in attempts to kill various options.

5.1.1 Could weak form of electric-magnetic duality hold true for string world sheets?

If one believes on duality between string world sheets and partonic 2-surfaces, one can argue that
string world sheets are most naturally 2-surfaces at which the weak form of electric magnetic duality
holds true. One can even consider the possibility that the weak form of electric-magnetic duality holds
true only at the the string world sheets and partonic 2-surfaces but not at the preferred 3-surfaces.

1. The weak form of electric magnetic duality would mean that induced Kähler form is non-
vanishing at them and Kähler magnetic flux over string world sheet is proportional to Kähler
electric flux.

2. The flux of the induced Kähler form of CP2 over string world sheet would define a dimensionless
”area”. Could Kähler action for preferred extremals reduces to this flux apart from a proportion-
ality constant. This ”area” would have trivially extremum with respect to symplectic variations
if the braid strands are Legendrian sub-manifolds since in this case the projection of Kähler
gauge potential on them vanishes. This is a highly non-trivial point and favors weak form of
electric-magnetic duality and the identification of Kähler action as Kähler magnetic flux. This
option is also in spirit with the vision about TGD as almost topological QFT meaning that
induced metric appears in the theory only via electric-magnetic duality.

3. Kähler magnetic flux over string world sheet has a continuous spectrum so that the identification
as Kähler action could make sense. For partonic 2-surfaces the magnetic flux would be quantized
and give constant term to the action perhaps identifiable as the contribution of CP2 type vacuum
extremals giving this kind of contribution.

The change of space-time orientation by changing the sign of permutation symbol would change
the sign in electric-magnetic duality condition and would not be a symmetry. For a given magnetic
charge the sign of electric charge changes when orientation is changed. The value of Kähler action
does not depend on space-time orientation but weak form of electric-magnetic duality as boundary

http://www.ams.org/notices/201111/rtx111101553p.pdf
http://arxiv.org/pdf/1002.4429v2
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condition implies dependence of the Kähler action on space-time orientation. The change of the sign
of Kähler electric charge suggests the interpretation of orientation change as one aspect of charge
conjugation. Could this orientation dependence be responsible for matter antimatter asymmetry?

5.1.2 Could string world sheets be Lagrangian sub-manifolds in generalized sense?

Legendrian sub-manifolds can be lifted to Lagrangian sub-manifolds [2] Could one generalize this by
replacing Lagrangian sub-manifold with 2-D sub-manifold of space-times surface for which the pro-
jection of the induced Kähler form vanishes? Could string world sheets be Lagrangian sub-manifolds?

I have also proposed that the inverse image of homologically non-trivial sphere of CP2 under
imbedding map could define counterparts of string world sheets or partonic 2-surfaces. This conjecture
does not work as such for cosmic strings, massless extremals having 2-D projection since the inverse
image is in this case 4-dimensional. The option based on homologically non-trivial geodesic sphere is
not consistent with the identification as analog of Lagrangian manifold but the identification as the
inverse image of homologically trivial geodesic sphere is.

The most general option suggested is that string world sheet is mapped to 2-D Lagrangian sub-
manifold of CP2 in the imbedding map. This would mean that theory is exactly solvable at string
world sheet level. Vacuum extremals with a vanishing induced Kähler form would be exceptional
in this framework since they would be mapped as a whole to Lagrangian sub-manifolds of CP2.
The boundary condition would be that the boundaries of string world sheets defined by braids at
preferred 3-surfaces are Legendrian sub-manifolds. The generalization would mean that Legendrian
braid strands could be continued to Lagrangian string world sheets for which induced Kähler form
vanishes. The physical interpretation would be that if particle moves along this kind of string world
sheet, it feels no covariant Lorentz-Kähler force and contra variant Lorentz forces is orthogonal to the
string world sheet.

There are however serious objections.

1. This proposal does not respect the proposed duality between string world sheets and partonic
2-surfaces which as carries of Kähler magnetic charges cannot be Lagrangian 2-manifolds.

2. One loses the elegant identification of Kähler action as Kähler magnetic flux since Kähler mag-
netic flux vanishes. Apart from proportionality constant Kähler electric flux∫

Y 2

∗J

is as a dimensionless scaling invariant a natural candidate for Kähler action but need not be
extremum if braids are Legendrian sub-manifolds whereas for Kähler magnetic flux this is the
case. There is however an explicit dependence on metric which does not conform with the idea
that almost topological QFT is symplectic QFT.

3. The sign factor of the dual flux which depends on the orientation of the string world sheet and
thus changes sign when the orientation of space-time sheet is changed by changing that of the
string world sheet. This is in conflict with the independence of Kähler action on orientation. One
can however argue that the orientation makes itself actually physically visible via the weak form
of electric-magnetic duality. If the above discussed duality holds true, the net contribution to
Kähler action would vanish as the total Kähler magnetic flux for partonic 2-surfaces. Therefore
the duality cannot hold true if Kähler action reduces to dual flux.

4. There is also a purely formal counter argument. The inverse images of Lagrangian sub-manifolds
of CP2 can be 4-dimensional (cosmic strings and massless extremals) whereas string world sheets
are 2-dimensonal.

5.2 String world sheets as minimal surfaces

Effective 2-dimensionality suggests a reduction of Kähler action to Chern-Simons terms to the area
of minimal surfaces defined by string world sheets holds true [7]. Skeptic could argue that the ex-
pressibility of Kähler action involving no dimensional parameters except CP2 scaled does not favor
this proposal. The connection of minimal surface property with holomorphy and conformal invariance

http://en.wikipedia.org/wiki/Contact_geometry#Legendrian_submanifolds_and_knots
http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#kahler
http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#kahler
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however forces to take the proposal seriously and it is easy to imagine how string tension emerges
since the size scale of CP2 appears in the induced metric [7].

One can ask whether the mimimal surface property conforms with the proposal that string worlds
sheets obey the weak form of electric-magnetic duality and with the proposal that they are generalized
Lagrangian sub-manifolds.

1. The basic answer is simple: minimal surface property and possible additional conditions (La-
grangian sub-manifold property or the weak form of electric magnetic duality) poses only addi-
tional conditions forcing the space-time sheet to be such that the imbedded string world sheet is
a minimal surface of space-time surface: minimal surface property is a condition on space-time
sheet rather than string world sheet. The weak form of electric-magnetic duality is favored
because it poses conditions on the first derivatives in the normal direction unlike Lagrangian
sub-manifold property.

2. Any proposal for 2-D expression of Kähler action should be consistent with the proposed real-
octonion analytic solution ansatz for the preferred extremals [1]. The ansatz is based on real-
octonion analytic map of imbedding space to itself obtained by algebraically continuing real-
complex analytic map of 2-D sub-manifold of imbedding space to another such 2-D sub-manifold.
Space-time surface is obtained by requiring that the ”imaginary” part of the map vanishes so
that image point is hyper-quaternion valued. Wick rotation allows to formulate the conditions
using octonions and quaternions. Minimal surfaces (of space-time surface) are indeed objects for
which the imbedding maps are holomorphic and the real-octonion analyticity could be perhaps
seen as algebraic continuation of this property.

3. Does Kähler action for the preferred exremals reduce to the area of the string world sheet or to
Kähler magnetic flux or are the representations equivalent so that the induced Kähler form would
effectively define area form? If the Kähler form form associated with the induced metric on string
world sheet is proportional to the induced Kähler form the Kähler magnetic flux is proportional
to the area and Kähler action reduces to genuine area. Could one pose this condition as an
additional constraint on string world sheets? For Lagrangian sub-manifolds Kähler electric field
should be proportional to the area form and the condition involves information about space-time
surface and is therefore more complex and does not look plausible.

5.3 Explicit conditions expressing the minimal surface property of the
string world sheet

It is instructive to write explicitly the condition for the minimal surface property of the string world
sheet and for the reduction of the area Kähler form to the induced Kähler form. For string world
sheets with Minkowskian signature of the induced metric Kähler structure must be replaced by its
hyper-complex analog involving hyper-complex unit e satisfying e2 = 1 but replaced with real unit at
the level hyper-complex coordinates. e can be represented as antisymmetric Kähler form Jg associated
with the induced metric but now one has J2

g = g instead of J2
g = −g. The condition that the signed

area reduces to Kähler electric flux means that Jg must be proportional to the induced Kähler form:
Jg = kJ , k = constant in a given space-time region.

One should make an educated guess for the imbedding of the string world sheet into a preferred
extremal of Kähler action. To achieve this it is natural to interpret the minimal surface property as a
condition for the preferred Kähler extremal in the vicinity of the string world sheet guaranteing that the
sheet is a minimal surface satisfying Jg = kJ . By the weak form of electric-magnetic duality partonic
2-surfaces represent both electric and magnetic monopoles. The weak form of electric-magnetic duality
requires for string world sheets that the Kähler magnetic field at string world sheet is proportional to
the component of the Kähler electric field parallel to the string world sheet. Kähler electric field is
assumed to have component only in the direction of string world sheet.

5.3.1 Minkowskian string world sheets

Let us try to formulate explicitly the conditions for the reduction of the signed area to Kähler electric
flux in the case of Minkowskian string world sheets.
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1. Let us assume that the space-time surface in Minkowskian regions has coordinates coordinates
(u, v, w,w) [1]. The pair (u, v) defines light-like coordinates at the string world sheet having
identification as hyper-complex coordinates with hyper-complex unit satisfying e = 1. u and v
need not - nor cannot as it turns out - be light-like with respect to the metric of the space-time
surface. One can use (u, v) as coordinates for string world sheet and assume that w = x1 + ix2

and w are constant for the string world sheet. Without a loss of generality one can assume
w = w = 0 at string world sheet.

