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Abstract. This paper presents a unified theory for the universe which
encompasses the dominant theories of physics. Our work is strictly based
on the philosophy that the work of the universe is extremely simple in the
fundamental level. We provide a minimal set of elements as the fundamental
constituents of the universe, and demonstrate that all natural phenomena
can be explained by a minimum number of laws governing these fundamental
elements and their minimal set of properties.

1. Introduction

In this paper, we present a model for the universe and its fundamental ele-
ments. Our goal is to develop a unified theory which encompasses the major
theories of physics, i.e., classical mechanics, electromagnetism, special relativ-
ity, general relativity, and quantum mechanics. Throughout our development,
we abide by the Principle of Simplicity which states that the work of the
universe and its elements is extremely simple in the fundamental level. In ac-
cordance with this principle, we start our work by assuming a minimal set of
axioms from which we try to infer the laws of the universe as much as possible
in order to explain the natural phenomena. We do not introduce a new axiom
unless it becomes absolutely necessary for our development to proceed.

In section 2, we discuss matter, space, and time as the constituents of the
universe. Section 3 presents the two fundamental forces, i.e., gravity and elec-
tricity. In section 4, we examine the absolute motion of an object. Section 5
introduces the concept of a force line through the space of an object, and
presents a differential equation for the force line of an object in constant ve-
locity motion. In section 6, we discuss the space horizon. Section 7 shows that
Newton’s third law is not valid in general. In section 8, we verify the Doppler
effect for the force lines of an object in constant velocity motion. Section 9
studies the mutual forces exerted on two objects moving in parallel with a con-
stant velocity. In section 10, we explain the magnetic phenomenon. Section 11
investigates the precession of the orbit of a planet, and provides an algorithm
to compute such an orbit. Finally, in section 12, we suggest some ideas for
further research.
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(b)(a)

Figure 2.1. The universe: (a) before the big bang (b) after
the big bang

2. Universe, Matter, Space, and Time

Before the beginning of time, the universe was entirely matter in three infi-
nite dimensions, as shown in figure 2.1(a). Due to its infinite size, the universe
has no center and no edge. There was no space before the beginning of time.
As depicted in figure 2.1(b), the matter universe shattered apart in a Big Bang,
creating an infinite three-dimensional space and an infinite number of matter
fragments floating in that space. We call the created infinite space the Back-
ground Space of the universe. By shattering of the universe, a universal absolute
time also started running across the background space. As it can be seen in
figure 2.1(b), the background space (with its absolute time) is yet surrounded
by infinite matter.

The matter fragments can have different sizes and masses; the size as well
as the mass of a matter fragment may be any positive real number. In addi-
tion to its mass, each matter fragment also has an electric charge; the electric
charge of a matter fragment can be any real number (positive, negative, or
zero). Familiar examples of matter fragments are nuclei of atoms, electrons,
and photons. The common matter fragments have extremely tiny masses and
very small-magnitude electric charges (due to their extremely small sizes, they
are called particles). However, a matter fragment may have any finitely great
mass or electric charge magnitude. Furthermore, it is theoretically possible to
break any matter fragment into a number of smaller matter fragments, or fuse
a number of matter fragments together to make a larger matter fragment. The
mass of a matter fragment (which does not break into smaller matter fragments,
and does not fuse with other matter fragments) remains constant through time,
but its electric charge can spontaneously vary over time.

Due to the finite size of any matter fragment and the infinite size of the back-
ground space, we treat a matter fragment as a point object in the background



THE SIMPLE UNIVERSE 3

space. (Throughout this paper, unless stated otherwise, the word object indi-
cates a point object.) An object such as p creates its own space through time
as follows: It generates a layer of its space in the form of a sphere like s at any
instant of time like t. At the time t, the center of s is p, and the radius of s is
zero. The radius of s increases through time at a constant rate, but its center
remains fixed in the background space regardless of any possible motion of p in
the background space. We call this constant expansion rate of s the Speed of
Space, and represent it by c.

3. Two Fundamental Forces: Gravity and Electricity

For the rest of this paper, for brevity, if it is not explicitly indicated, a space
layer will have an age and a radius greater than zero. Each space layer of
object p like s has a gravitational strength which pulls any encountered object
toward its center (not necessarily toward p because p might have moved away
from the center of s). In addition, s also has an electric strength which may
pull or push any encountered object toward or away from its center (again, not
necessarily toward or away from p). Both gravitational and electric strengths of
s originate from their corresponding strengths of p. The gravitational strength
of p is proportional to its mass, so it remains constant through time. The
electric strength of p is proportional to its electric charge, so it has a non-
deterministic nature, and can change over time. Either of these two strengths
of p which is carried away by s spans over the surface of s; therefore, the
gravitational or electric strength of any point on s is equal to its corresponding
strength of p divided by the surface area of s.

