
A pedagogical derivation of the Navier-Stokes equation

Armando V.D.B. Assis
Departamento de F́ısica,

Universidade Federal de Santa Catarina,
88040-900 Florianópolis, SC, Brazil
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This brief paper is part of my research on the origins of turbulence. Since the derivations of
the Navier-Stokes equation are frequently cumbersome, I would like to provide this pedagogical
derivation (I hope), discussing the properties of the continuum fluids under a heuristical approach,
viz., we provide a heuristical derivation of the so-called Navier-Stokes equation. We turn out to be
concerned with the physical insight regarding the system under consideration, a system of continuum.
Derivations of the Navier-Stokes equation are, frequently, pedagogically cumbersome, loosing the
main heuristics one should grasp under the transition to the continuum. This transition turns out to
naturally encapsulate neglected degrees of freedom due to the intrinsically thermodynamic domain.
This pedagogical derivation discusses the properties of the continuum fluids and the relation to the
taken limit encapsulating the continuum hypothesis, which turns out to raise the question of lack
of validity over extremely distorted subdomains, once a grown rarefied subdomain may not provide
sufficient large statistics to a smooth description via its center of mass, which is the main hypothesis
of the infinitesimal limit process for the local description under the continuum hypothesis. Such
transient, albeit not presented here, once it would change the characteristic of this paper to the
research one connected to the important question of unicity of the (3+1)-dimensional Navier-Stokes
differential equation, is to be pointed out, once it provides ansatz for research on the unicity of
description of fluids by the Navier-Stokes equation.

FROM THE NEWTON SECOND LAW

Consider a continuum fluid such that its very small
parts are large enough to contain a large number of
atomic and/or molecular components, within a tridimen-
sional spatial region in which the Newton first law holds.

Any velocity, say ~v, will satisfy |~v | << c, where c is the
speed of light in the empty space.

Newton’s second law applied to a small and closed
[1] subsystem σ of our continuum fluid, with boundary
∂ (δV ) and volume δV gives:

~̇vcm(σ)

∫
δV

ρ(~r, t)dV =
∫
δV

ρ(~r, t)~̇vcm(σ) dV =
∫
σ

d~Fext =
∫
δV

ρ(~r, t)~f(~r, t)dV +
∮
∂(δV )

T · n̂dS, (1)

where [2] ~̇vcm(σ) is the acceleration of σ’s center of mass,
ρ(~r, t) is the fluid density scalar field; ~Fext is the resultant
of the external forces acting on σ, being these forces of
two distinct kinds, viz.: a) from a source external to the
fluid, providing an acceleration field ~f(~r, t) (e.g., gravi-
tational), and b) from the fluid external to σ but acting
on ∂ (δV ) and being given by a tensor T.

Now, we define the thermodynamic pressure. The ther-
modynamic pressure is characterized by its normal effect
on a given surface, on a given boundary. In fact, by def-
inition, we consider the normal effect of a given surface
within the fluid on an element of fluid colliding towards
this surface at some of its points, and the element of fluid
turns out to gain an amount δN n̂ of linear momentum
from the surface, where n̂ is the unitary normal vector ex-
terior to the surface at the colliding point, with δN > 0.

From the Newton third law, the surface gains −δN n̂ of
linear momentum from the colliding fluid element during
δt, the collision time interval. Any extra effect on the
boundary, normal and/or tangent to the boundary sur-
face, related to the flux of linear momentum through the
boundary, that generates deformation, is not related to
the thermodynamic pressure by definition [3]. The ther-
modynamic pressure turns out to be the remaining effect
due to the fluid when the fluid is ideal (without deforma-
tion effects in spite of a choosen coordinate system) and
when the fluid is static, that generates flux of linear mo-
mentum through the boundary of control volumes within
the fluid. Thus, the thermodynamic pressure tensor, the
pressure tensor for short, must be diagonal, since the el-
ements outside the diagonal encapsulate tangent effects
(remember the components outside the diagonal have dif-
ferent indices). One must have this normal effect due



2

to the pressure in spite of a particular choosen surface
within the fluid. This implies the transformed pressure
tensor with components p

′

ij , viz.:

p
′

ij =
∑
k

∑
l

aikajlpkl, (2)

with (k, l) ∈ {1, 2, 3} × {1, 2, 3}, must remain diagonal
∀ tridimensional coordinate transformations at an ar-
bitrary point within the fluid, where the transforma-
tion elements aij are given by the dot product between

the orthonormal basis vectors, ê
′

i · êj , where the ba-
sis B

′
= {ê′

k}, with k ∈ {1, 2, 3}, is the basis for the
transformed second rank tridimensional cartesian pres-
sure tensor P

′
= ê

′

i · P
′ · ê′

j at an arbitrary point, and
B = {êk}, with k ∈ {1, 2, 3}, is the basis for the origi-
nal second rank tridimensional cartesian pressure tensor
P = êi · P · êj at the same arbitrary point. Hence, with
P = (pkl) diagonal, viz., pkl ≡ pklδkl, where δkl is the
Kronecker delta (δkl = 1 if k = l, or δkl = 0 if k 6= l), the
eq. (2) reads:

p
′

ij =
∑
k

∑
l

aikajlpklδkl =
∑
k

aikajkpkk =
∑
k

aikakjpkk =
∑
k

ê
′

i · êkêk · ê
′

jpkk = ê
′

i ·

(∑
k

pkkêkêk

)
· ê

′

j , (3)

since the transformation element ajk = ê
′

j · êk = êk · ê
′

j =
akj is symmetric in virtue of the commutativity of the
dot product between vectors. The identity tensor 1 may
be written in terms of the canonical dyadic tensor, i.e.,
1 =

∑
k êkêk. Also, in virtue of the adopted orthonor-

mality for the basis B (the same for B
′
), we have got

êi · êj = δij . The tensor between brackets in the right-
hand side of the eq. (3) is diagonal, but the scalar result
emerging, namely p

′

ij , will be the components of a diag-
onal tensor only if the components of the tensor within
the brackets in the right-hand side of the eq. (3) do not
depend on k, viz., pkk = −p. The minus sign is adopted

since the linear momentum transfer on an adopted con-
trol boundary within the fluid, in virtue of the fluid exter-
nal to the boundary, is opposite to the local exterior uni-
tary normal vector at the collision point on this bound-
ary, as previously discussed (the boundary surface gains
−δN n̂ of linear momentum from the colliding fluid ele-
ment within δt, the entire collision time interval). Hence,
under this physical constraint provided by the normal ef-
fect due to the pressure in spite of a control boundary
orientation within the fluid, the eq. (3) turns out to
give:

p
′

ij = ê
′

i ·

(∑
k

pkkêkêk

)
· ê

′

j = (−p) ê
′

i ·

(∑
k

êkêk

)
· ê

′

j = (−p) ê
′

i · 1 · ê
′

j = (−p) ê
′

i · ê
′

j = −pδij . (4)

One says, in virtue of the eq. (4), the pressure is a scalar
field, invariant under transformation of coordinates, a
point property. We showed the orientation of the basis
locally used to write the pressure tensor is irrelevant.
This latter result means the pressure is locally isotropic.