2. The induced Kähler structure must be consistent with the metric. This implies that the induced
metric satisfies the conditions

guu = gvv = 0 . (5.1)

The analogs of these conditions in regions with Euclidian signature would be gzz = gzz = 0.

3. Assume that the imbedding map for space-time surface has the form

sm = sm(u, v) + fm(u, v, xm)klx
kxl , (5.2)

so that the conditions

∂lks
m = 0 , ∂k∂us

m = 0, ∂k∂vs
m = 0 (5.3)

are satisfies at string world sheet. These conditions imply that the only non-vanishing compo-
nents of the induced CP2 Kähler form at string world sheet are Juv and Jww. Same applies to
the induced metric if the metric of M4 satisfies these conditions (no non-vanishing components
of form muk or mvk).

4. Also the following conditions hold true for the induced metric of the space-time surface

∂kguv = 0 , ∂ugkv = 0 , ∂vgku = 0 . (5.4)

at string world sheet as is easy to see by using the ansatz.

Consider now the minimal surface conditions stating that the trace of the four components of the
second fundamental form whose components are labelled by the coordinates {xα} ≡ (u, v, w,w) vanish
for string world sheet.

1. Since only guv is non-vanishing, only the components Hk
uv of the second fundamental form appear

in the minimal surface equations. They are given by the general formula

Hα
uv = HγPαγ ,

Hα = (∂u∂vx
α +

(
α

β γ

)
∂ux

β∂vx
γ) . (5.5)

Here Pαγ is the projector to the normal space of the string world sheet. Formula contains also
Christoffel symbols ( α

β γ ).

2. Since the imbedding map is simply (u, v) → (u, v, 0, 0) all second derivatives in the formula
vanish. Also Hk = 0,k ∈ {w,w} holds true. One has also ∂ux

α = δαu and ∂vx
β = δβv . This gives

Hα = ( α
u v ) . (5.6)

All these Christoffel symbols however vanish if the assumption guu = gvv = 0 and the assump-
tions about imbedding ansatz hold true. Hence a minimal surface is in question.



5.3 Explicit conditions expressing the minimal surface property of the string world
sheet 17

Consider now the conditions on the induced metric of the string world sheet

1. The conditions reduce to

guu = gvv = 0 . (5.7)

The conditions on the diagonal components of the metric are the analogs of Virasoro conditions
fixing the coordinate choices in string models. The conditions state that the coordinate lines for
u and v are light-like curves in the induced metric.

2. The conditions can be expressed directly in terms of the induced metric and read

muu + skl∂us
k∂us

l = 0 ,

mvv + skl∂vs
k∂vs

l = 0 . (5.8)

The CP2 contribution is negative for both equations. The conditions make sense only for
(muu > 0,mvv > 0). Note that the determinant condition muumvv−muvmvu < 0 expresses the
Minkowskian signature of the (u, v) coordinate plane in M4.

The additional condition states

Jguv = kJuv . (5.9)

It reduces signed area to Kähler electric flux. If the weak form of electric-magnetic duality holds true
one can interpret the area as magnetic flux defined as the flux of the dual of induced Kähler form
over space-like surface and defining electric charge. A further condition is that the boundary of string
world sheet is Legendrean manifold so that the flux and thus area is extremized also at the boundaries.

5.3.2 Conditions for the Euclidian string world sheets

One can do the same calculation for string world sheet with Euclidian signature. The only difference
is that (u, v) is replaced with (z, z). The imbedding map has the same form assuming that space-
time sheet with Euclidian signature allows coordinates (z, z, w,w) and the local conditions on the
imbedding are a direct generalization of the above described conditions. In this case the vanishing for
the diagonal components of the string world sheet metric reads as

hkl∂zs
k∂zs

l = 0 ,

hkl∂zs
k∂zs

l = 0 . (5.10)

The natural ansatz is that complex CP2 coordinates are holomorphic functions of the complex coor-
dinates of the space-time sheet.

5.3.3 Wick rotation for Minkowskian string world sheets leads to a more detailed solu-
tion ansatz

Wick rotation is a standard trick used in string models to map Minkowskian string world sheets to
Euclidian ones. Wick rotation indeed allows to define what one means with real-octonion analyticity.
Could one identify string world sheets in Minkowskian regions by using Wick rotation and does this
give the same result as the direct approach?

Wick rotation transforms space-time surfaces in M4 × CP2 to those in E4 × CP2. In E4 × CP2

octonion real-analyticity is a well-defined notion and one can identify the space-time surfaces surfaces
at which the imaginary part of of octonion real-analytic function vanishes: imaginary part is defined
via the decomposition of octonion to two quaternions as o = q1 + Iq2 where I is a preferred octonion
unit. The reverse of the Wick rotation maps the quaternionic surfaces to what might be called hyper-
quaternionic surfaces in M4 × CP2.
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In this picture string world sheets would be hyper-complex surfaces defined as inverse imagines of
complex surfaces of quaternionic space-time surface obtained by the inverse of Wick rotation. For this
approach to be equivalent with the above one it seems necessary to require that the the treatment
of the conditions on metric should be equivalent to that for which hyper-complex unit e is not put
equal to 1. This would mean that the conditions reduce to independent conditions for the real and
imaginary parts of the real number formally represented as hyper-complex number with e = 1.

Wick rotation allows to guess the form of the ansatz for CP2 coordinates as functions of space-time
coordinates In Euclidian context holomorphich functions of space-time coordinates are the natural
ansatz. Therefore the natural guess is that one can map the hypercomplex number t± ez to complex
coordinate t±iz by the analog of Wick rotation and assume that CP2 complex coordinates are analytic
functions of the complex space-time coordinates obtained in this manner.

The resulting induced metric could be obtained directly using real coordinates (t, z) for string
world sheet or by calculating the induced metric in complex coordinates t ± iz and by mapping the
expressions to hyper-complex numbers by Wick rotation (by replacing i with e = 1). If the diagonal
components of the induced metric vanish for t± iz they vanish also for hyper-complex coordinates so
that this approach seem to make sense.

5.4 Electric-magnetic duality for flux Hamiltonians and the existence of
Wilson sheets

One must distinguish between two conjectured dualities. The weak form of electric-magnetic duality
and the duality between string world sheets and partonic 2-surfaces. Could the first duality imply
equivalence of not only electric and magnetic flux Hamiltonians but also electric and magnetic Wilson
sheets? Could the latter duality allow two different representations of flux Hamiltonians?

1. For electric-magnetic duality holding true at string world sheets one would have non-vanishing
Kähler form and the fluxes would be non-vanishing. The Hamiltonian fluxes

Qm,A =

∫
X2

JHAdx
1dx2 =

∫
X2

HAJαβdx
α ∧ dxβ (5.11)

for partonic 2-surfaces X2 define WCW Hamiltonians playing a key role in the definition of
WCW Kähler geometry. They have also interpretation as a generalization of Wilson loops to
Wilson 2-surfaces.

2. Weak form of electric magnetic duality would imply both at partonic 2-surfaces and string world
sheets the proportionality

Qm,A =

∫
X2

JHAdx
1 ∧ dx2 ∝ Q∗m,A =

∫
X2

HA ∗ Jαβdxα ∧ dxβ . (5.12)

Thefore the electric-magnetic duality would have a concrete meaning also at the level of WCW
geometry.

3. If string world sheets are Lagrangian sub-manifolds Hamiltonian fluxes would vanish identically
so that the identification as Wilson sheets does not make sense. One would lose electric-magnetic
duality for flux sheets. The dual fluxes

∗QA =

∫
Y 2

∗JHAdx
1 ∧ dx2 =

∫
Y 2

ε γδ
αβ Jγδ =

∫
Y 2

√
det(g4)

det(g⊥2 )
J⊥34dx

1 ∧ dx2

for string world sheets Y 2 are however non-vanishing. Unlike fluxes, the dual fluxes depend on
the induced metric although they are scaling invariant.

Under what conditions the conjectured duality between partonic 2-surface and string world sheets
hold true at the level of WCW Hamiltonians?
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1. For the weak form of electric-magnetic duality at string world sheets the duality would mean
that the sum of the fluxes for partonic 2-surfaces and sum of the fluxes for string world sheets
are identical apart from a proportionality constant:

∑
i

QA(X2
i ) ∝

∑
i

QA(Y 2
i ) . (5.13)

Note that in zero ontology it seems necessary to sum over all the partonic surfaces (at both ends
of the space-time sheet) and over all string world sheets.

2. For Lagrangian sub-manifold option the duality can hold true only in the form

∑
i

QA(X2
i ) ∝

∑
i

Q∗A(Y 2
i ) . (5.14)

Obviously this option is less symmetric and elegant.

5.5 Summary

There are several arguments favoring weak form of electric-magnetic duality for both string world
sheets and partonic 2-surfaces. Legendrian sub-manifold property for braid strands follows from the
assumption that Kähler action for preferred extremals is proportional to the Kähler magnetic flux
associated with preferred 2-surfaces and is stationary with respect to the variations of the boundary.
What is especially nice is that Legendrian sub-manifold property implies automatically unique braids.
The minimal option favored by the idea that 3-surfaces are basic dynamical objects is the one for
which weak form of electric-magnetic duality holds true only at partonic 2-surfaces and string world
sheets. A stronger option assumes it at preferred 3-surfaces. Duality between string world sheets and
partonic 2-surfaces suggests that WCW Hamiltonians can be defined as sums of Kähler magneti fluxes
for either partonic 2-surfaces or string world sheets.