Assume object p1 has mass m1 and electric charge q1. Then, we have

(3.1) G(m1) = kgm1

for the gravitational strength of p1 and

(3.2) E(q1) = keq1

for its electric strength where kg and ke are the positive gravitational and
electric constants respectively. Therefore, for a space layer of p1 like s with
radius r, the gravitational strength is

(3.3) G(m1, r) =
G(m1)

4πr2
=

kgm1

4πr2
,

and the electric strength is

(3.4) E(q1, r) =
E(q1)

4πr2
=

keq1

4πr2
.

As the radius of s increases through time, its gravitational and electric strengths
decrease in magnitude according to the above equations. Now, consider any
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object like p2 with mass m2 and electric charge q2. If p2 encounters s, it will
experience a gravitational force with the magnitude of

(3.5) Fg(m1, r,m2) = G(m1, r)m2 =
kgm1m2

4πr2

and an electric force with the magnitude of

(3.6) Fe(q1, r, q2) = |E(q1, r)q2| = ke|q1q2|
4πr2

.

Both force vectors are along the radius of s which passes through p2. The
direction of the gravitational force vector is always toward the center of s. The
direction of the electric force vector will be toward the center of s if q1q2 is
negative, and away from the center of s if q1q2 is positive; if q1q2 is zero, there
will be no electric force.

The gravitational and electric forces bind the matter fragments together in
both large and small scales. In either case, we treat any collection of matter
fragments bound together gravitationally or electrically as yet a point object in
the infinite vastness of the background space. These two fundamental forces can
modify the velocity of an object according to Newton’s second law of motion; a
change in the speed of an object in turn leads to a change in the kinetic energy
of that object. In the large scale, any finite region of the background space
is surrounded by infinite amount of matter while it contains a finite amount
of matter; therefore, the objects contained in that region are gravitationally
pulled outward and away from each other. This accounts for the accelerating
expansion of the observable universe. In the small scale, because the electric
charges of the matter fragments spontaneously vary over time, the motion of
the electrons around the nuclei of the atoms is not deterministic.

In breaking and fusing reactions among matter fragments, tiny matter frag-
ments with very small masses (which become separated from the rest of the
matter fragments) can get carried away by the space layers. In this process,
any such tiny matter fragment with mass m1 may gain a speed up to the speed
of space and so a maximum kinetic energy of

1

2
m1c

2.

If we denote the combined mass of all these tiny matter fragments by m, the
maximum of their combined kinetic energy will be

(3.7) Emax =
1

2
mc2

which resembles Einstein’s equation.
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(a) (b)

Figure 4.1. The space of an object: (a) at rest (b) in motion

v > cv < c v = c

Figure 4.2. Three distinct topologies for the space of an object
in motion with constant velocity v

4. Absolute Motion

We may now examine the absolute motion of an object like p in the back-
ground space through time: Suppose t0 is an arbitrary instant of time in the
lifetime of p, and let s be the space layer of p created at t0. After an arbitrary
time interval like t since t0, s reaches the age of t, and expands to the radius of
ct. p will be at Absolute Rest in the background space during the time interval t
since t0 if and only if at the moment of t0 + t, p is at the center of all of its
space layers with ages from zero to t (or equivalently, radii from zero to ct). See
figure 4.1 (unless otherwise mentioned, throughout this paper, rest and motion
are absolute).

In figure 4.2, we have depicted three distinct topologies for the space of an
object in constant velocity motion. If an object encounters the space layers
of its own (by increasing its speed past c or the reverse), that object will be
subject to the gravitational and electric forces of its own space accordingly.