We will write the tensor T in the eq. (1) in terms
of two distinct tensors that generates two distinct kinds
of effects on a piece of fluid: a) normal effects that do
not distort the infinitesimal elements of fluid dV (see
[3]), provided by the locally isotropic pressure tensor P
whose elements are given by the eq. (4); b) normal effects
that distort the infinitesimal elements of fluid dV , called
strain; and tangent effects that distort the infinitesimal
elements of fluid dV , called shear. Strain, as a normal ef-
fect, seems to require a diagonal tensor, since, as pointed

out before in our previous discussion regarding pressure,
the elements outside the diagonal encapsulates tangent
effects. We will see this is the case for strain. Further-
more, it is important and instructive to point out that the
strain deformation is related to each layer of fluid such
that it does not require a relative motion between a pair
of layers in contact to be defined. The pure strain is a
measure of the proximity between points within a same
layer of fluid. The strain is normal to a given layer of
fluid, but its effect is to generate a deformation in a per-
pendicular layer such that points within this perpendic-
ular layer turn out to increase their mutual proximities.
Imagining an infinitesimal die of fluid with rectangular
faces F1 to F6, being F1 the opposite to F6 face, the
normal strain on F1 and the normal strain on F6, e.g.,
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would augment the proximities of the points pertaining
to the faces F2 to F5. The entire effect of strain on
our infinitesimal die of fluid follows this reasoning for the
two remaining pairs of opposite faces. Differently, the
shear requires a pair of layers under tangent contact and
relative motion. It follows that for our infinitesimal die
of fluid the shear on this die is due to the fluid exter-
nally surrounding this die and its respective tangent to
each die face relative motions. The shear is analogous, in
relation to its dissipative effect, to the friction between
solid surfaces, but with a fundamental difference: there is
not static shear, as the static friction coefficient in solid
mechanics, viz.: for fluids, once one has not got rela-
tive motion between fluid layers, one has not got shear
effects. The shear tensor has as its distortion effect the
inclination between adjacent faces. Given this heuristical
remarks, we write the tensor T:

T = P + Γ = −p1 + Γ, (5)

where Γ is the tensor that encapsulates the effects of
strain and shear.

Physically, the distortion effects related to strain and
shear are related to relative motions, viz.: for strain, the
relative motion between adjacent points contained in a
same layer of fluid; for shear, the relative motion between
adjacent points contained in adjacent layers, these adja-
cent layers under mutual tangent contact and relative
motion. Infinitesimally, we model these relative motion

effects as being given by first order effects, viz., we turn
out to be interested in the first order variation of the ve-
locity of the points contained in a same layer of fluid, for
strain, and in the first order variation of the velocity of
the points cointained in parallelly adjacent layers of fluid
under mutual contact and relative movement, for shear.
Hence, given a small piece of layer within a fluid, let êi
be the unitary vector normal to this small piece of layer,
and let êj be a unitary vector tangent to this small piece
of layer; with one more, analogously to êj , unitary vector
tangent to this small piece of layer, êk, perpendicular to
êj and dextrogyre, one has a local basis for a small piece
of layer within the fluid. E.g., for strain, in the êj direc-
tion, we are interested in how quickly two points, say A
and B, contained in the same piece of fluid layer, these
points separated by a small amount of displacement δxj
in the êj direction, become mutually distant (or mutu-
ally close) in this direction. The component velocity of
the point A in the êj direction is, say, vj (A). The com-
ponent velocity of the point B in the êj direction is, say,
vj (B). The relative velocity between A and B in the êj
direction measures how quickly A and B become mutu-
ally distant. But to measure the deformation, one should
compare how this mutual instantaneous separation rate
in êj direction increases (or decreases) in relation to the
mutual separation δxj in this direction. Related to the
strain in the êj direction, we are interested in the quan-
tity:

1
δxj

[vj (B)− vj (A)] =
1
δxj

[(
vj (A) +

∂vj (A)
∂xj

δxj

)
− vj (A)

]
=
∂vj (A)
∂xj

=
∂vj
∂xj

∣∣∣∣
A

. (6)

Now, e.g., for shear, in the êj direction, we are interested
in how quickly two points, say A and C, contained in two
parallelly adjacent pieces of fluid layer under relative tan-
gent motion, these points separated by a small amount
of normal displacement δxi in the êi direction, become
mutually distant (or mutually close) in the êj direction.
The component velocity of the point A in the êj direc-
tion is, as before, vj (A). The component velocity of the
point C in the êj direction is, say, vj (C). The relative

velocity between A and C in the êj direction measures
how quickly A and C become mutually distant. But to
measure the deformation, one should compare how this
mutual instantaneous separation rate in êj direction in-
creases (or decreases) in relation to the perpendicularly
mutual separation δxi in the êi direction. Related to the
shear in the êj direction, we are interested in the quan-
tity:

1
δxi

[vj (C)− vj (A)] =
1
δxi

[(
vj (A) +

∂vj (A)
∂xi

δxi

)
− vj (A)

]
=
∂vj (A)
∂xi

=
∂vj
∂xi

∣∣∣∣
A

. (7)

One refers to the shear as the angular deformation, since, for a small time interval δt, the relative tangent displace-
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ment between A and C, between their mutually tangent
layers:

[vj (C)− vj (A)] δt =
∂vj (A)
∂xi

δxiδt, (8)

divided by the height δxi between them:

1
δxi

[vj (C)− vj (A)] δt =
∂vj (A)
∂xi

δt (9)

gives the infinitesimally small angular distrortion, say
tan (δθ), of the face initially paralell to êi and êk at A:

tan (δθ) = δθ =
∂vj (A)
∂xi

δt, (10)

such that the shear time rate δθ/δt:

δθ

δt
=
∂vj (A)
∂xi

=
∂vj
∂xi

∣∣∣∣
A

, (11)

provides this angular distortion per unit of time at A,
exactly the eq. (7). Similar reasoning gives the strain
and shear effects related to all the tridimensional direc-
tions, from which one turns out to realize that the strain
and shear first order effects, simply the strain and shear
effects, since we are neglecting higher order terms in our
model, are all encapsulated in the gradient velocity dyad
tensor:

Λ ≡ ~∇~v ⇒ Λij =
(
~∇~v
)
ij

=
∂vj
∂xi

. (12)

Now we investigate the simmetry of the tensor Λ.
Since Λ is a tridimensional rank two tensor, we decom-
pose this tensor in its symmetric and skew-symmetric
parts, Λ+ and Λ−, respectively:

