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Abstract

The Spectral Energy Distribution (SED) measurements of Sunlight indicate that the Sun’s
SED is approximately that of a black body at a temperature of ∼ 5777K. This fact has
been known for quite some time now. What is surprising is that this fact has not been
interpreted correctly to mean that the Sun’s temperature is constant throughout its pro-
file i.e. the temperature of the core right up to the Surface must be the same i.e. if
T�(r) the temperature of the Sun at any radial point r, then T�(r) ' 5777K. From
the fundamental principles of statistical thermodynamics, a blackbody is a body whose
constituents are all at a constant temperature and such a body will exhibit a Planckian
SED. For a body that has a nearly blackbody SED like the Sun (and the stars), this
means the constituents of this body must, at a reasonable degree of approximation, be
at the same temperature i.e. its temperature must be constant throughout. If the Sun
is approximately a blackbody as experience indicates, then, the Standard Solar Model
(SSM) can not be a correct description of physical and natural reality for the one simple
reason, that the Solar core must be at same temperature as the Solar surface. Simple,
the Sun is not hot enough to ignite thermonuclear fission at its nimbus. If this is the
case, then how does the Sun (and the stars) generate its luminosity. A suggestion to this
problem is made in a future reading that is at an advanced stage of preparation; therein,
it is proposed that the Sun is in a state of thermodynamic equilibrium – i.e., in a state of
uniform temperature and further a proposal (hypothesis or conjecture) is set-forth that
the Sun may very well be powered by the 104.17µHz gravitational oscillations first de-
tected by Brookes et al. (1976), Severny et al. (1976). Herein, we verily prove that the
SED of a body in hydrostatic equilibrium can not, in general be Planckian in nature, thus
ruling out the SSM in its current constitution. Only in the case were the density index
is α% = 2 (which implies a zero temperature index i.e. αT = 0), will the SED of such a
body be Planckian.

1 Introduction

In elementary physics, that is, at the first level of one’s bachelor’s degree, one learns
that a blackbody exhibits a Planck-type function in its Spectral Energy Distribu-
tion (SED). The Planckian SED arises when an object reaches true thermodynamic
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equilibrium. True thermodynamic equilibrium is attained when and only when the con-
stituents of the body in question are all at the same constant temperature through-
out the body in question. This means, if one were to measure the SED of an object
and this SED is Planckian in nature, this body must surely be in thermodynamic
equilibrium, i.e., its temperature profile must have a constant, uniform temperature
throughout.

Surprisingly, the Solar SED has been known to be Planckian yet, the widely
accepted Standard Solar Model (SSM) holds that the Sun is in a state of hydrostatic
equilibrium with its temperature varying across the entire Solar profile. This SSM
posits that the Sun is held-up against the “tyranny” of gravitation by the resisting
thermonuclear forces generated at its core which is presumed to be at a temperature
of about T �

core = 15.2 × 106 K while its surface is at a moderate temperature of T �
surf =

5777K. Given this kind of scenario were the body has such temperature variations,
how does one go on to explain the observed Planckian SED of the Sun? To answer
this question constitutes the main theme of this reading.

To that end, in §(2), we give an exposition of the Planck SED by deriving it from
the fundamental principles of statistical thermodynamics. This exposition can be
found in most good books of physics. We present this exposition here for later and
instructive purposes. We demonstrate in this section that, only a body at a constant
temperature is the one that is going to exhibit a Planck SED.

Further, in §(3), we briefly study a simple Solar hydrostatic equilibrium model. We
show that this model lead us to conduct that the Sun can not be a simple hydrostatic
equilibrium but perhaps in magneto-hydrostatic equilibrium. This study is not meant
to be an involved one but a brief study to highlight a point.

Furthermore, having all the above, finally, we proceed in §(4) to derive the SED
of a body in hydrostatic equilibrium. It is seen that the SED of such a body can
not be Planckian in nature. If this proof is correct (as we believe it to be) and is
at the same time acceptable, then, we are left with no choice but to accept that the
SSM can not be correct description of physical and natural reality. In §(5), we give a
general discussion and conclusions drawn thereof.

2 Blackbody Radiation Spectrum

We derive here the formula for the SED of a blackbody. As is well known, this formula
was first derived by the great and pre-eminent German scientist, Max Karl Ernst
Ludwig Planck (1858−1947) in 1900. We are not going to go through Planck’s original
derivation but that advanced latter in 1907 by another great German-Swiss-American
scientist and philosopher, Albert Einstein (1879 − 1955). The reason for reproducing
this derivation is for latter instructive purposes, i.e. in §(4), this exposition is vital for
the derivation of the SED of a body in hydrostatic equilibrium presented therein; and
also it is vital for demonstrating the important fact that this formula applies to bodies
that are at uniform constant temperature. What this then means is that, if the SED
of a particular body were to be measured and found to be that of (or approximately
that of) a blackbody, this body must be at a constant uniform temperature.