5. Force Line

Consider the snapshot of the space of object p at an instant of time. Let p1 be
an arbitrary point in this still space, and assume s1 is the youngest space layer
which passes through p1. (When the speed of p is equal to or greater than c, its
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space layers can overlap each other, and so there may be more than one space
layer passing through p1.) Then, the dominant force vector (either gravitational
or electric) at p1 (corresponding to the youngest space layer passing through
p1) lies along the radius of s1. Suppose we move an infinitesimal distance from
p1 inward along the radius of s1, and reach at a point like p2. Let s2 be the
youngest space layer which passes through p2. Because p2 is inside s1, s2 will
be younger than s1. Depending on the motion of p, s1 and s2 may not be
concentric, and so the direction of the dominant force vector at p2 may deviate
from the direction of the dominant force vector at p1. We repeat our inward
radial movement from p2 on s2, and continue this process until we reach the
space layer of age zero, i.e., p itself (depending on its motion, we may not reach
p, but we can get infinitesimally close to it). We call the traced path from p1

to p (excluding p) the Force Line of p passing through p1. The dominant force
vector at any point on the force line is tangent to the force line.

Figure 5.1 shows the typical force line of an object for three particular types
of motion. Any force line of a stationary object is a straight line. The typical
force line of an oscillating object resembles a wave. The so-called gravita-
tional and electromagnetic waves are merely the force lines produced by the
expanding space layers of some vibrating objects. It can be verified that the
established laws of reflection and refraction for the electromagnetic waves are
fully compatible with the previous statement about the nature of these waves:
In accordance with Huygens’ principle, the force lines of adjacent vibrating ob-
jects constructively add up in a particular direction to generate the reflected or
refracted waves. A matter fragment with an electric charge of zero or a non-
vibratory motion does not generate wavy electric force lines; in other words,
that matter fragment does not emit electromagnetic radiation. This justifies
the familiar concept of dark matter in cosmology. Note that we have specified
oscillatory motion here for convenience; in general, wavy force lines may be
created by any kind of back and forth motion, including a revolving one. We
should also point out the fact that while the space layers are physical entities,
the force lines are just mathematical constructs which represent the directions
of the force vectors associated with a succession of space layers.

We further study the force line of an object in constant velocity motion. To
simplify the arguments, for the rest of this paper, unless specified otherwise,
the motion of any object is contained within the xy plane, and all related
calculations are also performed in the xy plane accordingly.

Suppose object p is in motion with constant velocity v, and consider the
coordinate system whose origin is p, and its positive y axis is in the direction
of the motion of p. (We choose the motion of p to be along the y axis so that
the force line can be expressed as y a function of x.) Then, as illustrated in
figure 5.2(a), for the force line of p passing through the arbitrary point (x, y),
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(b) (c)(a)

Figure 5.1. The typical force line of an object: (a) at rest
(b) in constant velocity motion (c) in oscillatory motion

we have

(5.1) (y + vt)2 + x2 = c2t2.

Moreover, in figure 5.2(a), the tangent to the force line at the point (x, y) passes
through the center of the shown circle; therefore, we also have

(5.2) y′ =
y + vt

x
, x 6= 0.

Note that we exclude the two trivial force lines of positive and negative y axes
so that y is a function of x, and y′ is always defined. Eliminating t between
equations 5.1 and 5.2 yields the differential equation

(5.3)

(
c2

v2
− 1

)
x2y′2 − 2

c2

v2
xyy′ +

c2

v2
y2 − x2 = 0

for the force line. Equation 5.3 may be expressed in polar coordinates as

(5.4) cos2(θ)r′2 +

(
cos2(θ)− c2

v2

)
r2 = 0.

If v is equal to or greater than c, the space of p will have a horizon, and so its
force lines cannot cover the entire xy plane. We discuss this topic in further
detail in section 6.

Each force line of p has an absolute minimum point as depicted in fig-
ure 5.2(b). At the absolute minimum point of a force line, y′ is zero. According
to equation 5.2, y′ will be zero if the equation

(5.5) y + vt = 0

holds. Replacing t in equation 5.1 with its value from equation 5.5 results in
the two half-line equations

(5.6) y =
v

c
x, x < 0
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Figure 5.2. Determining the force line’s equation for an object
in motion with constant velocity v

and

(5.7) y = −v

c
x, x > 0

which represent the locus of the absolute minimum points of all force lines.
Therefore, every force line emanates from behind p in the nagative y region of
the plane between these two half-lines.

For an object like p in constant velocity motion, a simple algorithm can be
developed to compute its force line which passes through a particular point like
p1 in its space. In compliance with the definition of the force line, the algorithm
works by iterative inward radial movement from p1 toward p. In section 11, we
present a similar algorithm in detail to calculate the orbit of a planet around a
moving star.

6. Space Horizon

Assume object p is in motion with constant velocity v, and consider a three-
dimensional Cartesian coordinate system whose origin is p, and its positive
x axis is in the direction of the motion of p.