Λ+ =
1
2
(
Λ + Λt

)
, Λ− =

1
2
(
Λ−Λt

)
, (13)

where Λt is the transposed tensor of Λ, with elements
Λtij = Λji, and:

Λ = Λ+ + Λ−. (14)

Since Λ−ij = −Λ−ji, for the components of Λ−, in virtue
of its skew-symmetry, Λ−ii = 0, and Λ− has got three
degrees of freedom. Hence, the deformation effect of the
skew-symmetric part of Λ, Λ−, on two elements of fluid
[4], say at the points E1 and E2, these points separated
by a mutual small displacement vector ~s from E1 to E2,
may be written as: (

Λ−
)
· ~s = ~ω × ~s, (15)

[5] since the right-hand of eq. (15) equivalently carries
the three degrees of freedom of Λ− within ~ω, where ~ω
is a vector to be determined. Physically, eq. (15) trans-
lates the meaning of a deformation effect due to Λ− that
generates rotation of E2 about E1 with a rotation axis
parallell to ~ω passing through E1. From eqs. (12) and
(13), with ~s =

∑
j sj êj and ~ω =

∑
k ωkêk, eq. (15) reads:

∑
i

[(
Λ−
)
· ~s
]
i
êi =

∑
i

∑
j

1
2

(
∂vj
∂xi
− ∂vi
∂xj

)
sj êi =

(∑
k

ωkêk

)
×

∑
j

sj êj

 =
∑
k

∑
j

ωksj (êk × êj) . (16)

Using the Levi-Civita alternating symbol, εijk = 1 for
ijk-indexes’ even permutations [of (1, 2, 3)], εijk = −1
for odd permutations or εijk = 0 for any repeated index,

one easily reaches êk × êj =
∑
i εkjiêi, rewrites the eq.

(16), and also reaches:

∑
i

∑
j

1
2

(
∂vj
∂xi
− ∂vi
∂xj

)
sj êi =

∑
i

∑
j

(∑
k

εkjiωk

)
sj êi ⇒

∑
i

∑
j

[
1
2

(
∂vj
∂xi
− ∂vi
∂xj

)
−

(∑
k

εkjiωk

)]
sj

 êi = ~0.

(17)

Since the basis vector êi are linearly independent, ∀ i ∈ {1, 2, 3}, we necessarily have got:

∑
j

[
1
2

(
∂vj
∂xi
− ∂vi
∂xj

)
−

(∑
k

εkjiωk

)]
sj = 0. (18)
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Also, since ~s is arbitrary, the equality in eq. (18) will
hold in any case iff :∑

k

εkjiωk =
1
2

(
∂vj
∂xi
− ∂vi
∂xj

)
. (19)

For i = j, the eq. (19) is trivial, i.e., 0 = 0 in spite
of any ~w. This means that the diagonal elements of
Λ− are not relevant for ~ω and the vice versa. Hence,
we are interested in i 6= j. The summation in the left-
hand side of the eq. (19) gives for any fixed pair (j, i) ∈
[{1, 2, 3} × {1, 2, 3} − {(1, 1) , (2, 2) , (3, 3)}]:∑
k

εkjiωk = εijiωi+εjjiωj +εkjiωk = εkjiωk = ±ωk 6=j 6=ik ,

(20)
where the (+) sign remains if kji is an even permutation
[of (1, 2, 3)], and the (−) sign remains if kji is an odd
permutation. But, in a case of odd permutation, the mi-
nus sign reverts the subtraction within the brackets in the
right-hand side of the eq. (19), and the situation remains
the same as in the respective case of even permutation.
Hence, the eq. (19) simply gives:

ωk (k 6= j 6= i even) =
1
2

(
∂vj
∂xi
− ∂vi
∂xj

)
. (21)

From eq. (21), we easily conclude that:

~ω =
1
2
~∇× ~v. (22)

The eq. (22) is important to verify that the skew-
symmetric part, Λ−, of the gradient velocity dyad tensor,
Λ, has not dynamical meaning within the fluid mechan-
ics. In fact, consider a rigid rotation of a portion of fluid,
e.g., a cylindrical recipient filled with a viscous contin-
uum fluid and rotating with constant angular velocity θ̇
about its simmetry axis in a region with gravitational
acceleration field ~g = −gû, where g ≈ 9.8ms−2, being û
the unitary vector along the simmetry axis of the cylin-
drical recipient. Once the stationary regime is reached,
any pair of points pertaining to the fluid will preserve the
mutual distance between its points. Thus, there will not
exist distortion, hence, no viscous effects will be present.
But, in this case, a point with cylindrical coordinates
(r, θ, z) will have instantaneous velocity ~v = rθ̇êθ, giving,
in virtue of the eq. (22):

~ω =
1
2
~∇× ~v =

1
2r
êz
∂

∂r

(
r2θ̇
)

= θ̇êz. (23)

From which, since ~s = rêr in the eq. (15), we have got
for that equation:(

Λ−
)
· ~s = rθ̇ (êz × êr) = rθ̇êθ = ~v 6= ~0. (24)

The eq. (24) states the distortion effects, viscous ones,
due to Λ− generate the rotation velocity ~v of a pointilike

fluid element E2 about E1 (here, E1 pertains to the cylin-
der axis of symmetry) [see the reasoning leading to the
eq. (15) [6]] or, equivalently, that the rotation velocity ~v
of a pointlike fluid element E2 about E1 is related to dis-
tortion effects, viscous ones, due to Λ−. But, since this
rotation is rigid, as discussed before, distortion effects
are absent, leading to the conclusion that Λ− must be
neglected from the distortion reasoning, from the viscous
effects, viz., distortion effects must be encapsulated solely
within the symmetric part of the gradient velocity dyad
tensor, since the hypothesis that there will be distortion
effects, with physical sense in any situation, related to
the skew-symmetric part of Λ leads to a contradiction in
the counter-example of rigid rotation.

