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Through a convenient mathematical approach for the Navier-Stokes equation, we obtain the
quadratic dependence v2 of the drag force FD on a falling sphere, and the drag coefficient, CD,
as a function of the Reynolds number. Viscosity effects related to the turbulent boundary layer
under transition, from laminar to turbulent, lead to the tensorial integration related to the flux
of linear momentum through a conveniently choosen control surface in the falling reference frame.
This approach turns out to provide an efficient route for the drag force calculation, since the drag
force turns out to be a field of a non-inertial reference frame, allowing an arbitrary and convenient
control surface, finally leading to the quadratic term for the drag force.

DEFINING THE MATHEMATICAL PROBLEM

Regarding the application of the Newton second law
to a small closed subsystem σ with boundary ∂(δV ) and
volume δV of a continuum fluid in an inertial reference
frame, one obtains at an instant t:∫

σ

d~Fext =
∫
δV

ρ(~r, t)~f(~r, t)dV +
∮
∂(δV )

T · n̂dS, (1)

where ~f(~r, t) is a locally external acceleration field, ρ(~r, t)
the scalar density field, and T is the most general tensor
due to the effects of the surrounding fluid on σ, being
given by:

Tik = −pδik + η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik

∂vλ
∂xλ

)
+ ζδik

∂vλ
∂xλ

,

(2)
where p is the local thermodynamic pressure field, being
T written in terms of its components under the sum-
mation convention on repeated indices and where T was
obtained from the combination of effects due to strain
and shear:

Γ = α(∇~v)ts+β(∇~v)c = α

[
(∇~v)s −

1
3
~∇ · ~v1

]
+ ζ ~∇·~v1,

(3)
from which one defines the viscosity coefficients, α =
2η (this latter relation following from the coupling to
the planar flow case, in which one defines the dynamical
viscosity η) and ζ, under an isotropic assumption. Back
to the Eq. (1), one obtains the Navier-Stokes equation:

ρ(~r, t)~̇v(~r, t)− ρ(~r, t)~f(~r, t) + ~∇p(~r, t)− η~∇2~v(~r, t) +

−
(

1
3
η + ζ

)
~∇
(
~∇ · ~v(~r, t)

)
= ~0.

(4)
One may expand the total derivative in relation to time:

~̇v =
d~v

dt
=
∂~v

∂t
+ ẋ

∂~v

∂x
+ ẏ

∂~v

∂y
+ ż

∂~v

∂z
=
∂~v

∂t
+
(
~v · ~∇

)
~v,

where
(
~v · ~∇

)
~v is the convective term, with the advec-

tion operator
(
~v · ~∇

)
, this latter related to the acceler-

ation of a fluid element from one point to another in an
adopted inertial reference frame, from which the Eq. (4)
may be written, the Navier-Stokes equation, under the
form:

ρ
∂~v

∂t
+ ρ~v · ~∇~v − ρ~f + ~∇p− η~∇2~v = ~0,

also under a divergence-free hypothesis for the velocity
field (constant density turns out to be a sufficient condi-
tion). Hence, one has got, just using the more compact
notation as in the Eq. (4), in the ground reference frame,
the following mathematical problem:

ρ~̇v − ρ~g + ~∇p− η~∇2~v = ~0, ~∇ · ~v = 0;

lim
|~r|→∞

~v = ~0, ~v (∂ sphere) = ḣ(t)êz nonslip,
(5)

where ~g is the local gravitational field and ḣ(t) is the
scalar velocity of the center of a falling sphere within the
fluid.

GEDANKENEXPERIMENT

One measures the local gravitational field in the non-
inertial frame attached to the falling sphere from the fol-
lowing gedankenexperiment: hollow sphere having got
mass m, with an internal weighing apparatus (with neg-
ligible mass) to measure the normal force ~N that the
ground of the hollow sphere exerts on a proof mass m0.
By isolating the system m + m0, and, subsequently, by
isolating the system m0, one obtains:

~N

m0
=

~F ′drag

(m+m0)
=

~Fdrag + δ ~Fdrag(m0)
(m+m0)

, (6)

where ~Fdrag is the force the fluid exerts on the hollow
sphere, without the proof mass m0, and δ ~Fdrag(m0) is
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the increment to this force - due to the consideration of
the internal proof mass m0. Hence, the gravitational field
~g0 within the hollow sphere is given by:

~g0 = lim
m0→0

−
~N

m0
= lim
m0→0

−
~Fdrag + δ ~Fdrag(m0)

(m+m0)
= −

~Fdrag

m
,

(7)
from which the force we want to calculate turns out to
be a property of the non-inertial reference frame attached
to the sphere. Adopting this falling reference frame, we
have got the mathematical problem:

ρ~̇v + ρ
~Fdrag

m
+ ~∇p− η~∇2~v = ~0, ~∇ · ~v = ~0;

lim
|~r|→∞

~v = −ḣ(t)êz, ~v (∂ sphere) = ~0 nonslip.
(8)

Comparing the Eqs. (5) and (8), one infers the force we
want to calculate (divided by the sphere mass m) turns
out to be an acceleration field in the adopted reference
frame, given by the Eq. (7). This turns out to be a field
at each point of the fluid in the falling reference frame
attached to the sphere, from which one may choose a
convenient control surface of integration surrounding the
sphere, not only the surface of the sphere. This provides
an identity, derived in the next section, from which one
may extract a convenient information from the adopted
control surface.