6 What generalized Feynman rules could be?

After all these explanations the skeptic reader might ask whether this lengthy discussion gives any
idea about what the generalized Feynman rules might look like. The attempt to answer this question
is a good manner to make a map about what is understood and what is not understood. The
basic questions are simple. What constraints does zero energy ontology (ZEO) pose? What does the
necessity to projecti the four-momenta to a preferred plane M2 mean? What mathematical expressions
one should assign to the propagator lines and vertices? How does one perform the functional integral
over 3-surfaces in finite measurement resolution? The following represents tentatative answers to these
questions but does not say much about exact role of algebraic knots.

6.1 Zero energy ontology

ZEO poses very powerful constraints on generalized Feynman diagrams and gives hopes that both UV
and IR divergences cancel.

1. ZEO predicts that the fermions assigned with braid strands associated with the virtual particles
are on mass shell massless particles for which the sign of energy can be also negative: in the
case of wormhole throats this can give rise to a tachyonic exchange.

2. The on mass shell conditions for each wormhole throat in the diagram involving loops are very
stringent and expected to eliminate very large classes of diagrams. If however given diagonal
diagram leading from n-particle state to the same n-particle state -completely analogous to self
energy diagram- is possible then the ladders form by these diagrams are also possible and one
one obtains infinite of this kind of diagrams as generalized self energy correction and is excellent
hopes that geometric series gives a closed algebraic function.
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3. IR divergences plaguing massless theories are cancelled if the incoming and outgoing particles
are massive bound states of massless on mass shell particles. In the simplest manner this is
achieved when the 3-momenta are in opposite direction. For internal lines the massive on-
mass shell-condition is not needed at all. Therefore there is an almost complete separation
of the problem how bound state masses are determined from the problem of constructing the
scattering amplitudes.

4. What looks like a problematic aspect ZEO is that the massless on-mass-shell propagators would
diverge for wormhole throats. The solution comes from the projection of 4-momenta to M2. In
the generic the projection is time-like and one avoids the singularity. The study of solutions
of the modified Dirac equation [5] and number theoretic vision [15] indeed suggests that the
projections of four-momenta to M2 are integer multiples of hyper-complex primes or light-like.
The light-like momenta would be treated like in the case of ordinary Feynman diagrams using
iε-prescription of the propagator and would also give a finite contributions corresponding to
integral over physical on mass shell states. This guarantees also the vanihing of the possible IR
divergences coming from the summation over different M2 momenta.

5. Zero energy ontology strongly suggests that all particles (including photons, gluons, and gravi-
tons) have mass which can be arbitrarily small and can be see as being due to the fact that
particle ”eats” Higgs like states giving it the otherwise lacking polarization states. This would
mean a generalization of the notion of Higgs particle to a Higgs like particle with spin. It would
also mean rearrangmenet of massless states at wormhole throat level to massives physical states.
The projection of the momenta to M2 is consistent with this vision. The natural generalization
of the gauge condition p · ε = 0 is obtained by replacing p with the projection of the total mo-
mentum of the boson to M2 and ε with its polarization so that one has p|| ·ε. If the projection to
M2 is light-like, three polarization states are possible in the generic case, so that massivation is
required by internal consistency. Note that if intermediate states in the unitary condition were
states with light-like M2-momentum one could have a problematic situation.

6. The real beauty of Feynman rules is that they guarantee unitarity automatically. In fact,
unitarity reduces to Cutkosky rules which can be formulated in terms of cut obtained by putting
certain subset of interal lines on mass shell so that it represents on mass shell state. Cut
analyticity implies the usual iDisc(T ) = TT †. In the recent context the cutting of the internal
lines by putting them on-mass-shell requires a generalization.

(a) The first guess is that on mass shell property means that M2 projection for the momenta
is light-like. This would man that also these momenta contribute to the amplitude but the
contribution is finite just like in the usual case. In this formulation the real particles would
be the massless wormhole throats.

(b) Second possibility is that the internal lines on on mass shell states corresponding to massive
on mass-shell-particles. This would correspond to the experimental meaning of the unitary
conditions if real particles are the massive on mass shell particles. Mathematically it
seems possible to pick up from the amplitude the states which correspond to massive on
mass shell states but one should understand why the discontinuity should be associated
with physical net masses for wormhole contacts or many-particle states formed by them.
General connection with unitarity and analyticity might allow to understand this.

7. CDs are labelled by various moduli and one must integrate over them. Once the tips of the
CD and therefore a preferred M1 is selected, the choice of angular momentum quantization
axis orthogonal to M1 remains: this choice means fixing M2. These choices are parameterized
by sphere S2. It seems that an integration over different choices of M2 is needed to achieve
Poincare invariance.

6.2 How the propagators are determined?

In accordance with previous sections it will be assumed that the braid are Legendrian braids and
therefore completely well-defined. One should assign propagator to the braid. A good guess is that
the propagator reduces to a product of three terms.
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1. A multi-particle propagator which is a product of collinear massless propagators for braid strands
with fermionin number F = 0, 1−1. The constraint on the momenta is pi = λip with

∑
i λi = 1.

So that the fermionic propagator is 1∏
i λi

pkγk. If one gas p = nP , where P is hyper-complex

prime, one must sum over combinations of λi = ni satisfying
∑
i ni = n.

2. A unitary S-matrix for integrable QFT in M2 in which the velocities of particles assignable to
braid strands appear for which fixed by R-matrix defines the basic 2-vertex representing the
process in which a particle passes through another one. For this S-matrix braids are the basic
units. To each crossing appearing in non-planar Feynman diagram one would have an R-matrix
representing the effect of a reconnection the ends of the lines coming to the crossing point. In
this manner one could gradually transform the non-planar diagram to a planar diagram. One
can ask whether a formulation in terms of a suitable R-matrix could allow to generalize twistor
program to apply in the case of non-planar diagrams.

3. An S-matrix predicted by topological QFT for a given braid. This S-matrix should be con-
structible in terms of Chern-Simons term defining a sympletic QFT.

There are several questions about quantum numbers assignable to the braid strands.

1. Can braid strands be only fermionic or can they also carry purely bosonic quantum numbers
corresponding to WCW Hamiltonians and therefore to Hamiltonians of δM4

± × CP2? Nothing
is lost if one assumes that both purely bosonic and purely fermionic lines are possible and looks
whether this leads to inconsistencies. If virtual fermions correspond to single wormhole throat
they can have only time-like M2-momenta. If virtual fermions correspond to pairs of wormhole
throats with second throat carrying purely bosonic quantum numbers, also fermionic can have
space-like net momenta. The interpretation would be in terms of topological condensation. This
is however not possible if all strands are fermionic. Situation changes if one identifies physical
fermions wormhole throats at the ends of Kähler magnetic flux tube as one indeed does: in this
case virtual net momentum can be space-like if the sign of energy is opposite for the ends of the
flux tube.

2. Are the 3-momenta associated with the wormholes of wormhole contact parallel so that only
the sign of energy could distinguish between them for space-like total momentum and M2 mass
squared would be the same? This assumption simplifies the situation but is not absolutely
necessary.

3. What about the momentum components orthogonal to M2? Are they restricted only by the
massless mass shell conditions on internal lines and quantization of the M2 projection of 4-
momentum?

4. What braids do elementary particles correspond? The braids assigned to the wormhole throat
lines can have arbitrary number n of strands and for n = 1, 2 the treatment of braiding is
almost trivial. A natural assumption is that propagator is simply a product of massless collinear
propagators for M2 projection of momentum [6]. Collinearity means that propagator is product
of a multifermion propagator 1

λipkγk
, znd multiboson propagator 1

µipkγk
,
∑
λi+

∑
i µi = 1. There

are also quantization conditions on M2 projections of momenta from modified Dirac equation
implying that multiplies of hyper-complex prime are in question in suitable units. Note however
that it is not clear whether purely bosonic strands are present.

5. For ordinary elementary particles with propagators behaving like
∏
i λ
−1
i 1p−n, only n ≤ 2

is possible. The topologically really interesting states with more than two braid strands are
something else than what we have used to call elementary particles. The proposed interpretation
is in terms of anyonic states [13]. One important implication is that N = 1 SUSY generated by
right-handed neutrino or its antineutrino is SUSY for which all members of the multiplet assigned
to a wormhole throat have braid number smaller than 3. For N = 2 SUSY generated by right-
handed neutrino and its antiparticle the states containing fermion and neutrino-antineutrino
pair have three braid strands and SUSY breaking is expected to be strong.
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6.3 Vertices

Conformal invariance raises the hope that vertices can be deduced from super-conformal invariance
as n-point functions. Therefore lines would come from integrable QFT in M2 and topological braid
theory and vertices from confofmal field theory: both theories are integrable.

The basic questions is how the vertices are defined by the 2-D partonic surfaces at which the ends
of lines meet. Finite measurement resolution reduces the lines to braids so that the vertices reduces
to the intersection of braid strands with the partonic 2-surface.

1. Conformal invariance is the basic symmetry of quantum TGD. Does this mean that the vertices
can be identified as n-point functions for points of the partonic 2-surface defined by the incoming
and outgoing braid strands? How strong constraints can one pose on this conformal field theory?
Is this field theory free and fixed by anticommutation relations of induced spinor fields so that
correlation function would reduce to product of fermionic two points functions with standard
operator in the vertices represented by strand ends. If purely bosonic vertices are present, their
correlation functions must result from the functional integral over WCW.

2. For the fermionic fields associated with each incoming braid the anticommutators of fermions
and antifermions are trivial just as the usual equal time anticommutation relations. This means
that the vertex reduces to sum of products of fermionic correlation functions with arguments
belonging to different incoming and outgoing lines. How can one calculate the correlators?