With the skew-symmetric part of the gradient velocity
dyad tensor neglected:

Λ−Λ− = Λ+ New≡ Λ, Λij = Λ+
ij =

1
2

(
∂vj
∂xi

+
∂vi
∂xj

)
,

(25)
in virtue of the eqs. (12), (13) and (14). Since the distor-
tion effects are related to strain (normal) and shear (tan-
gent) on a same local piece of fluid layer, we may decom-
pose the gradient velocity dyad tensor in two indepen-
dent tensors: Λn, related to the normal effects (strain)
on a local piece of fluid layer, and Λt, related to the tan-
gent effects (shear) on this same local piece of fluid layer.
Hence, we write down:

Λ = Λ+ = Λn + Λt. (26)

Now, consider a small die of fluid, an infinitesimally small
part of the continuum fluid. Consider a distortion of this
small die during the infinitesimally small elapsed time
0 < t < δt → 0 necessary to accomplish this distortion.
This distortion is due to strain and shear. Considering
each effect independently: a) one verifies, in virtue of the
eq. (11), that the pure shear effects (related, only, to
Λt) turn out to imply that the diagonal ii-elements of
Λt may necessarily not contain only vanishing terms of
the form ∂vi/∂xi = 0, since, within an entire process of
small distortion, the tangential effect of shear on a small
face along a direction êj parallel to this, say, ij-face of the
infinitesimal die, due to the orthogonal velocity variation
∂vj/∂xi [see eq. (7)] along êi, the exterior to the ij-face
normal unitary vector, turns out to be inclined in rela-
tion to the original ij-face at t = 0, viz., the pure shear
distortion may depend on ∂vi/∂xi 6= 0; b) differently,
pure strain effects (related, only, to Λn) remains normal
during the entire infinitesimal distortion, since there is
not relative rotation between elementary die faces due
to pure strain distortions, viz., the pure strain effects are
eminently normal, being these effects in analogy with the
thermodynamic pressure effects.

Since the effects of strain are purely normal, as dis-
cussed above, the tensor Λn cannot have elements outside
its diagonal. Following exactly the same reasoning that
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led from the eq. (2) to the eq. (4) (there, also related to
conservation of the diagonal form of the thermodynamic
pressure tensor in spite of the local basis used to represent
the pressure tensor, in virtue of the normal property of
the thermodynamic pressure), since the situation for Λn

is exactly the same in relation to the conservation of its
diagonal form despite of the local basis used to represent
it, we necessarily have got for the Λn elements:

(Λn)ij = λnδij , (27)

where λn is the same common element for all the diago-
nal elements of Λn. There is the very well known result
from the theory of symmetric tensors that establishes:
there will exist an orthogonal basis, called principal ba-
sis, defining three axes, the principal axes, such that a
symmetric tensor becomes diagonal, viz., a symmetric
tensor represented in the principal basis is diagonal. The
principal axes related to a symmetric tensor Λ are ob-
tained by the solution of the secular equation from:(

Λ+ − λ+1
)
· ~a+ = ~0, (28)

where ~a+ is an eigenvector of the new gradient velocity
dyad tensor Λ [= Λ+, in our case, see eq. (25)], with
λ+ being the respective eigenvalue. Since the eq. (28)

is homogeneous, with the trivial solution ~a+ = ~0, the
indeterminacy of the system of linear and homogeneous
equations obtained from the eq. (28) requires:

det
(
Λ+ − λ+1

)
= 0, (29)

the secular equation that gives the eigenvalues λ+ of
Λ = Λ+ related to their respective eigenvectors ~a+.
Physically, both the tensors, P and Λn, must be 3-fold
degenerated, since any axis may be a principal axis, since
these tensors are invariant ones, implying that these ten-
sors have got, each, identical eigenvalues. From eq. (27),
we easily verify the 3-fold degenerated eigenvalue of the
normal effects related to pure strain within the gradient
velocity dyad tensor is λn. Furthermore, since Λ = Λ+

turns out to be diagonal in its principal basis {~a+}, and
since Λn is also diagonal despite of a basis [see the eq.
(27)], the tensor Λt related to pure shear effects within
the gradient velocity dyad tensor, given by the eq. (26):

Λt = Λ−Λn = Λ+ −Λn, (30)

turns out to be diagonal in the Λ’s (=Λ+’s) principal
basis {~a+}. Also, since the trace of any tensor is invariant
despite of a basis used to represent it, viz., in fact, for
the trace of, say, Λt, Tr (Λt):

Tr (Λt) =
∑
i

(Λt)ii =
∑
i

∑
j

∑
l

a
′

ija
′

il (Λt)
′

jl

 =
∑
j

∑
l

(∑
i

a
′

ija
′

il

)
(Λt)

′

jl =
∑
j

∑
l

(∑
i

êi · ê
′

j êi · ê
′

l

)
(Λt)

′

jl =

=
∑
j

∑
l

(∑
i

ê
′

j · êiêi · ê
′

l

)
(Λt)

′

jl =
∑
j

∑
l

[
ê

′

j ·

(∑
i

êiêi

)
· ê

′

l

]
(Λt)

′

jl =
∑
j

∑
l

[
ê

′

j · 1 · ê
′

l

]
(Λt)

′

jl =

=
∑
j

∑
l

(
ê

′

j · ê
′

l

)
(Λt)

′

jl =
∑
j

∑
l

δjl (Λt)
′

jl =
∑
j

(Λt)
′

jj ,

one easily verifies the invariance of trace:

Tr (Λt) =
∑
i

(Λt)ii =
∑
i

(Λt)
′

ii , (31)

and we have got, from the eqs. (25), (27) and (30), that:

Tr (Λt) = Tr
(
Λ+ −Λn

)
=
∑
i

[
1
2

(
∂vi
∂xi

+
∂vi
∂xi

)
− λnδii

]
=
∑
i

∂vi
∂xi
− λn

∑
i

δii = ~∇ · ~v − 3λn, (32)

i.e., the pure strain distortion effects given by the compo- nents λn of Λn would depend on the pure shear distortion
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effects given by Λt via the following function:

λn
!=

1
3
~∇ · ~v − 1

3
Tr (Λt) , (33)

in any local base. But it is a contradiction. The unique
way by which pure shear effects do not influence pure
strain effects in spite of local coordinates for any point
within the fluid under arbitrary physical situations is, in
virtue of the invariant relation given by the eq. (33),
obtained by:

Tr (Λt) = 0. (34)

Even with Tr (Λt) = constant, pure shear effects via
Tr (Λt) would be exerting influence on pure strain ef-
fects, on the components λn of the tensor encapsulating
pure strain effects given by the eq. (27), albeit constant,
still a contradiction. But such a hypothetically constant
effect, covariantly, is easily rejected when one recall the
case of rigid rotation previously discussed, since, with no
strain and no shear, such constant should be void, hence
zero. Thus, we are led to conclude that:

λn =
1
3
~∇ · ~v, (35)

from which, we rewrite the eq. (27):

(Λn)ij =
1
3
~∇ · ~v δij ⇒ Λn =

1
3
~∇ · ~v 1. (36)

Now, we write the tensor that encapsulates the effects
of strain and and shear, the tensor Γ in the eq. (5), as a
combination of these purely independent effects:

Γ = ΞtΛt + ΞnΛn, (37)

where: Ξt is a tensor that does not depend on the ve-
locity field, encapsulating the viscous properties of the
continuum fluid purely related to the shear distortion
properties of the continuum fluid; and Ξn is a tensor
that does not depend on the velocity field, encapsulating
the viscous properties of the continuum fluid purely re-
lated to the strain distortion properties of the continuum
fluid [7]. From the eqs. (30) and (36), the eq. (37) reads:

Γ = Ξt

[
Λ+ − 1

3

(
~∇ · ~v

)
1
]

+ Ξn

[
1
3

(
~∇ · ~v

)
1
]
, (38)

from which, the tensor T in eq. (5) reads:

T = −p1 + Ξt

[
Λ+ − 1

3

(
~∇ · ~v

)
1
]

+ Ξn

[
1
3

(
~∇ · ~v

)
1
]
.