For v equal to c, all space layers of p are contained in the negative x region
of the space, and each of them is tangent to the horizon plane x = 0 at the
origin.

When v is greater than c, p is outside any of its space layers. As shown in
figure 6.1, consider the space layer of age t and a tangent line to it from p.
Then, we have

(6.1) sin(A) = sin(π − A) =
ct

vt
=

c

v
.

A is constant; therefore, a tangent line from p to any of its space layers makes
the same angle with the x axis. This means that all space layers of p are
contained in an infinite cone with the origin as its apex and the negative x axis
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Figure 6.1. The conic space of an object in motion with con-
stant velocity v greater than c

as its axis of rotational symmetry. We call this space a Conic Space and the
aperture of the horizon cone, i.e., the angle

2 arcsin
( c

v

)

the Horizon Angle of that space.
In figure 6.1, we have also depicted a typical force line of p through its conic

space. As you can see, the tangent to the shown force line at its endpoint on the
horizon is along the radius of the space layer of age t and thus perpendicular to
the shown horizon line; in fact, it is normal to the horizon cone. This indicates
that every force line vertically hits the horizon.

7. Action and Reaction

As far as the interactions between space layers and objects are concerned,
Newton’s third law does not hold in general when objects are in motion. In
figure 7.1(a), the law of action and reaction is valid for the two stationary
objects A and B. But in figure 7.1(b), the mutual forces exerted on the two
moving objects A and B are not equal in magnitude, nor are they opposite in
direction. In figure 7.1(b), at an instant of time, due to their motions, A and B
encounter space layers of different radii, and thus experience forces of different
magnitudes.

8. Doppler Effect

In figure 8.1(a), object p oscillates with period T along the y axis (to avoid
cluttering the picture, x and y axes have not been drawn). In each oscillation,
p generates one complete wave cycle in each of the two force lines to the right
and left of it. At the end of that oscillation, the front of each of the two wave
cycles is on the space layer of age T while p is back at the center of that space
layer (the origin). Therefore, both wave cycles have a length of cT .

Now, as depicted in figure 8.1(b), assume p also has a second velocity compo-
nent along the positive x axis with constant magnitude v less than c. Again in
each oscillation, p creates a full wave cycle in each of the two force lines ahead
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Figure 7.1. The attractive interactions between two objects:
(a) at rest (b) in motion
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Figure 8.1. Wave in the force lines of an object: (a) oscillating
vertically with period T (b) oscillating vertically with period T
and moving horizontally with constant velocity v less than c

of and behind it. During that oscillation, p also moves a distance of vT along
the positive x axis while the space layer which has the fronts of the two wave
cycles expands to a radius of cT . Therefore, as illustrated in figure 8.1(b), the
length of the wave cycle ahead of p is

(8.1) λ1 = cT − vT = (c− v)T,

and that of the wave cycle behind p is

(8.2) λ2 = cT + vT = (c + v)T

(note that both endpoints of each of the two wave cycles are on the x axis).

9. Parallel-Moving Objects

Consider two like charges q1 and q2 which are both stationary; assume q1 is
at the origin, and q2 is on the positive y axis at the distance r from q1 (unless
otherwise noted, throughout this paper, the word charge refers to an object
with an electric charge). As demonstrated in figure 9.1(a), the space layer of
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Figure 9.1. Computing the repulsive interaction between two
like charges: (a) at rest (b) moving in parallel with constant
velocity v less than c

q1 with radius r is centered at the origin, and passes through q2. Therefore, q2

experiences an electric force along the positive y axis with the magnitude of

(9.1) F1 =
keq1q2

4πr2
.

Now, suppose q1 and q2 are still a vertical distance r apart, but both moving
parallel to the positive x axis (q1 is actually on the x axis) with constant speed v
less than c. As depicted in figure 9.1(b), the space layer of q1 which encounters
q2 has a center on the x axis behind q1 and a radius greater than r. The
direction of the electric force exerted on q2 is determined from

(9.2) θ = arccos
(v

c

)
.

We have

(9.3) c2t2 =
r2

sin2(θ)
=

r2

1− cos2(θ)
=

r2

1− v2

c2

for the square of the radius of the shown space layer. Therefore, the magnitude
of the electric force exerted on q2 is

(9.4) F2 =

(
1− v2

c2

)
keq1q2

4πr2
=

(
1− v2

c2

)
F1.