(a) Should one perform standard second quantization of fermions at light-like 3-surface allowing
infinite number of spinor modes, apply a finite measurement resolution to obtain braids,
for each partonic 2-surface, and use the full fermion fields to calculate the correlators? In
this case braid strands would be discontinuous in vertices. A possible problem might be
that the cutoff in spinor modes seems to come from the theory itself: finite measurement
resolution is a property of quantum state itself.

(b) Could finite measurement resolution allow to approximate the braid strands with contin-
uous ones so that the correlators between strands belonging to different lines are given by
anticommutation relations? This would simplify enormously the situation and would con-
form with the idea of finite measurement resolution and the vision that interaction vertices
reduce to braids. This vision is encouraged by the previous considerations and would mean
that replication of braid strands analogous to replication of DNA strands can be seen as a
fundamental process of Nature. This of course represents an important deviation from the
standard picture.

3. Suppose that one accepts the latter option. What can happen in the vertex, where line goes
from one braid to another one?

(a) Can the direction of momentum changed as visual intuition suggests? Is the total braid
momentum conservation the only constraint so that the velocities assignable braid strands
in each line would be constrained by the total momentum of the line.

(b) What kind of operators appear in the vertex? To get some idea about this one can look for
the simplest possible vertex, namely FFB vertex which could in fact be the only fundamental
vertex as the arguments of [2] suggest. The propagator of spin one boson decomposes
to product of a projection operator to the polarization states divited by p2 factor. The
projection operator sum over products εki γk at both ends where γk acts in the spinor space
defined by fermions. Also fermion lines have spinor and its conjugate at their ends. This
gives rise to pkγk/p

2. pkγk is the analog of the bosonic polarization tensor factorizing into
a sum over products of fermionic spinors and their conjugates. This gives the BFF vertex
εki γk slashed between the fermionic propagators which are effectively 2-dimensional.

(c) Note that if H-chiralities are same at the throats of the wormhole contact, only spin one
states are possible. Scalars would be leptoquarks in accordance with general view about
lepton and quark number conservation. One particular implication is that Higgs in the
standard sense is not possible in TGD framework. It can appear only as a state with a
polarization which is in CP2 direction. In any case, Higgs like states would be eaten by
massless state so that all particles would have at least a small mass.
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6.4 Functional integral over 3-surfaces

The basic question is how one can functionally integrate over light-like 3-surfaces or space-like 3-
surfaces.

1. Does effective 2-dimensionality allow to reduce the functional integration to that over partonic
2-surfaces assigned with space-time sheet inside CD plus radiative corrections from the hierarchy
of sub-CDs?

2. Does finite measurement resolution reduce the functional integral to a ordinary integral over the
positions of the end points of braids and could this integral reduce to a sum? Symplectic group
of δM4

± × CP2 basically parametrizes the quantum fluctuating degrees of freedom in WCW.
Could finite measurement resolution reduce the symplectic group of δM4

±×CP2 to a coset space
obtained by dividing with symplectic transformations leaving the end points invariant and could
the outcome be a discrete group as proposed? Functional integral would reduce to sum.

3. If Kähler action reduces to Chern-Simons-Kähler terms to surface area terms in the proposed
manner, the integration over WCW would be very much analogous to a functional integral over
string world sheets and the wisdom gained in string models might be of considerable help.

6.5 Summary

What can one conclude from these argument? To my view the situation gives rise to a considerable
optimism. I believe that on basis of the proposed picture it should be possible to build a concrete
mathematical models for the generalized Feynman graphics and the idea about reduction to generalized
braid diagrams having algebraic representations could pose additional powerful constraints on the
construction. Braid invariants could also be building bricks of the generalized Feynman diagrams. In
particular, the treatment of the non-planarity of Feynman diagrams in terms of M2 braiding matrix
would be something new.

7 Duality between low energy and high energy descriptions
of hadron physics

I found the talk of Matthew Schwartz titled The Emergence of Jets at the Large Hadron Collider [7]
belonging to the Monday Colloqium Series at Harward. The talk told about the history of the notion
of jet and how it is applied at LHC. The notion of jet is something between perturbative and non-
perturbative QCD and therefore not a precisely defined concept as one approaches small mass limit
for jets.

The talk inspired some questions relating to QCD and hadron physics in general. I am of course
not competent to say anything interesting about jet algorithms. Hadronization process is however not
well understood in the framework of QCD and uses phenomenological fragmentation functions. The
description of jet formation in turn uses phenomenological quark distribution functions. TGD leads
to a rather detailed fresh ideas about what quarks, gluons, and hadrons are and stringy and QFT
like descriptions emerge as excellent candidates for low and high energy descriptions of hadrons. Low
energies are the weakness of QCD and one can well ask whether QCD fails as a physical theory at
infrared. Could TGD do better in this respect?

Only a minor fraction of the rest energy of proton is in the form of quarks and gluons. In TGD
framework these degrees of freedom would naturally correspond to color magnetic flux tubes carrying
color magnetic energy and in proton-proton collisions the color magnetic energy of p-p system in cm
system is gigantic. The natural question is therefore about what happens to the ”color magnetic
bodies” of the colliding protons and of quarks in proton-proton collision.

In the sequel I will develop a simple argument leading to a very concrete duality between two
descriptions of hadron reactions manifest at the level of generalized Feynman graphs. The first de-
scription is in terms of meson exchanges and applies naturally in long scales. Second one is terms
of perturbative QCD applying in short scales. The basic ingredients of the argument are the weak
form of electric-magnetic duality [5] and bosonic emergence [12] leading to a rather concrete view
about physical particles, generalized Feynman diagrams reducing to generalized braid diagrams in the

http://media.physics.harvard.edu/video/?id=COLLOQ_SCHWARTZ_101711
http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#Dirac
http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#Dirac
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framework of zero energy ontology (ZEO) [8], and reconnection of Kähler magnetic flux tubes having
interpretation in terms of string diagrams providing the mechanism of hadronization. Basically the
prediction follows from the dual interpretations of generalized Feynman diagrams either as stringy
diagrams (low energies) or as Feynman diagrams (high energies).

It must be emphasized that this duality is something completely new and a simple prediction of
the notion of generalized Feynman diagram. The result is exact: no limits (such as large N limit) are
needed.

7.1 Weak form of electric magnetic duality and bosonic emergence

The weak form of electric magnetic duality allows the identification of quark wormhole throats as
Kähler magnetic monopoles with non-vanishing magnetic charges Qm. The closely related bosonic
emergence [12] effectively eliminates the fundamental BFF vertices from the theory [8].

1. Elementary fermion corresponds to single wormhole throat with Kähler magnetic charge. In
topological condensation a wormhole throat is formed and the working hypothesis is that the
second throat is Kähler magnetically neutral. The throats created in topological condensation
(formation of topological sum) are always homologically trivial since purely local process is in
question.

2. In absence of topological condensation physical leptons correspond to string like objects with
opposite Kähler magnetic charges at the ends. Topologically condensed lepton carries also
neutralizing weak isospin carried by neutrino pair at the throats of the neutralizing wormhole
contact. Wormhole contact itself carries no Kähler magnetic flux. The neutralization scale for
Qm and weak isospin could be either weak length scale for both fermions and bosons. The
alternative option is Compton length quite generally - this even for fermions since it is enough
that the weak isospin of weak bosons is neutralized in the weak scale. The alert reader have of
course asked whether the weak isospin of fermion must be neutralized at all if this is the case.
Whether this really happens is not relevant for the following arguments.

3. Whether a given quark is accompanied by a wormhole contact neutralizing its weak isospin is
not quite clear: this need not be the case since the Compton length of weak bosons defines the
range of weak interactions. Therefore one can consider the possibility that physical quarks have
non-vanishing Qm and that only hadrons have Qm = 0. Now the Kähler magnetic flux tubes
would connect valence quarks. In the case of proton one would have three of them. About 31
year old proposal is that color hyper charge is proportional to Kähler magnetic charge. If so
then color confinement would require Kähler magnetic confinement.

4. By bosonic emergence bosons correspond to wormhole contacts or pairs of them. Now wormhole
throats have opposite values of Qm but the contact itself carries vanishing Kähler magnetic flux.
Fermion and anti-fermion are accompanied by neutralizing Kähler magnetic charge at the ends
of their flux tubes and neutrino pair at its throats neutralizes the weak charge of the boson.

7.2 The dual interpretations of generalized Feynman diagrams in terms of
hadronic and partonic reaction vertices

Generalized Feynman diagrams are defined in the framework of zero energy ontology (ZEO). Bosonic
emergence eliminates fundamental BFF vertices and reduces generalized Feynman diagrams to gen-
eralized braid diagrams. This is essential for the dual interpretation of the qqg vertex as a meson
emission vertex for hadron. The key idea is following.

1. Topologically condensed hadron - say proton- corresponds to a double sheeted structure: let
us label the sheets by letters A and B. Suppose that the sheet A contains wormhole throats
of quarks carrying magnetic charges. These wormhole throats are connected by magnetically
neutral wormhole contact to sheet B for which wormhole throats carry vanishing magnetic
charges.

2. What happens when hadronic quark emits a gluon is easiest to understand by considering first
the annihilation of topologically non-condensed charged lepton and antilepton to photon - that is

http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#knotsTGD
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L+L→ γ vertex. Lepton and antilepton are accompanied by flux tubes at different space-time
sheets A and B and each has single wormhole throat: one can speak of a pair of topologically
condensed deformations of CP2 type vacuum extremals as a correlate for single wormhole throat.
At both ends of the flux tubes deformations o fCP2 type vacuum exremals fuse via topological
sum to form a pair of photon wormhole contacts carrying no Kähler magnetic flux. The condition
that the resulting structure has the size of weak gauge boson suggests that weak scale defines
also the size of leptons and quarks as magnetic flux tubes. Quarks can however carry net Kähler
magnetic charge (the ends of flux tube do not have opposite values of Kähler magnetic charge.