(39)

Back to the eq. (1), with the eq. (39), the eq. (1)
reads, in virtue of the Gauss theorem:

∫
δV

{
ρ(~r, t)~̇vcm(σ) − ρ(~r, t)~f(~r, t) + ~∇ ·

{
p1−Ξt

[
Λ+ − 1

3

(
~∇ · ~v

)
1
]
−Ξn

[
1
3

(
~∇ · ~v

)
1
]}}

dV = ~0. (40)

DOES limδV→0 σ = cm(σ) NEGLECT σ’S
INTERNAL DEGREES OF FREEDOM?

Firstly, do permit ourselves, the following operation on
the eq. (40):

lim
δV→0

∫
δV

{
ρ(~r, t)~̇vcm(σ) − ρ(~r, t)~f(~r, t) + ~∇ ·

{
p1−Ξt

[
Λ+ − 1

3

(
~∇ · ~v

)
1
]
−Ξn

[
1
3

(
~∇ · ~v

)
1
]}}

dV = ~0. (41)

What does the eq. (41) mean? It means the content be-
tween brackets, the integrand, is sufficiently continuous,
as well as the the volume of integration, δV , of a closed
subsystem, σ, to guarantee that the acceleration of σ’s
center of mass, ~̇vcm(σ), will be properly described by the

eq. (41), even for an arbitrarily small closed system σ.
Here, we begin to infer some arbitrariness:

• Under valid continuity conditions, eq. (41) de-
scribes the dynamics of the center of mass of a
closed system, hence the closed system may have
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internal degrees of freedom, internal motion, that
will not be described by eq. (41);

• The transition to the continuum does not specify
the number of atoms and/or molecules within an el-
ementary element of fluid, does not specify internal
degrees of freedom related to these atoms and/or
molecules, a fact that will turn out to be hidden,
leading to a description of the continuum via the
movement of σ’s center of mass.

Mechanically, there is not any restriction related to the
description of a system by its center of mass. But, unfor-
tunately, a problem arises if this system turns out to be
discrete under some conditions, being the theory that de-
scribes it constructed in terms of a continuum. This the-
ory grows upon the ground of high statistics regarding the
number of particles. But, this intrinsical statistical na-
ture behind the continuum is actually classical. The sta-
tistical results from the continuum are not the same ones
one would have quantum mechanically for a vanishingly
small number of particles. Effects related to a low num-
ber of particles that deviate from the expected quantum
mechanical ones turn out to put a limit on the predictive
capacity for a theory under the continuum hypothesis.
Such theory with a continuum substratum admits one
is dealing with a large number of particles even within
a small scale, viz., the vanishing differentials must pre-
serve a large number of molecules. One should take the
responsability of investigation, as a physicist, concerned
with the physical validity of continuum-based arguments
within small systems that actually contain, for each of
its small domains, few discrete elements. Later, will be
concerned with situations in which the fluid turns out to
present intense distortion over a large part of its assumed
continuum, that may generate divergent predictions with
identical initial situations, since, in quantum mechanics,
two identical sets of measures at a given initial instant
do not necesarily present the same set of measures sub-
sequently; we will turn back to these issues related to
neglected internal degrees of freedom. We will see there
exist restrictive consequences that arise from the taken
limit in the eq. (41), with these restrictive consequences
leading to the origins of the turbulence. Turbulence will
become incompatible , and an expression for predicting
the critical Reynolds number, characterizing a fully de-
veloped turbulent flow surrounding boundaries within a
fluid., arises. Here, we will deal with the continuum,
exploring some heuristics of limitation throughout our
analysis. We will be back to the discrete situations that
become important over the large scales within domains of
a material fluid, with important acquired heuristics from
the continuum case.

One may easily prescribe important properties related
to the viscosity tensors in the eq. (37). One may be
tempted to consider the viscous effects related to a given
physical situation, e.g., the rigid rotation previously dis-

cussed, as being very different from another situation,
e.g., a fluid surrounding a falling sphere. There are two
characteristics, properties, of viscous fluids related to the
viscosity per se [note one has two tensors in each term of
the right-hand side, related to viscosity, of the eq. (37)].
Putting more heuristically, under physical grounds, the
viscosity has got a mathematical property that charac-
terizes this very physical property emerging from the re-
sponse the fluid gives to efforts applied by external con-
straints. The external efforts are recognized as being the
causes of distortion on the fluid. The fluid response is a
function of the efforts. Being this fluid response an intrin-
sical property of the fluid, it must be independent of any
specific flow regime. This response would exist previously
within the fluid properties despite of a subsequent appli-
cation of external efforts. Since different efforts cause
different flows, velocity fields and positions seem to be
necessary to define viscosity, since different velocity and
positions seem to be related to different distortions. In
the rigid rotation case, there is not distortion, but one
may have viscosity if the fluid is viscous, viz., if the fluid
will present distortion under another physical situation.
The descriptive approach to define viscosity in terms of
distortions is void in a rigid rotation. Hence:

• In the descriptive approach, the properties that
are geometrically measured prior to define viscos-
ity via macroscopic geometrical responses, inferrred
from distortions, in terms of variations, are encap-
sulated within the tensors Λt and Λn in the eq.
(37), depending on a posteriori observations to be
observed⇒inferred⇒experimentally defined;

• The intrinsical properties of the fluid, previously
contained within fluid’s material properties, are en-
capsulated within the tensors Ξt and Ξn. This level
of property, intrinsical, turns out to be related to
the average response a continuum fluid presents in
the macroscopical level from its microscopical con-
tent. This characterizes thermodynamical proper-
ties of the continuum system of particles, a macro-
scopical response arising from its intrinsical prop-
erties. E.g., for homogeneous and isotropic fluids,
there is not a recognition, macroscopically, among
differences of spatial location, and the fluid behaves
exactly in the same manner as if it was located
at another position in space, since, internally, the
fluid has got a microscopical behaviour that homo-
geneously emerges on average. In this case, exter-
nal constraints are not providing an average bias in
any specific direction, although a large bunch of the
fluid may present, the bunch as a whole, very dif-
ferent kinematical aspects over different regions of
space. Thermodynamical properties, related to the
Ξ-tensors, turn out to make sense under our pri-
mordial assumption the fluid actually has got high
statistics even for its elementary portions. Under
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the continuum assumption, the intrinsical proper-
ties of the fluid, thermodynamical, turn out to be
sufficiently described on average, as the spirit of the
thermodynamics permeates the description. If one
wants to obtain these properties from the micro-
scopical information directly, the apparata of the
statistical mechanics turn out to be the necessary
arsenal. In any case, viz., in any level of description
of a continuum fluid, the high statistics is intrinsi-
cally assumed and, by construction, the connection
between the properties of both the Ξ-tensors and
of both the Λ-tensors in the eq. (37) is exterior.
This is an ad hoc property within our construc-
tion of the theory, and these tensors turn out to be
complementary ab initio.

