EXPANDING RELATIVE THEORY TO INCLUDING
SUPPER-C-NEUTRINO

SHENG-PING WU

Abstract. This article expands the classical velocity to surpassing that of
light and does not vary the formula of Relative Theory, to construct a theory
well explains the current measures like the velocity and energy of neutrinos
tested between Gran Sasso and Cern.

The Relative theory says
\[x = R x' \]
\(R \) is a rotation in flat-straight Einstein Space, and Einstein adds: the rotation does
not lead to surpassing velocity of light for classical objects. Now we discard the
saying of his.

Think about a \(\nu \) with a momentum
\[p, E \]
The \(\nu \) is emitted from a neutron hence
\[p_n = p_p + p_\nu + p_e \]
It’s of course the gross static mass is conservative
\[m_\nu = m_n - m_p - m_e = 0.092 MeV \]
The pure harmonic wave of \(\nu \) is
\[e^{i p x + i E t} \]
in which
\[E = p + m_\nu \]
The velocity of its front is
\[v = E/p \]
By the recent measure of ICARUS [2]
\[E = 7.4 GeV \]
and the little earlier result of Gran Sasso-Cern[1]
\[v/c = 1 + 5 \times 10^{-5} \]
the balance of this formula is like
\[5 \times 10^{-5} \equiv m_\nu/E = 0.092 M/7.4 G = 1.24 \times 10^{-5} \]
The feelings seems tolerable. The only problem is
\[p > E, m < 0 \]
but this is unavoidable.
REFERENCES

Current address: Wuhan University