3. With some mental gymnastics the annihilation vertex L + L → γ can be deformed to describe
photon emission vertex L → L + γ: The negative energy antilepton arrives from future and
positive energy lepton from the past and they fuse to a virtual photon in the manner discussed.

4. qqg vertex requires further mental gymnastics but locally nothing is changed since the protonic
quark emitting the gluon is connected by a color magnetic flux tube to another protonic quark
in the case of incoming proton (and possibly to neutrino carrying wormhole contact with size
given by the weak length scale). What happens is therefore essentially the same as above. The
protonic quark has become part of gluon at space-time sheet A but has still flux tube connection
to proton. Besides this there appears wormhole throat at space-time sheet B carrying quark
quantum numbers: this quark would in the usual picture correspond to the quark after gluon
emission and antiquark at the same space-time sheet associated with the gluon. Therefore one
has proton with one quark moving away inside gluon at sheet A and a meson like entity at sheet
B. The dual interpretation as the emission of meson by proton makes sense. This vertex does
not correspond to the stringy vertex AB+CD → AD+BC in which strings touch at some point
of the interior and recombine but is something totally new and made possible by many-sheeted
space-time. For gauge boson magnetically charge throats are at different space-time sheets, for
meson they at the same space-time sheet and connected by Kähler magnetic flux tube.

5. Obviously the interpretation as an emission of meson like entity makes sense for any hadron
like entity for which quark or antiquark emits gluon. This is what the duality of hadronic and
parton descriptions would mean. Note that bosonic emergence is absolutely essential element
of this duality. In QCD it is not possible to understand this duality at the level of Feynman
diagrams.

7.3 Reconnection of color magnetic flux tubes

The reconnection of color magnetic flux tubes is the key mechanism of hadronization and a slow
process as compared to quark gluon emission.

1. Reconnection vertices have interpretation in terms of stringy vertices AB + CD → AD + BC
for which interiors of strings serving as representatives of flux tubes touch. The first guess is
that reconnection is responsible for the low energy dynamics of hadronic collisions.

2. Reconnection process takes place for both the hadronic color magnetic flux tubes and those of
quarks and gluons. For ordinary hadron physics hadrons are characterized by Mersenne prime
M107. For M89 hadron physics reconnection process takes place in much shorter scales for
hadronic flux tubes.

3. Each quarks is characterized by p-adic length scales: in fact this scale characterizes the length
scale of the the magnetic bodies of the quark. Therefore Reconnection at the level of the
magnetic bodies of quarks take places in several time and length scales. For top quark the size
scale of magnetic body is very small as is also the reconnection time scale. In the case of u and
d quarks with mass in MeV range the size scale of the magnetic body would be of the order of
electron Compton length. This scale assigned with quark is longer than the size scale of hadrons
characterized by M89. Classically this does not make sense but in quantum theory Uncertainty
Principle predicts it from the smallness of the light quark masses as compared to the hadron
mass. The large size of the color magnetic body of quark could explain the strange finding about
the charge radius of proton [9].
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4. For instance, the formation of quark gluon plasma would involve reconnection process for the
magnetic bodies of colliding protons or nuclei in short time scale due to the Lorentz contraction
of nuclei in the direction of the collision axis. Quark-gluon plasma would correspond to a
situation in which the magnetic fluxes are distributed in such a manner that the system cannot
be decomposed to hadrons anymore but acts like a single coherent unit. Therefore quark-gluon
plasma in TGD sense does not correspond to the thermal quark-gluon plasma in the naive QCD
sense in which there are no long range correlations.

Long range correlations and quantum coherence suggest that the viscosity to entropy ratio is
low as indeed observed [9]. The earlier arguments suggest that the preferred extremals of Kähler
action have interpretation as perfect fluid flows [5]. This means at given space-time sheet allows
global time coordinate assignable to flow lines of the flow and defined by conserved isometry
current defining Beltrami flow. As a matter fact, all conserved currents are predicted to define
Beltrami flows. Classically perfect fluid flow implies that viscosity, which is basically due to a
mixing causing the loss of Beltrami property, vanishes. Viscosity would be only due to the finite
size of space-time sheets and the radiative corrections describable in terms of fractal hierarchy
CDs within CDs. In quantum field theory radiative corrections indeed give rise to the absorbtive
parts of the scattering amplitudes.

7.4 Hadron-parton duality and TGD as a ”square root” of the statistical
QCD description

The main result is that generalized Feynman diagrams have dual interpretations as QCD like diagrams
describing partonic reactions and stringy diagrams describing hadronic reactions so that these matrix
elements can be taken between either hadronic states or partonic states. This duality is something
completely new and distinguishes between QCD and TGD.

I have proposed already earlier this kind of duality but based on group theoretical arguments
inspired by what I call M8 −M4 × CP2 duality [5] and two hypothesis of the old fashioned hadron
physics stating that vector currents are conserved and axial currents are partially conserved. This
duality suggests that the group SO(4) = SU(2)L × SU(2)R assignable to weak isospin degrees of
freedom takes the role of color group at long length scales and can be identified as isometries of
E4 ⊂M8 just like SU(3) corresponds to the isometries of CP2.

Initial and final states correspond to positive and negative energy parts of zero energy states in
ZEO. These can be regarded either partonic or hadronic many particle states. The inner products
between positive energy parts of partonic and hadronic state basis define the ”square roots” of the
parton distribution functions for hadrons. The inner products of between negative energy parts of
hadronic and partonic state basis define the ”square roots” of the fragmentations functions to hadrons
for partons. M-matrix defining the time-like entanglement coefficients is representable as product of
hermitian square root of density matrix and S-matrix is not time reversal invariant and this partially
justifies the use of statistical description of partons in QCD framework using distribution functions
and fragmentation functions. Decoherence in the sum over quark intermediate states for the hadronic
scattering amplitudes is essential for obtaining the standard description.

8 Quark gluon plasma in TGD framework

I listened an excellent talk by Dam Thanh Son in Harward Monday seminar series [8]. The title of the
talk was Viscosity, Quark Gluon Plasma, and String Theory. What the talk represents is a connection
between three notions which one would not expect to have much to do with each other.

In the following I shall briefly summarize the basic points of Son’s talk which I warmly recommend
for anyone wanting to sharpen his or her mental images about quark gluon plasma.

1. Besides this I discuss a TGD variant of AdS/CFT correspondence based on string-parton duality
allowing a concrete identification of the process leading to the formation of strongly interacting
quark gluon plasma.

2. ”Strongly interacting” means that partonic 2-surfaces are connected by Kähler magnetic flux
tubes making the many-hadron system single large hadron in the optimal case rather than a
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gas of uncorrelated partons. This allows a concrete generalization of the formula of kinetic gas
theory for the viscosity.

3. One ends up also to a concrete interpretation for the formula for the η/s ratio in terms of
TGD variant of Einsteinian gravitation and the analogs of black-hole horizons identified as
partonic 2-surfaces. This gravitation is not fictive gravitation in 10-D space but real sub-manifold
gravitation in 4-D space-time.

4. It is essential that TGD does not assume gravitational constant as a fundamental constant but
as a prediction of theory depending on the p-adic length scale and the typical value of Kähler
action for the lines of generalized Feynman graphs. Feeding in the notion of gravitational Planck
constant, one finds beautiful interpretation for the lower limit viscosity which is smaller than
the one predicted by AdS-CFT correspondence.

8.1 Some points in Son’s talk

Son discusses first the notion of shear viscosity at undergraduate level - as he expresses it. First the
standard Wikipedia definition for shear viscosity is discussed in terms of the friction forces created
in a system consisting two parallel plates containing liquid between them as one moves a plate with
respect to another parallel plate.

Son explains how Maxwell explains the viscosity of gases in terms of kinetic gas theory and entered
with a strange result: the estimate η = ρvlfree leads to the conclusion that the viscosity has no pressure
dependence: Maxwell himself verified the result experimentally. Imagining that the interaction of gas
molecules can be reduced to zero leads to a paradox: the viscosity of the ideal gas is infinite. The
solution of the paradox is simple: the theory applies only if lfree is considerably smaller than the size
scale of the system, say the distance between the two plates, one of which is moving.

Son discusses the viscosity for some condensed matter systems and finds that the value of viscosity
increases very rapidly as a function of temperature: does this mean a rapid increase of lfree with
temperature? Son also notices that the viscosity seems to be bounded from below. Son discusses also
η/s ratio for the condensed matter systems and finds that it is typically by a factor 10-100 larger than
the minimal values ~/4π suggested by AdS/CFT correspondence [3].

Son describes gauge-gravity duality briefly. AdS/CFT approach does not allow simple arguments
analogous to those used in the kinetic theory of gases.

1. One central formula is Kubo’s formula giving viscosity as the low frequency limit for the Fourier
component of the component of energy momentum tensor commutation [T yx(x, t), T yx(0, 0)] as

η =
1

2~ω

∫
〈[T yx(x, t), T yx(0, 0)] d4x〉ω→0

forN = 4 SUSY defined in M4. Now this theory is N = 4 SUSY so that there is no hope about
simple interpretation. Note that the formula is consistent with the dimensions of viscosity
which is M/L3. I confess that I do not understand the origin of the formula at the level details.
Green-Kubo relations [2] are certainly the starting poing having very general justification as an
outcome of fluctuation theorem [1] allowing understood relatively easily in Gaussian model for
thermodynamics. Since energy momentum tensor serves as a source of gravitons and is the basic
observable in hydrodynamics, it is clear that this formula is consistent with gauge theory-gravity
correspondence. ω → 0 limis means that the low energy sector of the gauge theory is in question
so that the perturbative approach fails.