Planck arrived at his formula after a difficult struggle, his quest was to arrive
at a formula that fits the experimental data and to do this, he had to give up the
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long held idea of the continuum and introduce the then seemingly spurious quanta.
The vibrating atoms that emit the blackbody radiation could no-longer have arbitrary
energies, but they vibrated with energies that were a multiple of a fundamental energy
unit (ε1 = hν), where ν the fundamental frequency of vibration and h = 6.63× 10−34 Js
is Planck’s fundamental constant. That is, the energy of an oscillator is now given by
(εn = nhν) where (n = 0, 1, 2, 3, etc). To arrive at the same formula as Planck, Einstein
(1907) simply applied Boltzmann’s counting procedure to these oscillators and the
energy they emit.

He (Einstein) assumed that the emitted radiation by any oscillator occurred spon-
taneously and randomly, and more importantly, this energy is quantised in integral
units of a fundamental energy unit (ε1 = hν). If εn is the energy of the emitted
quanta, then, according to Boltzmann’s counting procedure, for an oscillator at tem-
perature T , the probability p(T ) that this oscillator will radiate a quanta of energy
εn is p(T ) ∝ e−εn/kBT . If N0 is the number of oscillators in the ground state emitting
quanta of energy ε0 = 0 i.e. no quanta emission, then, the number of oscillators in
the state (n = 2) emitting quanta of energy ε2 is N0e

−2εn/kBT ; and the number of
oscillators in the state (n = 3) emitting quanta of energy ε3, is N0e

−3εn/kBT , etc. For
such a setting, the mean energy Ē radiated by these oscillators is:

Ē =

∑N
n=0 εnN0e

−εn/kBT

∑N
n=0 N0e−εn/kBT

=
ε1e

−ε1/kBT

1− e−ε1/kBT
, (1)

and this can be rewritten as:

Ē =
hν

ehν/kBT − 1
, (2)

see e.g. Longair (2003, pp. 354-355). This kind of mean energy of the radiation
emitted, leads directly to a Planckian distribution of energy. To see this, we have to
go to Planck (1899)’s energy distribution function. Planck showed that the energy
density per unit frequency is given by:

u(hν)d(hν) =

(

8πh2ν2

h3c3

)

Ēd(hν). (3)

Since we already know the mean energy of the radiation emitted by these oscillators,
it follows that the energy distribution function of the emitted radiation will be given
by:

u(ν)d(hν) =

(

8π

h3c3

)

(hν)3d(hν)

ehν/kBT − 1
. (4)

This is the usual Planck function (Planck 1900) that explains very well the energy
spectra of the Sun and the stars. Notice that in this derivation there is a crucial
assumption without which one can not obtain the Planckian SED, that is, all the
oscillators are assumed to be at a constant uniform temperature T . What this means
is that any body (such as the Sun and the stars) that exhibits a Planckian SED
must be at a constant uniform temperature. As will be seen in §(4), any temperature
variations will lead to a none-Planckian SED.
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3 Hydrostatic Equilibrium

Assuming that particles in the interior of a star are not significantly affected by the
magnetic field of the star, then, only two forces are worthy considering, that is, the
gravitational and thermal forces. Let us consider an arbitrary particle located at a
point r = rr̂ from the Solar (star’s) center. Let this particle be of mass m. The
Sun (star) is considered to be comprised of identical particles each of mass m – this
assumptions is a valid statistical assumption and holds good, it is the same assumption
used in the SSM. Now, the equation of motion of a particle at an arbitrary position
r is given by:

m
d2r

dt2
= F grav − F th, (5)

where F grav is the gravitational force on the particle of mass m and F th is the thermal
force acting on this particle. For hydrostatic equilibrium, we will have: F grav = F th

at all r; i.e. d2r/dt2 = 0.
For our study, we assume that Newtonian spherical gravitation is adequate for the

present analysis. Thus for the gravitational force acting a particle in the Solar (star’s)
interior of constant density density profile is represented by the function %star(r), we
have:

F grav = −
GM(r)m

r3
r = −

4πG%star(r)m

3
r, (6)

and for the thermal force we have:

F th =

(

kBTstar(r)

r2

)

r, (7)

where r = rr̂ is the radial unit vector. This is how one arrives at (7). We know that
that force (F ) is equal to pressure (P ) times the area (A) i.e. F = PA. The force per
unit mass is F/M(r) where M(r) is the total mass encased in the sphere of radius
r from the Solar (star’s) center. For material enclosed inside the sphere of radius r,
we have Ptot = %(r)kBTstar/µmmH where Ptot is the pressure due to all the particles
encased in the sphere of radius r; where m = µmmH , and µm is the mean number of
particles per average molecule making up the Sun (star). The pressure due to a single
particle P = µmmHPtot/M(r), so that the thermal force acting on a single particle is
Fth = 4πµmmHr2Ptot/M(r) and from this, equation (7) flows.

Now, for hydrostatic equilibrium (|F grav| = |F th|) to hold, it follows that:

Tstar(r) =

(

4πµmGmHR2
star

3kB

)(

Rstar

r

)−2

%star(r). (8)

In this state of hydrostatic equilibrium, the Solar (star’s) interior will exhibit a density
profile of the form %star(r) ∝ r−α%. From (8), it follows that a temperature profile of
the form Tstar(r) ∝ r−αT will accompany the density profile. From this, it follows the
density (α%) and temperature (αT ) indices will be related by:

α% = 2 + αT , (9)
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for balance between the gravitational and thermal force to occur. The density profile
can be normalised and written as:

%star(r) = %avstar

(

Rstar

r

)α%

. (10)

where %avstar = 3Mstar/4πR
3
star is the average density of the star. In the same fashion,

the temperate profile can be normalised and written as:

T (r) = Tsurf

(

Rstar

r

)αT

, for r ≥ Rcore, (11)

where Tsurf is the surface temperature of the star and Rcore is the radius of the core
of the star. Now, if the condition T (Rcore) = Tcore, is imposed, then, the temperature
index is going to become a dependent variable governed by the equation:

αT =
ln (Tcore/Tsurf)

ln (Rstar/Rcore)
, (12)

thus if Tcore,Tsurf ,Rstar and Rcore are known, the temperature index will be known.
Given that the core of the Sun is considered to extend from the center to about
20− 25% of the Solar radius (Garćıa et al. 2007) with the temperature being close to
15.7× 106 K and the Solar surface being at a temperature of ∼ 5777K, it follows from
(12), that αT = 5.30 ± 0.40. In Nyambuya (2010), it has been argued that the density
index α% can only take values in the range (0 ≤ α% ≤ 3). Since α% = 2+αT , this means
(−2 ≤ αT ≤ 1), but since (α% ≥ 0), it therefore follows that (0 ≤ αT ≤ 1), thus the value
αT = 5.30 ± 0.40, is according to Nyambuya (2010), unphysical.

Now, from (8) and (11), it follows that the surface temperature Tsurf is going to
be given by:

Tsurf =
4πµmGmH%avstarR

2
star

3kB
=

(

µmGmH

kB

)

Mstar

Rstar

. (13)

If one were to substitute the relevant Solar values into (13), they would obtain the
value Tsurf = 31.0×106 K. This value is certainly not correct. Off cause, one can argue
that since the is Sun assumed1 to be comprised of plasma, we have not considered
the magnetic forces, the magnetic field will certainly play an important role in the
attainment of equilibrium, the meaning of which is that, the Sun may not only be in
hydrostatic equilibrium but in magneto-hydrostatic equilibrium.

The point we want to drive home here is that a simple hydrodynamic model of
the Sun (stars) is inconsistent with physical and natural reality. Additionally, this
exercise that we have conducted here is necessary for the derivation that we shall
carry-out in the next section. Furthermore, what is important is not whether or
not the Sun (stars) is (are) in hydrostatic equilibrium or not, but whether or not
it is in thermodynamic equilibrium. Whatever mechanism that generates the Sun’s
(star’s) luminosity, it must explain the Solar’s near blackbody SED. That is what is
important. Any mechanism that leads to a Solar temperature profile with a none

1Actually, it is taken as fact that the Sun is comprised of Plasma. We would like to relax this assumption
because of the findings we have made in the upcoming reading where we propose new Solar model powered by
the 160-min g-mode oscillation first observed by Brookes et al. (1976), Severny et al. (1976).

c© 2012 G. G. Nyambuya, (N.D.C.).
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constant and none uniform temperature across the Solar profile – however feasible it
may be; this mechanism will successfully fail to explain the Solar SED, hence it has
no correspondence with natural and physical reality.