Since physical properties are defined by experiments that
assert values to these properties, one cannot separate, un-
der an instrumentalist point of view, these two charac-

teristics, pointed above, as independent instances of the
viscosity, since they are correlated as an exterior prop-
erty. They subsists correlated.

• Now, one may define the intrinsical properties of
the fluid as being intrinsically homogeneous and
isotropic (nature presents a variety of fluid mate-
rials that manifest in this way even under extreme
conditions, e.g., liquids), being its properties purely
thermodynamical, and with no dependence on po-
sitions and velocities. Under this interest, from our
previous comments on homogeneity and isotropy,
we conclude the Ξ-tensors must be diagonal with
3-fold degenerated eigenvalues:

Ξn = ξn1; Ξt = ξt1. (42)

The eq. (41) turns out to read:

lim
δV→0

∫
δV

{
ρ(~r, t)~̇vcm(σ) − ρ(~r, t)~f(~r, t) + ~∇ ·

{
p1− ξt

[
Λ+ − 1

3

(
~∇ · ~v

)
1
]
− ξn

[
1
3

(
~∇ · ~v

)
1
]}}

dV = ~0. (43)

Since the position of δV is arbitrary, one should infer the
limit in the eq. (43) remains valid at each local domain of
the fluid. Under the continuum hypothesis σ shrinks into
a fluid material point, δV → 0, and ~rcm(σ) → ~r. If σ is
sufficiently small and the fields as well as the fluid is a well
behaved continuum one may state the integrand within
the eq. (43) remains constant over σ. Physically, this

would imply local dynamics of the fluid would not depend
on the way one is partitioning the fluid to describe its
local properties. This set of well behaved characteristics
would justify the Newton second law holds for each small
closed system σ, eq. (43), in virtue of a stronger sufficient
assumption:

ρ(~r, t)~̇v − ρ(~r, t)~f(~r, t) + ~∇ ·
{
p1− ξt

[
Λ+ − 1

3

(
~∇ · ~v

)
1
]
− ξn

[
1
3

(
~∇ · ~v

)
1
]}

= ~0. (44)

Stronger, since one is stating the Newton second law
stated via the eq. (43) will hold once the fluid is well be-
haved enough to provide its averaged bahaviour over its
small scales exactly coincides with its actual behaviour.
Its is an intrinsically classical description of a fluid. This
understanding of nature fails within the quantum me-
chanical domain. Within quantum mechanics, we know
the classical kinematics may follow in its form, when the
classical description is an averaged description via the
Ehrenfest theorem. We will describe cases (not here)
in which the continuum hypothesis lacks. The eq. (44)
looses its objective meaning, quantum mechanically, to
decribe fluids, in the sense the classically obtained sta-

tistical results emerging from measures on quantum me-
chanical systems does not describe an unique objective
reality of the fluid particles before an accomplished mea-
sured, since the fluid, before the measure, is a quantum
object. The very same initial conditions might provide
very different possible outcomes. The individuality lacks,
quantum mechanically, before an accomplished measure,
and the limit process we have got taken within the fluid
turns out to have no objective sense. Our descriptive
method lacks on pure quantum objects, and concepts of
positions to define distortions do not apply to pure quan-
tum objects. E.g., ~v(~r, t) for quantum packets is absolute
nonsense, as Heisenberg teaches us.
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Quantum mechanics aside, the ~v turns out to be the
velocity of a fluid element at the position ~r at the in-
stant t, hence ~v(~r, t). Aplying the eq. (44) to the par-
ticular case of planar flow of an uniform fluid with con-
stant density, with the velocity field of the planar layers
being parallel to the x axis with normal along ŷ, only
the x-component of ~v will not be vanished. ~∇ · ~v = 0,
due to the constant ρ(~r, t), following from the continuity
equation. The continuity equation is extremely impor-
tant throughout a discussion concerned with the origins
of turbulence. This is so due to the interpretation one
obtains when considering the meaning of the terms of
the continuity equation and its relation with the origins
of the classical arising from non linear conditions on an
important tensorial relation that turn out to character-
ize, classically, non linear effects due to the Eq. (44).
This relation will be discussed in details, but not here, as
well as the conditions implying non linear effects. We see
the only non vanishing components of Γ [eq. (38)] are
Γ12 = Γ21 = (1/2) ξt ∂vx/∂y. Hence, the viscous force
d~F acting on an infinitesimal element with surface area
d~S = dSŷ is given by:

d~F = Γ · d~S =
1
2
ξt
∂vx
∂y

dSx̂. (45)

The eq. (45) is exactly the Newton law for viscosity that
defines the dynamical viscosity η, taking [8] ξt = 2η in the
Eq. (45). In virtue of the eqs. (12) and (13) for the sym-
metric part of a tensor, i.e., Λ+ = (1/2) [∇~v + (∇~v)t],
and ξt = 2η, with the eq. (42), the eq. (38) reads:

Γ = η

[
∇~v + (∇~v)t − 2

3

(
~∇ · ~v

)
1
]

+
ξn
3

(
~∇ · ~v

)
1. (46)

Thus, in terms of components, using the Einstein sum-
mation convention on two repeated indexes, the most
general viscosity tensor Γ, given by the eq. (38), pro-
viding the viscous force per unit area on the boundary
surface of an enclosed volume of fluid, being this force
exerted by the elements external to this enclosed volume
of fluid, reads:

Γik = η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik

∂vλ
∂xλ

)
+ ζδik

∂vλ
∂xλ

, (47)

where η and 3ζ ≡ ξn are the thermodynamic viscous
coefficients discussed before. Writing the eq. (44) in
terms of components, one has:

ρv̇i − ρfi +
∂p

∂xi
− ∂Γik
∂xk

= ρv̇i − ρfi +
∂p

∂xi
− ∂

∂xk

[
η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik

∂vλ
∂xλ

)
+ ζδik

∂vλ
∂xλ

]
= 0 ∴

ρv̇i − ρfi +
∂p

∂xi
− ∂

∂xk

[
η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik

∂vλ
∂xλ

)]
− ∂

∂xi

(
ζ
∂vλ
∂xλ

)
= 0. (48)

The coefficients of viscosity, η and ζ, are functions that
depends on the thermodynamic pressure and on the tem-
perature. Taking into consideration our previous com-
ments on these coefficients, we may suppose the viscous
properties that depend on the viscous kinematics are en-
tirely encapsulated within the Λ-tensors, Λn and Λt in

the eq. (37), from which the intrinsic viscous properties
of the fluid within the Ξ-tensors, Ξn and Ξt in the eq.
(37), hence η and ζ from the eqs. (42) and (47), do not
depend on positions and velocities; and the eq. (48) is
rewritten:

ρv̇i − ρfi +
∂p

∂xi
− η ∂

2vi
∂x2

k

− η ∂

∂xi

(
∂vk
∂xk

)
+

2
3
η
∂

∂xi

(
∂vλ
∂xλ

)
− ζ ∂

∂xi

(
∂vλ
∂xλ

)
= 0.