2. In TGD framework the analog of this formula need not be useful. If it apply it should apply
to partonic 2-surfaces and AdS5 × S5 should be replaced with space-time surface. The energy
momentum tensor should be the energy momentum tensor of partonic 2-surface fixed to a high
degree by conformal invariance. One should sum over all partonic 2-surfaces. The partonic 2-
surfaces would correspond to both ends of a braid strands at the opposite light-like boundaries
of CD. The integral at the level of the partonic 2-surface is now only 2-dimensional and the
dimension of η would be 1~/L in this case. In the kinetic gas theory formula this follows from
the fact that mass density has now dimension m/L rather than m/L3. The summation over
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the partonic 2-surfaces could correspond in many particle system integration. I tend to see this
kind of approach as too formal.

AdS/CFT duality [3] reduces the calculation of the viscosity to that for the graviton absorption
cross section for AdS5×S5 black hole when the N-stack of branes is replaced with a brane black hole
in AdS5 × S5. Viscosity is is reduced essentially to the area of the black-hole multiplied by Planck
constant. Since the dimension of 4-D viscosity is ~/L3, the area must be measured using Planck length
squared G as a unit. Is viscosity the number density multiplied by this dimensionless quantity? I
must admit that I do not really understand this result.

8.2 What is known about quark-gluon plasma?

Son summarizes some facts about quark-gluon plasma and they are included in the following summary
about what little I know.

1. The first surprise was produced by RHIC observing that the viscosity to entropy density ratio
for quark gluon plasma is near ~/4π -its lower limit as predicted by AdS/CFT duality. The low
value of η/s ratio does not mean that the viscosity would be low. As a matter fact it is gigantic
- of order 1014 centipoise and thefore 14 orders of magnitude higher than for water! Glass is the
the only condensed matter system possessing a higher viscosity in the list of Son. The challenge
is to understand why the ratio is so small in terms of QCD or perhaps a theory transcending the
limitations of QCD at low energies. From Kubo’s formula it is clear that the low energy limit
of QCD is indeed needed to understand the viscocity.

2. In the nuclear collidisions allowing to deduce information about viscosity the nuclei do not collide
quite head on. The time of collision is short due to the Lorentz contraction. The projection of the
collision region in the plane orthogonal to the collision axes is almond shaped so that rotational
symmetry is lost and implies that viscous forces enters the game. If the system reaches thermal
equilibrium, the notion of pressure make senses. The force caused by the pressure gradient is
stronger in transversal than longitudinal direction of almond since the almond in transversal
direction is shorter than in longitudinal direction. That hets in this direction are more energetic
supports the view that pressure is a well-defined concept. On the other hand, the viscous force
in the longitudinal direction is large and tends to compensate this effect. This effect gives hopes
of measuring the viscosity.

3. η/s ratio seems to be near ~/4π for the quark-gluon plasma formed in both heavy ion col-
lisions and in proton-proton collisions although the energy scales are quite different. This is
not expected on basis of the strong temperature dependence of viscosity in condensed matter
systems.

4. On basis of RHIC results [4, 5] for heavy ion collisions and the LHC results for proton-proton
collisions, which unexpectedly demonstrated similar plasma behavior for proton-proton collisions
one can conclude that quark gluon plasma is a strongly interacting system. The temperature
assignable to the quark-gluon plasma possibly formed in proton-proton collisions is of course must
higher than at RHIC. Recently also the results from lead-lead collisions at LHC have emerged:
the temperature of the plasma should be about 500 MeV as compared to the temperature 250
MeV at RHIC. In this case AdS/CFT duality gives hopes for describing the non-perturbative
aspects of the system. This is just a hope: AdS/CFT correspondence requires many assumptions
which might not hold true for the quark-gluon plasma and there are preliminary indications
[6], which do not support AdS/CFT duality [1, 2]. The experiments favor a model in which
the situation is described based old-fashioned Lund model [3] treating gluons as strings. This
description is a a simplified version of the description provided by TGD.

8.3 Gauge-gravity duality in TGD framework

AdS/CFT duality is one variant of a more general gauge-gravity duality. Gauge-gravity in turn involves
several variants depending on whether one assumes that Einstein’s curvature scalar provides a good
approximation to the description of gravitational sector. This requires that higher spin excitations of
string like objects are very heavy and can be neglected. It might be that since low energy limit is in
question as is clear from Kubo’s formula, the use of Einstein’s action makes sense very generally.
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8.3.1 String-gauge theory duality in TGD framework

If I were enemy of string theory and follower of the usual habits of my species, I would be very skeptic
from the beginning. There are however no rational reasons to be hostile since string worlds sheets at
4-D space time sheets appear also in TGD and there very strong reasons to expect duality between
QFT like descriptions and stringy description. I indeed discussed in previous section how this duality
can be understood directly at the level of generalized Feynman diagrams as a kind of combinatorial
identity. There is no need to introduce strings in AdS5 × S5 as in the usual AdS/CFT approach and
Nc →∞ implying the vanishing of the contribution of non-planar Feynman diagrams is not needed.

8.3.2 The reduction to Einsteinian gravity need not take place

String-gauge theory duality need not reduce QCD to Einsteinian gravity allowing modeling in terms
of curvature scalar.

1. In TGD framework the physics for small deformations of vacuum extremals - whose number is
gigantic (any Lagrangian sub-manifold of CP2 defines a vacuum sector of the theory) - would
be governed by Einstein’s equations. The value of gravitational constant is however dynamical
and a little dimensional analysis argument suggests that the gravitational constant satisfies [11]

Geff (p) = L2(k)exp(−2SK) ,

where Lp is p-adic length scales associated with p-adic prime p ' 2k and SK is the Kähler action
for a deformation of CP2 type vacuum extremal in general smaller than for full CP2.

2. Ordinary gravitational constant would correspond to p = M127 = 2127−1 assignable to electron:
M127 is the largest Mersenne prime which does not define a completely super-astrophysical p-
adic length scale. The value of SK would be almost maximal and induce an enormous reduction
of the value of G.

3. For hadron physics SK should not be large and in reasonable approximation this would give
Geff ' ~L2(k = 107). The deformations of CP2 type vacuum extremals, whose M4 projections
are random light-like curves. are assignable to elementary particles such as gluons. In the case
of hadrons these projections are expected to be short and so that the exponent is expected to
be near unity. One might hope that these contributions dominate in the calculation of viscosity
so that Einstein’s picture indeed works.

4. In the case of hadron physics there are no strong reason to expect a general reduction to Ein-
steinian gravity. Higher spin states at the hadronic Regge trajectories are important and hadron
physics does not reduce to gravitational theory involving the exchanges of only spin two strong
gravitons.

This requires additional assumption which the lecture of Son tried to clarify. The assumption is
that the coordinate of AdS5 orthogonal to its boundary M4 representing 4-D Minkowski space
represents scaling of the physical system and that the interactions in the bulk are ultra-local
with respect to this coordinate. Only systems with same scale size interact. This assumption
looks very strange to me but has analog in quantum TGD. Personally I would take this argument
with a big grain of salt.

8.3.3 Reduction to hydrodynamics

The AdS5/CFT duality in the strong form reduces the dynamics at the boundary of AdS5 to Einstein’s
gravity in the interior of AdS and the N -stack of 3-branes corresponds to brane black-hole in AdS5×S5.
There are also good reasons to expect that Einstein’s gravity in turn reduces to hydrodynamics.

The field equations of TGD are conservation laws for isometry currents and Kähler currents plus
their super counterparts. Also in hydrodynamics the basic equations reduce to conservation laws. The
structural equations of hydrodynamics correspond to the identification of gauge fields and metrics as
induced structures.

The reduction to 4-D hydrodynamics in much stronger sense is suggestive since a large class of
preferred extremals of Kähler action have interpretation as hydrodynamic flows for which flow lines
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define coordinate curves of a global coordinate [5]. Beltrami flows are in question. For instance, a
magnetic field for which Lorentz force vanishes is a good example of 3-D Beltrami flow. There are
good arguments in favore of the existence of a unique preferred coordinate system defined in terms of
light-like local direction and its dual direction plus two orthogonal local polarization directions.

8.3.4 Could AdS/CFT duality have some interpretation in TGD framework?

In TGD framework the duality between strings and particles replacing AdS/CFT duality means the
replacement of AdS×S5 with space-time surface represented as surface in M4×CP2. Furthermore M4

is replaced with partonic 2-surfaces the super-conformal invariance of N = 4 SUSY in M4 is replaces
with 2-D super-conformal invariance. Therefore the attempts to build analogies with AdS/CFT duality
type description might be waste of time. The temptation for the search of analogies is however too
high.

In the case of AdS/CFT duality for Minkowski space that coordinate of AdS5 orthogonal to its
M4 boundary is interpreted as a scale parameter for the system and also has interpretation as a scalar
field in M4. Could this scaling degree have some sensible interpretation in TGD framework. What
about the N-stack of 3-branes representing a copy of M4 identified as the boundary of AdS5?