4 Spectrum of Body in Hydrostatic Equilibrium

To compute the SED of a body in hydrostatic equilibrium, let us consider a star
in hydrostatic equilibrium. For this star, let us consider a small element shell of
thickness dr. Because of the smallness of the shells, their temperature is – to first
order approximation; constant, the meaning of which is that they must be in a state
of thermodynamic equilibrium. What we need to do is to compute the mean energy
of a particle for the entire star. This we will do by the method of integration but
before that, we need to compute the mean energy of the shell and find a way to add
up the mean energies of the many different shells.

Figure (1): Hydrostatic core held in equilibrium by thermal
forces. An element shell of thickness dr can be considered to
be in thermodynamic equilibrium. This shell has temperature Tj
and the mean energy of the particles in this shell is Ēj .

Since, at the end of the
day, we shall consider many
element shells, let the cur-
rent shell element be the
jth element shell. Because
this shell is in thermody-
namic dynamic equilibrium,
the mean energy of particles
in this shell is:

Ēj
shell =

hν

ehν/kBTj − 1
, (14)

where Tj is the temperature
of this shell. Now, let the
number of particles in this
shells be dnj. If the star is
divided into m shells, each of
these will have mean energy
Ēj . Because the temperature

of the shells Tj is different, the mean energy Ēj of these shells will be different. Now,
the mean energy of the entire star is given by:

Ēstar =

∑m
j=1 Ē

j
shelldnj

∑m
j=1 nj

=
1

N





m
∑

j=1

Ēj
shelldnj



 , (15)

where N is the total number of particles making up the star. If we make the shells to
be infinitesimally small, then the summation sign transforms to an integral sign i.e.
∑

7−→
∫

, this means:

Ēstar =

∫

Ēshelldn. (16)

c© 2012 G. G. Nyambuya, (N.D.C.).
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Now, we need to compute dn in terms of the temperature T of the shells. To do this,
we have to resort to the Mass Distribution Function (MDF), that is:

Mstar(r) = Mstar

(

Rstar

r

)αm

, (17)

where Mstar(r) is the mass enclosed inside the sphere of radius r [see Nyambuya (2010),
for an explanation of this MDF]. Dividing this expression by µmmH , and making use
of (11), we obtain:

nstar(r) =
Mstar

µmmH

(

Rstar

r

)αm

= N

(

Rstar

r

)αm

= N

(

T

Tsurf

)
αm
αT

, (18)

where nstar(r) is the total number of particles enclosed in sphere of radius r. Differ-
entiating the above, one is led to:

dn = −αmN

(

Rstar

r

)αm dr

r
= −αmn

dr

r
= −αmN

(

T

Tsurf

)
αm
αT dr

r
. (19)

To compute dr/r, we differentiate (11) and then re-arrange, so doing, one is led to:

dr

r
= −

1

αT

dT

T
. (20)

Substituting this into (19), we obtain:

dn = N

(

αm

αT

)(

T

Tsurf

)
αm
αT

−1

d

(

T

Tsurf

)

. (21)

Substituting this into (16), finally, we obtain the expression for the mean energy of
the entire star, i.e.:

Ēstar = T
−αm

αT

surf

(

αm

αT

)
∫ Tcore

Tsurf

(

(hν)T
αm
αT

−1

ehν/kBT − 1

)

dT . (22)

Now, substituting this into (3), we are led to our sought for and final expression of
the SED of body in hydrostatic equilibrium, i.e.:

u(hν)d(hν) = T
−αm

αT

surf

(

αm

αT

)(

8π

h3c3

)∫ Tcore

Tsurf

(

(hν)3T
αm
αT

−1

ehν/kBT − 1

)

dT d(hν). (23)

This formula, or the SED function of a body in hydrostatic equilibrium is different
from that of a blackbody. To evaluate this formula would require numerical integra-
tion. We are not going to conduct this exercise here, what is clear is that the resultant
curve emerging from this formula is different from that of a blackbody. With a core
at 15.2 × 106 K and a surface temperature of 5777K and a core radius of 0.20R�, the
average Solar temperature gradient is 0.03Km−1, certainly, there will be significant
temperature variations. From this, we conclude that the Sun can not have temper-
ature variations in its interior if one were to successfully explain the near blackbody
Solar SED that is observed. Actually, it can only be at a constant temperature of
5777K for this to be so. Interestingly, this temperature falls far short of the ∼ 107 K

c© 2012 G. G. Nyambuya, (N.D.C.).
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required for the proton-proton chain reaction that is presumed to power the Sun. In
the discussion section, we shall touch on the new idea that we are currently working
on to solve this problem of “What then causes the Sun and the stars to shine?”.