CALCULATING ~g0

Applying the continuity equation in its most general
form, calculating the instantaneous time rate of linear
momentum variation within an arbitrary control volume,
fixed and undeformable, one reaches the expression for
the calculation of ~g0:

−~g0 =
~Fdrag

m
=

1∫
ρdV

(∮
Π · n̂dS − ∂

∂t

∫
ρ~vdV

)
,

(9)

Π = [−1p+ Γ− ρ (~v ⊗ ~v)] , (10)

since ~g0 does not depend on the spatial coordinates
within the fluid, once this field equally permeates each
point of the fluid in the falling reference frame at any
given instant t.

OBTAINING THE DRAG FORCE FD AND THE
DRAG COEFFICIENT CD

Applying the Eqs. (9) and (10) to the control region
FGBAF depicted in the Fig. 1, at the stationary flow
regime t→∞, one obtains:

~F∞ =
m

m+mBL

{
−
[∫

FG

+
∫
GB

+
∫
BA

+
∫
AF

]
1p∞ · n̂dS −

∫
FG

[ρ (~v∞ ⊗ ~v∞)] · n̂dS
}
, (11)

where mBL is the mass of the boundary layer attached
to the sphere. The pressure field on FG can be obtained,
since this choosen surface (FG) does not violate the lam-
inarity condition for a sufficiently thin boundary layer
∂p/∂r ≈ 0, in relation to DC, in virtue of the inter-
nal confinement of turbulence within the region GBAFG
(AB touching the boundary layer).

Fig. 1: Figure for the integration.

Hence:

pFG∞ = − ρ

m
ϕ∞FG + p0

∞ −
9
8
ρ
(
ḣ∞(t)

)2

sin2 θ, (12)

where ϕ∞ is a scalar field due to the vanishing rotational
of the force the fluid exerts on the sphere. The pressure
field on AB (AB touching the wake, the rear region of
the flow) is obtained from the condition of broken equi-
librium at the separation point S ≈ B. The obtention
of the velocity field profile internal to the boundary layer
is accomplished by the time average on the ensemble of
turbulence within the boundary layer with the Fourier
representation of the velocity field on FG by the step
function, since we are firstly interested in the contribu-
tion term at high Reynolds number provided a full tur-
bulent flow within the boundary layer at the brink of the
drag crisis, where the drag force will suddenly decrease.
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Hence:

pS∞ = − ρ

m
ϕ∞GBAF + p0

∞ −
9
16
ρ
(
ḣ∞(t)

)2

sin2 θS ,

(13)

〈(~v ⊗ ~v)FG · n̂〉t = (~v∞ ⊗ ~v∞)·n̂ =

〈
v2
FG (R+ δ′, θ, t)

(
cos2 α(t) êr + cosα(t) sinα(t) êθ

)〉
t

=

9
16

(
ḣ∞(t)

)2

sin2 θ êr,

(14)
where θS is the separation angle, depicted in the Fig. 2.

Fig. 2: Depicted elements.

Using these results within the Eq. (11), one obtains the
quadratic contribution for the drag force via straightfor-
ward integration:(

1 +
mBL

m

)
~F∞ = Buoyancy +

mBL

m
~F∞+

+
9π
32
ρ
(
ḣ∞(t)

)2

R2 sin4 θS êz ⇒

~FD =
9π
32
ρ
(
ḣ∞(t)

)2

R2 sin4 θS êz. (15)

Renaming ḣ∞(t) ≡ v, knowing that the drag force points
along the êz direction, we simply write for the quadratic
drag force contribution, the quadratic scalar component:

FD =
9π
32
ρv2R2 sin4 θS . (16)

One should notice this contribution arises from our con-
sideration regarding the turbulent profile within the
boundary layer, from which we see there is not any linear

contribution arising at this flow regime. Writing the drag
force as a series on v:

FD (v) =
∞∑
k=0

akv
k, (17)

we know from the low Reynolds number regime that the
linear contribution is given by the Stokes force [4]:

a0 = 0, a1v = 6πηRv. (18)

Hence, up to the drag crisis, the drag force reads:

FD = 6πηRv +
9π
32
ρ
(
sin4 θS

)
R2v2. (19)

The drag coefficient, CD, and the Reynolds number, R,
are defined by:

CD =
2FD

πρR2v2
, R =

2ρRv
η

. (20)

Hence, from the Eqs. (19) and (20), one obtains the drag
coefficient as a function of the Reynolds number, up to
the drag crisis:

CD (R) =
24
R

+
9
16

sin4 θS . (21)

Fig. 3 shows the graph for the Eq. (21), for θS = 70.4◦.
This is the separation angle obtained from the Froessling
method [1]. One sees this dependence on the Reynolds
number agrees with the experimental one over the entire
range of Reynolds numbers up to the drag crisis, as one
verifies, e.g., in [2] and [3].