10. Magnetic Effect

In the arguments presented in this section, for brevity, let us call a space
layer with positive electric strength a positive space layer and one with negative
electric strength a negative space layer.

Figure 10.1(a) shows two space layers of a stationary positive charge like q1,
and figure 10.1(b) shows two space layers of a negative charge like q2 which
moves along the positive x axis with a speed less than c. Assume both charges
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are of the same magnitude. Furthermore, suppose the inner space layers have
the same radius r and the same minimum distance x from their corresponding
outer space layers. Then, as illustrated in figure 10.1, the radius of the outer
space layer of q1 is r + x while that of q2 is d + r + x (which is greater). In
figure 10.1(c), we have superimposed the space layers of the two charges so
that their inner space layers fully overlay each other; this also makes the outer
space layer of q2 a surrounding tangent to the outer space layer of q1. Now,
in figure 10.1(c), consider a charge like q positioned on the inner space layers
ahead of q1 and q2 on the x axis (q1 and q2 are also on the x axis). If q remains
stationary there, the net electric force exerted on it will be zero. But if q moves
from the inner space layers toward the outer space layers along the positive
x axis, throughout its trip outward, the radius of the positive space layers will
increase more slowly than that of the negative space layers, and consequently,
the magnitude of the positive electric strength will fall off more slowly than
that of the negative electric strength. Therefore, if q is positive, it will feel a
repulsive electric force away from the center of each encountered positive space
layer; conversely, if q is negative, it will feel an attractive electric force toward
the center of each encountered positive space layer. We call this phenomenon
the Magnetic Effect. The faster q2 moves, the more squeezed its negative space
layers are (encountered by q), and thus the faster the magnitude of the negative
electric strength falls off; this will result in a stronger net electric force exerted
on q. Also, the faster q moves, the shorter the time is for q to travel the same
distance x to experience the same amount of net electric force; therefore, q will
undergo a greater amount of net electric force per unit of time. In figure 10.1(c),
the direction of the motion of q is the one in which the magnitude of the negative
electric strength falls off at maximum rate, causing q to feel the strongest net
electric force.

A similar argument can be used when the direction of the motion of q is
reversed, or when q is behind q1 and q2 on the x axis, or when the positive charge
q1 moves and the negative charge q2 is at rest. Note that for the simplicity of the
presentation, in figure 10.1, q2 and q move on the same line; they could move
on two parallel lines, similar to the case of two parallel current-carrying wires.
Finally, imagine that we have a stack of the configuration of figure 10.1(c) along
the z axis (perpendicular to the page), and q is again positioned on the inner
space layers. If q moves along the z axis, all encountered positive and negative
space layers will be of the same radius r, and so the net electric force exerted
on q will remain zero; this is like the situation when a charge moves along the
axis of a current-carrying coil.

We should now emphasize that there is no such thing as a magnetic field
to cause a force in a perpendicular direction. We may have an illusion of the
so-called magnetic field lines by looking at the lines of iron filings formed on a
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Figure 10.1. Illustration of the magnetic effect

sheet of paper placed over a magnet bar. In fact, each iron filing simply acts
like a very small magnet bar in an equilibrium of forces exerted upon it by its
neighboring iron filings and the main magnet bar; this results in the formation
of the chains of iron filings. The magnetic effect, as described before, is the
sole nature of the forces which cause each iron filing to become a small magnet
bar, and stand in a state of equilibrium.

11. Orbital Precession

Figure 11.1(a) depicts the elliptical orbit of a planet around a star in ac-
cordance with the Newtonian theory of gravity where the star is at rest, and
the planet has the distance x from the star and the velocity v at its perihe-
lion. Figure 11.1(b) illustrates the orbit of the planet around the same star
where the star moves along the positive x axis with a speed less than c, and
the planet initially has the same distance x from the star and the same orbital
velocity v relative to the moving star. (In figure 11.1(b), at any instant of time,
the planet also has another velocity component which is exactly equal to the
velocity of the star, so the planet would be at rest relative to the moving star
if its orbital velocity were eliminated.) At the beginning of the orbit of fig-
ure 11.1(b), the planet is on a space layer with a larger radius compared to the
orbit of figure 11.1(a); therefore, the planet is pulled by a weaker gravitational
force, and drifts more outward. Then, roughly speaking, in the upper part of
the orbit of figure 11.1(b), the angle between the orbital velocity and acceler-
ation vectors of the planet is smaller compared to the orbit of figure 11.1(a);
this also results in less curving of the orbit around the star. Conversely, in
the lower section of the orbit of figure 11.1(b), the angle between the orbital
velocity and acceleration vectors of the planet is larger compared to the orbit
of figure 11.1(a); this curves the orbit more inward. The overall effect of these
differences is the precession of the orbit of the planet around the moving star.
For a more elongated elliptical orbit, the planet journeys through more space
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Figure 11.1. Demonstration of the orbital precession
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Figure 11.2. (a) Computing the new velocity of the planet on
its orbit (b) Computing the new position of the planet on its
orbit

layers; as the planet encounters more space layers, its orbit around the moving
star may undergo more precession.