5 Discussion and Conclusion

Given the fact that it is well known that the SED of the Sun is approximately that of a
blackbody, it is surprising that the SSM has survived this long. This blackbody Solar
SED invariably tells us that the Sun is – to a reasonable degree of approximation; in
thermodynamic equilibrium, the meaning of which is that its temperature is constant
throughout its entire profile i.e. from its nimbus right up to its surface. Stated simpler,
the Solar core must be at the same temperature as the Solar surface, otherwise its
SED would not be approximately that of a blackbody. This state of affairs must be
true for other stars as-well.

What this means is that the SSM can not be a correct description of physical and
natural reality as we know it because the SSM has as its central tenant the assump-
tion that the Solar core and surface at different temperatures. Not only are these
temperatures different, there is a very significant difference in the two temperatures,
the meaning of which is that the Sun’s SED should not be anything approximating a
blackbody.

In order to demonstrate our point, we have derived the correct SED of a body
in hydrostatic equilibrium were the density and temperature profiles are described
by the usual inverse distance power laws thought to govern not only stellar interior,
but molecular clouds, and their cores. The resulting formula tells us that the SED
of a body in hydrostatic equilibrium is different from that of blackbody. What this
means at the end of the day, is that any model that purports to describe the Solar
(stellar) interiors and takes as its central tenant that the Sun (stars) are in a state of
hydrostatic equilibrium, these models can not be correct description of natural and
physical reality. Such models must explain how it comes about that a very hot core
will heat up the rest of the star at a constant temperature.

Other than the SSM, there are some seemingly credible ideas about how the Sun
generates its luminosity. Retired NASA scientist, Emeritus Professor, Oliver K. Man-
ual is the leader of the Iron Sun Model (ISM) (see e.g. Manuel et al. 2002,3, Manuel
& Katragada 2004, Manuel et al. 2005). Professor Manual’s team holds that there
encased a Neutron star at the center of the Sun and this Neutron star is what gen-
erates the luminosity of the Sun via energy released from Neutron repulsion (Manuel
2011). This model may or may not be correct, but one thing that these researchers
will have to do, is make sure that their model can explain the Planckian SED of the
Sun, otherwise this model will suffer the same fate as the SSM. If it is feasible, they
must adopt the assumption that the material encasing the hypothetical Neutron star
at the Solar nimbus must be at a constant temperature. That is, the hypothetical
central Neutron star must heat-up this envelope (encasing material) and maintain it
at a constant temperature. How this can be achieved, we leave it to the proponents
of the model. The sure thing is that they should be able to explain the approximately
Planckian SED observed for the Sun.

In a future reading that is at an advanced stage of preparation, we propose a new

c© 2012 G. G. Nyambuya, (N.D.C.).
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model of how the Sun (and the stars) generate its luminosity. This model seizes on
the controversial observations of Brookes et al. (1976), Severny et al. (1976). These
researchers (Brookes et al. 1976, Severny et al. 1976) where the first to observe a the
160-minute oscillation of the Sun. However, in a paper by Elsworth et al. (1989), this
signal was dismissed as an artefact cause by the Earth’s atmosphere. This is the view
taken by a significant number of researchers (e.g. Howe 2009, Pallé et al. 1998) but
there is also a number that believe this signal is real. We take the approach that this
signal is real (e.g. Kotov et al. 2000, 1997, Kotov & Kotov 1997, Kotov & Lutyi 1992,
Kotov et al. 1991, Kotov & Tsap 1990).

To explain its origins, we propose that the Sun (and stars) has a constant uniform
density through their profile i.e. if %star(r) is the density of material enclosed inside
radius r, then for the Sun we assume %star(r) = constant.. For the temperature profile,
we make the same assumption i.e. if Tstar(r) is the average temperature of the material
enclosed inside radius r, then, we assume Tstar(r) = constant. With these assumptions,
it is seen that the Sun (star) is going to have a core that is held against collapse by
thermal forces in hydrostatic equilibrium and the encasing material is going to execute
gravitational simple harmonic motion with oscillations whose period is 167-minutes. If
the material making up the encasement is to be made of Neutrons (and not Plasma),
and knowing that Neutrons have a permanent electric dipole moment, and applying
the laws of electromagnetism together with the laws of statistical thermodynamics, it
is seen that one can not only explain the luminosity of the Sun (stars) but the SED
as-well.
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