This equation turns out to be rewritten due to the
dummy indexes:
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ρv̇i − ρfi +
∂p

∂xi
− η ∂

2vi
∂x2

k

− 1
3
η
∂

∂xi

(
∂vλ
∂xλ

)
− ζ ∂

∂xi

(
∂vλ
∂xλ

)
= ρv̇i − ρfi +

∂p

∂xi
− η ∂

2vi
∂x2

k

−
(

1
3
η + ζ

)
∂

∂xi

(
∂vλ
∂xλ

)
= 0.

Back to the vectorial form, one has got the so called
Navier-Stokes equation under the conditions previously

raised:

ρ(~r, t)~̇v(~r, t)− ρ(~r, t)~f(~r, t) + ~∇p(~r, t)− η~∇2~v(~r, t)−
(

1
3
η + ζ

)
~∇
(
~∇ · ~v(~r, t)

)
= ~0. (49)

We will suppose valid the divergence-free condition,
~∇ · ~v = 0. A constant density field turns out to be a suf-
ficient condition. But the converse may lack under less
restictive conditions. Since this discussion requires the
continuity equation to be stated consequently, and the
continuity equation will provide an ansatz we will dis-
cuss (not here) regarding the origins of turbulence, its
very instructive to discuss which consequences one ob-
tains from the continuity equation related to fluids un-
der absent divergence condition. The continuity equation
follows from the hypothesis of mass conservation within
an undeformable control volume V0. The total mass of
fluid exiting from an undeformable control volume V0 per
unit time reads: ∮

∂V0

ρ(~r, t)~v(~r, t) · n̂dS. (50)

The decreasing time rate of fluid mass within this volume
V0 is given by:

∂

∂t

∫
V0

ρ(~r, t)dV. (51)

The mass conservation within V0 requires the sum of
these two quantities vanishes:

∮
∂V0

ρ(~r, t)~v(~r, t) · n̂dS +
∂

∂t

∫
V0

ρ(~r, t)dV = 0. (52)

Applying the Gauss theorem, being V0 undeformable, one
reaches:

∫
V0

{
∂ρ(~r, t)
∂t

+ ~∇ · [ρ(~r, t)~v(~r, t)]
}
dV = 0. (53)

Also, since V0 is arbitrary:

∂ρ(~r, t)
∂t

+ ~∇ ·~j =
∂ρ(~r, t)
∂t

+ ρ(~r, t)~∇ · ~v(~r, t) + ~v(~r, t) · ~∇ρ(~r, t) = 0, with ~j = ρ(~r, t)~v(~r, t). (54)

The eq. (54) is the continuity equation and ~j(~r, t) is the
mass flux density vector, giving the direction of the fluid
movement at (~r, t) and, its magnitude, the quantity of
mass per unit time per unit area flowing through the lo-
cal unit area perpendicular to the velocity field at (~r, t).
If ρ(~r, t) is constant ⇒ ~∇ · ~v(~r, t) = 0 [9], which would
justify a hypothesis for an absent divergence. Such hy-
pothesis becomes reasonable for liquids, but not trivially
for gases. A gas has as characteristic the tendency to

occupy the entire volume of a recipient, a tendency to
reach, locally, a homogeneous density, contrary to the
liquids that, in virtue of the quasi-constant density for a
liquid, have got a globally homogeneous density. Thus,
for a given local gradient of density within a gaseous
fluid, one expects this gas has got a tendency to displace
its elements perpendicularly to the density gradient, to
avoid an increasing local density. A gaseous fluid will
have as much success to accomplish an homogeneous den-
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sity as much this gas be unconstrained. Hence, the time
rate of decreasing of local density will be proportional to
~v(~r, t) · ~∇ρ(~r, t). If such an analysis remains valid: for
the particular case in which the rapidity by which the
fluid enters an undeformable local control volume equals
the rapidity by which the fluid exits this undeformable
control volume ⇒ ~∇ · ~v(~r, t) = 0, one would have, due
to the continuity equation, eq. (54), the value −1 as be-
ing the proportionality constant. Hence, in virtue of the
continuity equation, eq. (54):

∂ρ(~r, t)
∂t

+ ~v(~r, t) · ~∇ρ(~r, t) = 0⇔ ~∇ · ~v(~r, t) = 0, (55)

viz., such hypothetical characteristic for a gaseous fluid
turns out to be equivalent to absent divergence, ~∇ ·
~v(~r, t) = 0, at points of fluid at which such character-
istic remains valid. We will suppose the eq. (55) re-
mains valid, under these conditions or combinations of
conditions allowing absent divergence from the continu-
ity equation. We reach the canonical form of the Navier-
Stokes differential equation (but, if different assumptions
appear necessary, one should turn back to these previ-
ous derivations to reach the most general form for the
Navier-Stokes equation):

ρ~̇v − ρ~f + ~∇p− η~∇2~v = ~0, (56)

where one may expand the total derivative in relation to
time (see footnote [2]):

~̇v =
d~v

dt
=
∂~v

∂t
+ẋ

∂~v

∂x
+ẏ

∂~v

∂y
+ż

∂~v

∂z
=
∂~v

∂t
+
(
~v · ~∇

)
~v, (57)

where
(
~v · ~∇

)
~v is the convective term, with the advec-

tion operator
(
~v · ~∇

)
, this latter related to the acceler-

ation of a fluid element from one point to another in an
adopted inertial reference frame. From the Eqs. (56) and
(57), one may put the Navier-Stokes equation under the
form:

ρ
∂~v

∂t
+ ρ~v · ~∇~v − ρ~f + ~∇p− η~∇2~v = ~0, (58)

which is the very same Eq. (56).
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[1] In this paper, a closed system [or subsystem], will denote
closed to mass exchange through this closed system [or
subsystem] boundary, viz., the mass within the bound-
ary is conserved. If necessary, a thermodynamically closed
system will be called isolated.

[2] In this paper, the dot above a function will denote the total

derivative in relation to the time. Particularly, ~̇vcm(σ) ≡
(d/dt)~vcm(σ).