1. In TGD framework the only physically sensible interpretation would be in terms of the hierarchy
of Planck constants [4]. The quantum size of the particle scales like ~ and is therefore integer
valued. This suggests that the continuous AdS5 coordinate orthogonal to M4 could be replaced
with the integer labeling the effective values of Planck constant and hence the local coverings
of M4 ×CP2 providing a convenient description for the fact that -due to the enormous vacuum
degeneracy of Kähler action- the time derivatives of the imbedding space coordinates are multi-
valued functions of the canonical momentum densities. Different coverings that they effectively
correspond to different sectors of the effective imbedding space which can be seen as a finite
covering of M4×CP2. Only the particles with the same value of Planck constant can appear in
the same vertex of generalized Feynman diagrams and this is nothing but the strange assumption
made to guarantee the locality of AdS dynamics.

2. Same collapse of the sheets of the covering actually applies in the directions transversal to space-
like and light-like 3-surfaces so that both of them represent branchings and the total number of
branches in the interior os n1n2.

3. One must assume that the sheets of the covering collapse at the partonic 2-surfaces and perhaps
also at the string world sheets. This strange orbifold property brings strongly in mind the
stack of N-branes which collapse to single 3 brane however remembering its N-stack property:
for instance, a dynamical gauge group SU(N)× U(1) describing finite measurement resolution
emerges. The loss of the infinitely thin stack property in the interior guarantees that N -stack
property is not forgotten. I have indeed proposed that similar emergence of gauge groups
allowing to represent finite measurement resolution in terms of gauge symmetry emerges also in
TGD framework.

4. The effective dimensionless coupling in the perturbative expansion is g2N/~ and for large N
limit the series does not converge. If N corresponds to the number of colors for dynamically
generated gauge group labeling colors, the substitution ~ = N~0 however implies that the
expansion parameter does not change at all so that the limit would be different from the usual
N →∞ limit used to derive AdS/CFT duality.

An integrable QFT in M2 identified as hyper-complex plane in number theoretic vision is necessary
for interpreting generalized Feynman diagrams as generalized braids. One can of course ask whether
one would have super-confromal QFT in M2 and wheter AdS3 could be replaced with its discrete
version with normal coordinate identified as the integer characterizing the value of Planck constant.
To me this approach seems highly artificial although it might make sense formally.

One can of course ask whether M4×CP2 could have some deep connection with AdS5×S5. This
might be the case: CP2 is obtained from S5 by identifying all points of its geodesic circles and M4 is
obtained from AdS5 by identifying all points of radial geodesics in the the scaling direction.
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8.3.5 Do black-holes in AdS5 × S5 have TGD counterpart?

The black-holes in AdS5×S5 have very natural counterparts as regions of the space-time surfaces with
Euclidian signature of the induced metric. These regions represent generalized Feynman diagrams. By
holography one could restrict the consideration also to the partonic 2-surfaces at the ends of CDs and
if string world sheets and partonic 2-surfaces are dual to string world sheets coming as Minkowskian
and Euclidian variants.

Black-holes in TGD framework would have Euclidian metric and their presence is absolutely es-
sential for reducing the functional integral to a genuine integral. Otherwise one would have the analog
of path integral with the exponential of Kähler action defining a mere phase factor.

The entropy area law for the black-holes generalizes to p-adic thermodynamics and the p-adic
mass squared value for the particle predicted by p-adic thermodynamics is essentially the p-adic
entropy: both are mapped to the real sector by canonical identification. Also the black hole entropy
is proportional to mass squared.

The gigantic value of the gravitational Planck constants brings in additional interpretational issues
to be discussed later.

8.4 TGD view about strongly interacting quark gluon plasma

The magnetic flux tubes/strings connecting quarks make the QCD plasma strongly interacting in
TGD framework.

1. In the hadronic phase the network formed by these flux tubes decomposes to sub-networks
assignable to the colliding protons. In the final state the sub-networks are associated with the
outgoing hadrons. In the collision a network is formed in which the flux tubes can connect
larger number of quarks and one obtains much longer cycles in the network as in the initial and
final states. This can be regarded as a defining property of strongly interaction quark gluon
plasma. IIn quantum world one obtains a quantum superposition over networks with different
connectedness structures. The quark-gluon plasma is not ideal in quantum sense.

2. The presence of plasma blob predicts the reduction of jet production cross section. Typically
a pair of jets is produced. If this occurs in deep interior of the plasma, the jets cannot escape
the plasma. If this occurs near the surface of the plasma, the other jet escapes. This predicts
reduction of the jet production cross section.

3. The decomposition to connected flux tube networks could explain why the experimentally de-
tected ratio for jet production cross section nucleonic total scattering cross section is larger than
the predicted one: the flux tube network would consist of disconnected network with a con-
siderably property and for these the jet production cross section would not be so dramatically
reduced by the fact that the other member of the never gets out from the plasma blob.

In TGD context the basic process leading to the formation of the quark-gluon plasma is reconnec-
tion for the flux tubes describable in terms of string diagrams AB − CD → AD + BC. In the case
of ordinary quark gluon plasma the density is so high that nucleons overlap geometrically and lead
to the formation of the plasma. In TGD framework the magnetic bodies of quarks having size scale
characterized by quark Compton length would overlap. The Compton lengths for light quarks with
masses estimated to be of order 10 MeV are much larger than the size scale of nucleon and even that
of nucleus. What does this mean? Does the reconnection process take place in several scales so that
the notion of quark gluon plasma would be fractal? Note that in the recent proton-proton collisions
the energy per nucleon is about 200 GeV. Does quark gluon plasma at LHC involve the fusion of the
flux tubves of the color magnetic bodies of nucleons? Do these form connected structures.

In the kinetic gas theory viscous force in the system of parallel plates is caused by the diffusion of
particles moving with velocity u which depends on the coordinate orthogonal to the parallel plates.
One can imagine a fictive plane through which the particles diffuse in both directions and the forces
is due to that fact that the diffusing particles have different velocities differing by ∆ux = ∂yuxlfree on
the average. In the case of magnetic flux tubes the presence of magnetic flux tube connection the two
quarks at the opposite sides of the fictive plane leads to a stretching of the flux tube and this costs
energy. This favors the diffusion of either quark to the other side of the fictive plane and this induces
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the transformed of momentum parallel to the plates. Similar argument could apply also in the case
of the ordinary liquids if one allows also electric flux tubes.

8.4.1 Jets and flux tubes structures

Magnetic flux tube provide also a more concrete vision about the notion of jet.

1. Jets are collinear particle like objects producing collinear hadrons. The precise definition of
jets is however problematic in QCD framework. TGD suggests a more precise definition of jets
as connected sub-networks formed by partons and by definition having vanishing total Kähler
magnetic charge. Jet would be kind of super-hadron which decays to ordinary nearly collinear
hadrons as the flux tube structure decomposes by reconnection process to smaller connected flux
tube structures during hadronization.

2. Factorization theorems of QCD discussed in very clear manner by Ian Stewart [9] state that
the dynamics at widely different scales separate for each other so that quantum mechanical
interference effects can be neglected and probabilistic description applies in long length scales
and quantal effects reduce to non-perturbative ones. The initial and final stages of the collision
process proceed slowly as compared to those describable in terms of perturbative QCD. Hence
one can apply partonic distribution functions and fragmentation functions. These functions
should have a description in terms of reconnection process.

3. The presence of different scales means in TGD framework to p-adic length scale hierarchy
assignable to flux tubes gives a much more precise articulation for the notion of scale. No
quantum interference effects can take place between different p-adic scales if the real amplitudes
are obtained from p-adic valued amplitudes by the generalization of canonical identification
discussed in [17]. For instance, in p-adic mass calculations the values p-adic mass squared
are summed for for given p-adic prime before the mapping to real mass squared by canonical
identification. For different values of p-adic primes the additive quantities are the real masses.

8.4.2 Possible generalizations of Maxwell’s formula formula for the viscosity

Could one understand the viscosity if one assumes that the reconnection of the magnetic flux tubes
replaces the collisions of particles in the kinetic theory of gases? One can imagine several alternatives.

1. The free path of the particle appears in the kinetic gas theory estimate η = nmvlfree for the
viscosity. If this decomposition makes sense now, lfree should correspond to the size scale of the
magnetic body of light quark and if its size corresponds to the Compton length of the quark one
would have lfree ∼ ~/m. If one assumes s ∼ n one has η = nv~. For v = c = 1 this would give
η/s ∼ ~/4π apart from numerical constant.

If ~ indeed appears in lfree and the magnetic flux tube size scales as ~, the minimum value for
the viscosity would scale as ~. It is difficult to say whether one should regard this as good or
bad prediction from the point of view of the hierarchy of Planck constants. Over-optimistically
one might ask whether large ~ could explain the non-minimal values of η/s in terms of large ~.
Note however that the minimal value of η/s can be smaller than ~/4π in some systems.

2. One could consider the replacement of the Compton length rC = ~/mq with the classical charge
radius of quark defined as rcl = g2/mq. In this case the size scale of the magnetic body would
not depend on ~. For color coupling strength αs = .1 one would have rcl/rC = 1.26 so that
experimental data do not allow to distinguish between these options. At low energies rcl would
grow and therefore also the viscosity since the lengths of flux tubes would get longer.

3. One can also purely gravitational view about single partonic 2-surface. Taking the notion of
gravitational Planck constant seriously [14], one can consider the replacement of v with the
velocity parameter v0 (dimensionless in the units used) appearing in the gravitational Planck
constant ~gr = GeffM

2/v0 and the identification lfree = 2rS = 4GeffM : the diameter of
the black hole identified as partonic 2-surface. Note that Schwartchild radius would be equal
to Planck length. Entropy would be given 4π(2GeffM)2/~Geff multiplied by the number
N = ~/~0 of the sheets of the covering. This would give the lower bound ~0v0/4π which is
smaller than that provided by AdS/CFT approach. This option looks the most attractive one.
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For all three options one would expect that η/s ratio is same for the quark-gluon plasma formed
in heavy ion collisions and in proton-proton collisions. The critical reader probably wonders what
one means with the entropy in the strongly interacting system. Magnetic flux tubes could be seen as
space-time correlates for entanglement. Can one regard the entropy as a single particle observable?
Can one assign to each partonic 2-surfaces an entanglement entropy or does the entropy characterizes
pairs of parton surfaces being analogous to potential energy rather than kinetic energy?