We can devise a simple iterative algorithm to actually compute the orbit
of the planet around a star which moves with a constant velocity less than c:
Assume we have the initial position, velocity, and acceleration of the planet on
its orbit. Then, we need to calculate the new position, velocity, and acceleration
of the planet after an infinitesimal time period. After this, we simply treat the
new position, velocity, and acceleration of the planet as the initial ones, and
repeat the process. (We may run the algorithm for any period of time as
needed.)

The computations are in compliance with classical mechanics. Suppose the
planet has the initial orbital velocity v and acceleration a. Figure 11.2(a) shows
how to calculate the new velocity v2 of the planet after the infinitesimal time
period t by using the law of cosines. From figure 11.2(b), again by using the
cosine formula, we determine the displacement vector and so the new position
of the planet after the same time interval t.
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Now, in order to calculate the new acceleration of the planet after the time
period t, assume the planet is initially on the space layer s1 of the star with
radius r1. After determining the distance d and the angle β from figure 11.2(b),
we can compute the distance r from the new position of the planet to the
center of s1 as illustrated in figure 11.3(a). From figure 11.3(a), we can also
calculate the angle θ between the radius r and the x axis (we know the initial
angle between the radius r1 and the x axis). If the star were at rest, the new
acceleration vector would be along the radius r, and the magnitude of the new
acceleration could be determined from r. But because the star is in motion,
we have to go one step further to compute the radius r2 of the space layer s2

corresponding to the new position of the planet. Suppose the star is moving
along the positive x axis with constant speed V (less than c). After calculating
r and θ from figure 11.3(a), we have

(11.1) r2
2 = r2 + D2 − 2rD cos(θ)

in figure 11.3(b). Furthermore, in figure 11.3, we have

(11.2) r2 − r1 = ct2 − ct1 = c
D

V

from which we derive

(11.3) D =
V

c
(r2 − r1).

Replacing D in equation 11.1 by its value from equation 11.3 results in a qua-
dratic equation in r2. It can be proved that for V less than c, the quadratic
equation in r2 has either only one real root equal to zero or two real roots, one
positive and one negative. In the former case, the planet hits the star, and the
algorithm is terminated. In the latter case, the positive root is the right value
for r2. We continue to determine the angle between the radius r2 and the x axis
from figure 11.3(b). The new acceleration vector can then be computed, and
we are done with one iteration of the algorithm.

Note that in figure 11.3, r is greater than r1; therefore, r2 is also greater than
r1, and the center of s2 is behind the center of s1 on the x axis. If r is less than
r1, r2 will also be less than r1, and the center of s2 will be ahead of the center
of s1 on the x axis. If r is equal to r1, s2 will be the same as s1, and so the new
acceleration will be calculated from r and θ. In figure 11.3, for convenience, we
have used the angle between the radius r and the negative x axis. However, in
the actual implementation of the algorithm, we may measure any such angle
relative to the positive x axis; by doing so, we derive the same formulae for the
new acceleration regardless of whether r is greater or less than r1.
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Figure 11.3. Computing the new acceleration of the planet on
its orbit

12. Further Works

In this paper, we elaborated the space, force lines, and some effects for a
particular type of motion, i.e., constant velocity. The interested reader may
study these topics for other types of motion such as constant acceleration and
regular oscillation (to be defined properly). One may also try to solve the
differential equations 5.3 and 5.4.

For a real-world verification, you can employ the algorithm described in
section 11 to compute the orbit of the planet Mercury around the Sun, and
measure its precession. Since the motion of the Sun is not contained in the
plane of the orbit of Mercury, you have to either extend the algorithm to the
three-dimensional space, or reduce the problem into a two-dimensional one
by applying some appropriate transformations. (Due to the vastness of the
interstellar distances, you may assume the Sun has a constant velocity.)
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