Fig. 3: Drag coefficient vs. Reynolds number, Eq. (21).

COVER LETTER

Dear Editor,

I would like to keep the same reasons I had ex-
pressed in my previous cover letter to justify my purpose
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of submission as being the one of a letter, but explaining,
better, my reasons.

The number of pages of the paper is secondary,
but I would like to point out this turns out to fit the
requisite for a letter. Actually, except for eventual
detailed calculation to be required under a refereeing
process, the paper is short.

I had previously mentioned two main reasons: the
result and the method, sustaining the importance of the
paper for the field.

The result given by the Eq. (21) is new, original,
fundamental, subtle, and its has got a final simple form.
Expressions that turn out to arise in other works to fit
the drag curve are frequently much more cumbersome,
the expressions per se, these arising from fitting tech-
niques, mostly not primarily concerned with the physics
behind the phenomenon, just methematical. That ones
that arise from first principles, being the Oseen method
the canonical quadratic correction in the literature,
turn out to be restricted to the region of low Reynolds
numbers also avoiding the complications within the
Navier-Stokes equation non linear characteristic, and
there is not any simple expression arising from first
physical principles, up to my knowledge, that fits the
entire extent of Reynolds numbers up to the drag crisis.
My derivation very seems to fill this void, giving ansatz
to explore the phenomenon in other situations, as raised
below.

In fact, the second term at the right-hand side of
Eq. (21), the quadratic correction, also seems to be
important to justify the letter, once this second order
correction is different from the one obtained, e.g., by
the Oseen method, and turns out to fit the entire range
of Reynolds numbers up to the drag crisis. This term
has got, consequently, a parameter, the separation
angle, and it is not constant through this range. Its
asymptotic behaviour is well known, and one knows
that, experimentally, it turns out to exhibit fluctuations
around the asymptotic value. This latter is taken as
the rapidly reached laminar one one obtains via the
Froessling method, and this is sufficient to give the
entire behaviour over the mentioned range of Reynolds
numbers. On this, one also has got an opportunity of
research on the separation angle to plot the experimental
curve via my Eq. (21) to obtain an exact fitting. This
latter being an experimental scope, with which my
paper is not primarily concerned, albeit the phenomenon
raising the investigation is, of course, intrinsically under
scope.

In relation to the method, it has got a very funda-
mental difference in relation to the route one canonically

takes to calculate the drag force, which has got a pro-
found motivation: the principle of equivalence, generally
limited to the scope of general relativity. The method
is related to the equivalence between an acceleration
(the force we want to calculate divided by the sphere
mass) and a field. The important point is the field
at each point of a non inertial reference frame. This
field may be factored out from the linear momenta
transference integral, once it turns out to permeate the
whole fluid. Even at terminal velocity, one has got the
very constant gravitational field at the surface of the
Earth in the adopted falling frame, but the equivalence
principle states this frame turns out to be accelerated.
One may think the sphere is under constant terminal
velocity, but the gravitational field turns out to be its
equivalent acceleration (with the minus sign, of course)
which contains the force we want to calculate (divided
by the sphere mass). Although this result may appear
as being quite trivial, it is profound, since it provides the
information, the quadratic correction we are interested.
Such ”triviality”, up to my knowledge, was never
published before. Hence the equivalent interpretation
via field gives the opportunity to explore convenient
control surfaces, instead of the very surface of the sphere
(or a cilinder, or other shapes) one canonically adopts
in an inertial frame to calculate the drag force. Again,
this turns out to be subtle, but this property due to
the equivalence principle emerges as a new method to
explore convenient regions, which actually extracts in-
formation from an identity in which, asseverating again,
the force we want to calculate may be factored from the
linear momentum transference integral since this field
turns out to equally permeate any point within the fluid,
as explained in my paper. The gedankenexperiment
may give a new technique to measure the drag force
from internal weighing apparatus, instead of the use of
an external dynamometer, keeping the exact shape of
the immersed body under investigation as well as the
exact field surrounding it. This result turns out to be a
demonstration of the equivalence principle in action via
a fluid dynamics phenomenon.

Hence, I respectfully insist through my previous
cover letter, rewritten below:

Dear Editor,

For an eventual case of refereeing process:

This paper contains detailed derivations that are
not included, since they follow from the principles
discussed through the text. For me, some of them
were not trivial ones, specially related to my previous
investigations regarding the thermodynamics of stability
and other instances of investigation related to the
domain of validity of the superposition principle (low
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Reynolds number), as well as the specific derivations
related to the paper per se, viz., the high Reynolds
number regime and the profile of turbulence within the
boundary layer. Hence, under a request, I will be glad
to send and explain them. Also, I was wondering a short
paper, since I think the originally (up to my knowledge)
obtained result and method seem to be the relevant
results, instead of the derivation details, in a case of
eventual acceptance and publication.

With my best respects,

Armando V.D.B. Assis.
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