[3] As previously stated, we are under the assumption that
a small piece of fluid contains a large amount of atomic
and/or molecular components. Under an exclusive pres-
ence of thermodynamic pressure, a fluid may present com-
pressibility, but such effect is not a deformation, since an
increased pressure would turn out to augment the prox-
imity between adjacent fluid elements, between distinct
atomic and/or molecular components. This effect, under
the continuum assumption, implies a closed elementary
fluid element, preserving the same internal mass dM , may
decrease its elementary volume dV , augmenting the local
density ρ. The element of volume dV would not distort,
preserving its geometrical form (shape). Effects of defor-
mation imply distortion of the infinitesimal elements of
the continuum fluid and they are not related to the ther-
modynamic pressure by definition. Microscopically, effects
of distortion, implying effects of viscosity, are related to
molecular transport of linear momentum between differ-
ent regions of the fluid [for liquids, deformation effects,
viscous, will be mostly related to intermolecular cohe-
sion, mostly related to dipolar and/or ionic electromag-
netic interaction between electrical charges; but, in any
case, mechanically, the interaction is due to linear mo-
menta exchange, albeit the process of mechanical inter-
action is much more localized in liquids, at the molecular
level, mostly occurring between neighbooring elements; for
gases, in contrast, the freedom that intermolecular ele-
ments have got to transport linear momenta over differ-
ent intermolecular regions, characterizes their relative long
range capacity for the transport of molecular linear mo-
menta], implying relative (mean) velocities between lay-
ers of fluid, with a typical layer moving with its averaged
molecular velocity [here, no confusion should arise in rela-
tion to the root mean square molecular velocity, which is
high in relation to the layer velocity; imagine a container
enclosing a gas at a constant room temperature, with the
container being in linear uniform motion with velocity ~u
constant in a given inertial reference frame; the mean ve-
locity of the gas molecules is the container velocity, since
for a given molecule with velocity ~w+ ~u one finds another
molecule with velocity −~w+ ~u, where ~w is the velocity of
a gas molecule in relation to the container, under a homo-
geneity condition (if we observed the container in its ref-
erential, the mean velocity of the gas molecules would be
~0, since for a given molecule with velocity ~w one finds an-
other molecule with velocity −~w); but the typical average
speed (root mean square) of the molecules in relation to
the container is high (≈ 517ms−1 for N2 at 300K); in this
analogy, the velocity of the container is analogous to the
velocity of the fluid layer], through which single molecules
acquire extra linear momenta; such layers with their av-
eraged molecular velocities turn out to define deforma-
tion due to the relative velocities between them [imagine
two trains (layers) moving parallelly in the same direction
with relative velocity; one throws a bag (molecule) from
one train to the other; the faster train (layer) looses linear
momentum and the slower gains...]. One may have relative
velocities between points within a same layer of fluid. We
will discuss deformations in detail, existing two kinds of
such effects: strain and shear, as we will see.
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[4] Two elements, since any vector connects two points.
[5] There is no restriction to ~s that requires it as an infinitesi-

mal vector for purposes of validity of the eq. (15), viz., ~s is
required to be arbitrary within general conditions used to
obtain a general validity of the eq. (15), albeit we may be
particularly interested in cases in which ~s connects two in-
finitesimally separeted pointilike elements of fluid. It will
be clear in our subsequent derivation of ~ω that ~s may be
arbitrary.

[6] An important consequence arises here: since ~s is arbitrary,
considering ~s ≡ d~s, viz., for infinitesimal displacements
between two points within the fluid, we infer the eq. (22)
implies that any fluid element turns out to present a self
rotation with angular velocity ~ω given by the eq. (22) when

~ω 6= ~0.
[7] The physics of the distortion effects was encapsulated, for

both, strain and shear, within their tensors, Λn and Λt

respectively, throughout our previous discussion. Within
our previous analysis, the distortions were defined by their
general physical characteristics, as the tangential charac-
teristic of transference of linear momentum of shear rela-
tive to the mutual tangent motion between adjacent lay-
ers of fluid, being the normal characteristic of transfer-
ence of linear momentum of strain relative to the varia-
tion of the mutual distance between points pertaining to
a same layer of fluid etc. These properties did not invoke
any specific behaviour related to these general definitions
under specific material fluids. The intrinsic properties of a
given material related to how this specific material behaves
to accomplish the generally defined distortions related to
strain and shear are encapsulated within the tensors of vis-
cous properties: Ξt, providing the coefficients of shear of a
given material, and Ξn, providing the coefficients of strain
of this given material. E.g., water and glycerin, physically
accomplish strain and shear, both respectivelly obeying
the physics encapsulated within the tensors Λn and Λn,
but the properties that allow to distinguish between water
or glycerin turn out to enter via their respective tensors:
ΞH2O
t and ΞH2O

n , for the water viscous properties, and
ΞC3H8O3
t and ΞC3H8O3

n , for the glycerin viscous proper-
ties. It is important to realize that a viscous fluid may

behave as an ideal fluid, even with Ξt 6= 01 and Ξn 6= 01,
provided Λt = Λn = 01. This is the case for viscous fluid
experiencing rigid rotation. If the tensors Λt and/or Λn

do not vanish, one turns out to infer the fluid is viscous,
but the converse is not necessarily true. If the tensors Λt

and Λn vanish, one cannot asseverate the fluid is not vis-
cous. In other words, distortion is a sufficient condition for
viscosity, but not the converse, i.e.: viscosity is not a suffi-
cient condition for distortion, distortion is not a necessary
condition for viscosity.

[8] Would not be necessary the minus since the tangent shear
is contrary to the velocity gradient through planar layers?
Firstly, we must define if we want to measure the force ex-
ternally to dS, i.e., the force the externally adjacent layer
of fluid exerts on the element of area ŷdS, remembering
ŷ is exterior normal, of if we want to measure the force
internally to dS, also said through dS, the force internally
adjacent layer of fluid exerts on the element of area ŷdS.
In the first case, one takes the positive sign, since it is
enough to remember the case of a newtonian viscous fluid
between two parallel plates such that the superior plate
is pushed to the right (along x̂) with constant velocity in

which an external agent exerts a force d~F to the right, the
surface ŷdS touching the superior plate gains an action
from the superior plate that exactly equals d~F , being this
one the force considered in the definition of a newtonian
viscous fluid d~F = η∂vx/∂ydSx̂, i.e., the force an external
agent exerts will increase with an increased velocity gta-
dient, from which the necessity of the positive sign. On a
volume enclosed by a surface, one measures the force the
external elements of fluid exert on the surface surround-
ing the volume, on the volume boundary, a situation that
is analogous to the first case. In a second case, the ex-
erted force will obviously be the reaction −d~F , viscously
contrary to the movement of the plate. Since we will be
calculating external effects on surfaces with exterior nor-
mal, it must be understood the asoption of the positive
sign within the Newton viscosity law, eq. (45).

[9] Of course, a non vanishing constant, once one would have
a trivial identity in spite of the velocity field.


