Let f be the observed frequency of an electromagnetic wave emitted by a source that is moving at a relative speed with respect to the observer. We know that frequency f times λ gives c, the speed of light, where λ is the observed wavelength, thus

$$f = \frac{c}{\lambda}$$ \hspace{1cm} (1)

Now if we increase f with a differential df, then c is increased with a differential dv as λ remains constant,

$$f + df = \frac{c + dv}{\lambda}$$ \hspace{1cm} (2)

$$f + df = f + \frac{dv}{\lambda}$$ \hspace{1cm} (3)

$$f + df = f + \frac{dv}{\lambda}$$ \hspace{1cm} (4)

and dividing both sides by f, it yields

$$\frac{df}{f} = \frac{dv}{f\lambda}$$ \hspace{1cm} (5)

$$\frac{df}{f} = \frac{dv}{c}$$ \hspace{1cm} (6)

So integrating we get

$$\ln \frac{f}{f_0} = \frac{v}{c}$$ \hspace{1cm} (7)

$$f = f_0 \exp \left(\frac{v}{c} \right)$$ \hspace{1cm} (8)

where f_0 is the original frequency in the light source.