8.4.3 The formula for viscosity based on black-hole analogy

The following argument is a longer version of very concise argument of previous section suggesting that
the notion of gravitational Planck constant allows to generalize the formula of the kinetic gas theory
to give viscosity in the more general case. Partonic 2-surface is regarded as an analog the horizon
of a black-hole. The interior of the black-hole corresponds to a region with an Euclidian signature
of the induced metric. The space-time metric in question could be either the induced metric or the
effective metric defined by the modified gamma matrices defined by Kähler action [5]. Induced metric
seems to be the correct option since it is non-trivial for vacuum extremals of Kähler action but also
the effective metric probably has physical meaning. Only the data at horizon having by definition
degenerate four-metric appear in the formula for η/s.

1. The notion of gravitational Planck constant for space-time sheets carrying self gravitational
interaction is given by ~gr = kGM2/v0, where v0 < c = 1 has dimensions of velocity. The
interpretation is in terms of Planck constant assignable with flux tubes mediating self gravi-
tation and carrying dark energy identified as magnetic energy. The enormous value of Planck
constant means cosmological quantum coherence explaining why this energy density is very slow
varying and can be therefore described in terms of cosmological constant in good approximation.
Negative ”pressure” corresponds to magnetic tension.

2. Suppose that v0 is identified as the velocity appearing as typical velocity in the kinetic theory
estimate η = Mnvlfree. Suppose that lfree corresponds to Schwartschild radius for the effective
gravitational constant lfree = 2rs = 4GeffM . Another possible identification is as the scaled up

Planck length lfree = lP =
√
~G = GM/

√
v0. Suppose that the formula for black hole entropy

holds true and gives for the entropy of single particle the expression S = 4π(2GeffM)2/~Geff .
This gives η/s = ~v0/4π for the first option (note that v0 dependence disappears. One obtains
η/s = ~/16π

√
v0 for the second option so that v0 dependence remains.

3. The objection is that black hole entropy goes to zero as ~ increases. One can indeed argue that
the S = 4π(2GeffM)2/~Geff gives only the contribution of single sheet in the N = hbar/~0
fold covering of M4 × CP2 so that one must multiply this entropy with N . This would give

η

S
=

~0
4π
× v0

c
.

The minimum viscosity can be smaller than ~0/4π and the essential parameter is the velocity
parameter v0 = v0 < c = 1. This is true also in AdS-CFT correspondence.

This argument suggests that the Einsteinian dark gravity with gravitational gauge coupling having
as parameters p-adic length scale and the typical Kähler action of deformed CP2 type vacuum extremal
could allow to understand viscosity in terms of string-QFT duality in the idealization that the situation
reduces to a black-hole physics with partonic 2-surfaces taking the role of black holes. This proposal
might make even in the case of condensed matter if one one gives up the assumption that the basic
objects are more analogous to stars than black-holes.

8.5 AdS/CFT is not favored by LHC

As already noticed that the first experimental results from LHC [6] do not favor AdS/CFT duality but
are qualitatively consistent with TGD view about gauge-gravity duality. Because of the importance
of the results I add a version of my blog posting [2] about these results.

http://indico.cern.ch/getFile.py/access?contribId=10&sessionId=6&resId=0&materialId=slides&confId=149305
http://matpitka.blogspot.com/2011/10/adscft-does-not-work-well-for-heavy-ion.html
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Sabine Hossenfelder told in BackReaction blog about the first results from lead-lead ion collisions
at LHC, which have caused a cold shower for AdS/CFT enthusiasts. Or summarizing it in the words
of Sabine Hossenfelder:

As the saying goes, a picture speaks a thousand words, but since links and image sources have a
tendency to deteriorate over time, let me spell it out for you: The AdS/CFT scaling does not agree
with the data at all.

8.5.1 The results

The basic message is that AdS/CFT fails to explain the heavy ion collision data about jets at LHC.
The model should be able to predict how partons lose their momentum in quark gluon plasma assumed
to be formed by the colliding heavy nuclei. The situation is of course not simple. Plasma corresponds
to low energy QCD and strong coupling and is characterized by temperature. Therefore it could allow
description in terms of AdS/CFT duality allowing to treat strong coupling phase. Quarks themselves
have a high transversal momentum and perturbative QCD applies to them. One has to understand
how plasma affects the behavior of partons. This boils to simple question: What is the energy loss of
the jet in plasma before it hadronizes.

The prediction of AdS/CFT approach is a scaling law for the energy loss E ∝ L3T , where L is
the length that parton travels through the plasma and the temperature T is about 500 MeV is the
temperatures of the plasma (at RHIC it was about 350 MeV). The figure in the posting of Sabine
Hossenfelder [1] compares the prediction for the ratio RAA of the predicted nuclear cross section for
jets in lead-lead collisions to those in proton-proton collisions to experimental data normalized in such
a manner that if the nucleus behaved like a collection of independent nucleons the ratio would be
equal to one.

That the prediction for RAA is too small is not so bad a problem: the real problem is that
the curve has quite different shape than the curve representing the experimental data. In the real
situation RAA as a function of the average transversal momentum pT of the jets approaches faster to
the ”nucleus as a collection of independent nucleons” situation than predicted by AdS/CFT approach.
Both perturbative QCD and AdS/CFT based model fail badly: their predictions do not actually differ
much.

An imaginative theoretician can of course invent a lot of excuses. It might be that the num-
ber Nc = 3 of quark colors is not large enough so that strong coupling expansion and AdS/CFT
fails. Supersymmetry and conformla invariance actually fail. Maybe the plasma temperature is too
high (higher that at RHIC where the observed low viscocity of gluon plasma motivated AdS/CFT
approach). The presence of both weak coupling regime (high energy partons) and strong coupling
regime (the plasma) might have not been treated correctly. One could also defend AdS/CFT by
saying that maybe one should take into account higher stringy corrections for strings moving in 10
dimensional AdS5 × S5. Why not branes? Why not black holes? And so on....

8.5.2 Could the space-time be 4-dimensional after all?

What is remarkable that a model called ”Yet another Jet Energy-loss Model” (YaJEM) based on the
simple old Lund model [3] treating gluons as strings in 4-D space-time works best! Also the parameters
derived for RHIC do not need large re-adjustment at LHC.

4-D space-time has been out of fashion for decades and now every-one well-informed theoretician
talks about emerget space-time. Don’t ask what this means. Despite my attempts to understand I
(and very probably any-one) do not have a slighest idea. What I know is that string world sheets are
2-dimensional and the only hope to get 4-D space-time is by this magic phenomenon of emergence. In
other worlds, 3-brane is what is wanted and it should emerge ”non-perturbatively” (do not ask what
this means!).

Since there are no stringy authorities nearby, I however dare to raise a heretic question. Could
it be that string like objects in 4-D space-time are indeed the natural description? Could strings,
branes, blackholes, etc. in 10-D space-time be completely un-necessary stuff needed to keep several
generations of misled theoreticians busy? Why not to to start by trying to build abstraction from
something which works? Why not start from Lund model or hadronic string model and generalize it?

This is what TGD indeed was when it emerged some day in October year 1977: a generalization of
the hadronic string model by replacing string world sheets with space-time sheets. Another motivation

http://backreaction.blogspot.com/2011/10/adscft-confronts-data.html
http://backreaction.blogspot.com/2011/10/adscft-confronts-data.html
http://backreaction.blogspot.com/2011/10/adscft-confronts-data.html
http://en.wikipedia.org/wiki/Lund_model
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for TGD was as a solution to the energy problem of GRT. In this framework the notion of (color)
magnetic flux tubes emerges naturally and magnetic flux tubes are one of the basic structures of the
theory now applied in all length scales. The improved mathematical understanding of the theory has
led to notions like effective 2-dimensionality and stringy worlds sheets and partonic 2-surfaces at 4-D
space-time surface of M4 × CP2 as basic structures of the theory.

8.5.3 What TGD can say about the situation?

In TGD framework a naive interpretation for LHC results would be that the colliding nuclei do not
form a complete plasma and this non-ideality becomes stronger as pT increases. As if for higher
pT the parton would traverse several blobs rather than only single big one and situation would be
between an ideal plasma and to that in which nucleuo form collections of independent nucleons. Could
quantum superposition of states with each of them representing a collection of some number of plasma
blobs consisting of several nucleons be in question. Single plasma blob would correspond to the ideal
situation. This picture would conform with the vision about color magnetic flux tubes as a source of
long range correlations implying that what is called quark-gluon plasma is in the ideal case like single
very large hadron and thus a diametrical opposite for parton gas.

In TGD framework where hadrons themselves correspond to space-time sheets, this interpretation
is suggestive. The increase of the temperature of the plasma corresponds to the reduction of αs
suggesting that with at T=500 GeV at LHC the plasma is more ”blobby” than at T=350 GeV at
RHIC. This would conform with the fact that at lower temperature at RHIC the AdS/CFT model
works better. Note however that at RHIC the model parameters for AdS/CFT are very different from
those at LHC [1]: not a good sign at all.

I have also discussed the TGD based explanation of RHIC results for heavy ion collisions and the
unexpected behavior of quark-gluon plasma in proton-proton (rather than heavy ion) collisions at
LHC [10].
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