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Abstract

There has been impressive steps in the understanding of N = 4 maximally sypersymmetric
YM theory possessing 4-D super-conformal symmetry. This theory is related by AdS/CFT duality
to certain string theory in AdS5 × S5 background. Second stringy representation was discovered
by Witten and is based on 6-D Calabi-Yau manifold defined by twistors. The unifying proposal
is that so called Yangian symmetry is behind the mathematical miracles involved.

In the following I will discuss briefly the notion of Yangian symmetry and suggest its gen-
eralization in TGD framework by replacing conformal algebra with appropriate super-conformal
algebras. Also a possible realization of twistor approach and the construction of scattering am-
plitudes in terms of Yangian invariants defined by Grassmannian integrals is considered in TGD
framework and based on the idea that in zero energy ontology one can represent massive states
as bound states of massless particles. There is also a proposal for a physical interpretation of the
Cartan algebra of Yangian algebra allowing to understand at the fundamental level how the mass
spectrum of n-particle bound states could be understood in terms of the n-local charges of the
Yangian algebra.

Twistors were originally introduced by Penrose to characterize the solutions of Maxwell’s
equations. Kähler action is Maxwell action for the induced Kähler form of CP2. The preferred
extremals allow a very concrete interpretation in terms of modes of massless non-linear field.
Both conformally compactified Minkowski space identifiable as so called causal diamond and
CP2 allow a description in terms of twistors. These observations inspire the proposal that a
generalization of Witten’s twistor string theory relying on the identification of twistor string
world sheets with certain holomorphic surfaces assigned with Feynman diagrams could allow a
formulation of quantum TGD in terms of 3-dimensional holomorphic surfaces of CP3 × CP3

mapped to 6-surfaces dual CP3 × CP3, which are sphere bundles so that they are projected in a
natural manner to 4-D space-time surfaces. Very general physical and mathematical arguments
lead to a highly unique proposal for the holomorphic differential equations defining the complex
3-surfaces conjectured to correspond to the preferred extremals of Kähler action.

1 Introduction

Lubos [40] told for some time ago about last impressive steps in the understanding of N = 4 maximally
supersymmetric YM theory (SYM) possessing 4-D super-conformal symmetry. This theory is related
by AdS/CFT duality to certain string theory in AdS5×S5 background. Second stringy representation
was discovered by Witten and based on 6-D Calabi-Yau manifold defined by twistors. In the following
I will discuss briefly the notion of Yangian symmetry and suggest its generalization in TGD framework
by replacing conformal algebra with appropriate super-conformal algebras. Also a possible realization
of twistor approach and the construction of scattering amplitudes in terms of Yangian invariants
defined by Grassmannian integrals is considered in TGD framework and based on the idea that in
zero energy ontology one can represent massive states as bound states of massless particles. There
is also a proposal for a physical interpretation of the Cartan algebra of Yangian algebra allowing
to understand at the fundamental level how the mass spectrum of n-particle bound states could be
understood in terms of the n-local charges of the Yangian algebra.

Twistors were originally introduced by Penrose to characterize the solutions of Maxwell’s equa-
tions. Kähler action is Maxwell action for the induced Kähler form of CP2. The preferred extremals
allow a very concrete interpretation in terms of modes of massless non-linear field. Both conformally
compactified Minkowski space identifiable as so called causal diamond and CP2 allow a description in
terms of twistors. These observations inspire the proposal that a generalization of Witten’s twistor
string theory relying on the identification of twistor string world sheets with certain holomorphic
surfaces assigned with Feynman diagrams could allow a formulation of quantum TGD in terms of
3-dimensional holomorphic surfaces of CP3 × CP3 mapped to 6-surfaces dual CP3 × CP3, which are
sphere bundles so that they are projected in a natural manner to 4-D space-time surfaces. Very general
physical and mathematical arguments lead to a highly unique proposal for the holomorphic differen-
tial equations defining the complex 3-surfaces conjectured to correspond to the preferred extremals of
Kähler action.
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1.1 Background

I am outsider as far as concrete calculations inN = 4 SUSY are considered and the following discussion
of the background probably makes this obvious. My hope is that the reader had patience to not care
about this and try to see the big pattern.

The developments began from the observation of Parke and Taylor [27] that n-gluon tree amplitudes
with less than two negative helicities vanish and those with two negative helicities have unexpectedly
simple form when expressed in terms of spinor variables used to represent light-like momentum. In
fact, in the formalism based on Grassmanian integrals the reduced tree amplitude for two negative
helicities is just ”1” and defines Yangian invariant. The article Perturbative Gauge Theory As a
String Theory In Twistor Space [28] by Witten led to so called Britto-Cachazo-Feng-Witten (BCFW)
recursion relations for tree level amplitudes [30, 31] allowing to construct tree amplitudes using the
analogs of Feynman rules in which vertices correspond to maximally helicity violating tree amplitudes
(2 negative helicity gluons) and propagator is massless Feynman propagator for boson. The progress
inspired the idea that the theory might be completely integrable meaning the existence of infinite-
dimensional un-usual symmetry. This symmetry would be so called Yangian symmetry [19] assigned
to the super counterpart of the conformal group of 4-D Minkowski space.

Drumond, Henn, and Plefka represent in the article Yangian symmetry of scattering amplitudes
in N = 4 super Yang-Mills theory [37] an argument suggesting that the Yangian invariance of the
scattering amplitudes ins an intrinsic property of planar N = 4 super Yang Mills at least at tree level.

The latest step in the progress was taken by Arkani-Hamed, Bourjaily, Cachazo, Carot-Huot, and
Trnka and represented in the article Yangian symmetry of scattering amplitudes in N = 4 super
Yang-Mills theory [36]. At the same day there was also the article of Rutger Boels entitled On BCFW
shifts of integrands and integrals [38] in the archive. Arkani-Hamed et al argue that a full Yangian
symmetry of the theory allows to generalize the BCFW recursion relation for tree amplitudes to all
loop orders at planar limit (planar means that Feynman diagram allows imbedding to plane without
intersecting lines). On mass shell scattering amplitudes are in question.

1.2 Yangian symmetry

The notion equivalent to that of Yangian was originally introduced by Faddeev and his group in the
study of integrable systems. Yangians are Hopf algebras which can be assigned with Lie algebras as the
deformations of their universal enveloping algebras. The elegant but rather cryptic looking definition
is in terms of the modification of the relations for generating elements [19]. Besides ordinary product
in the enveloping algebra there is co-product ∆ which maps the elements of the enveloping algebra
to its tensor product with itself. One can visualize product and co-product is in terms of particle
reactions. Particle annihilation is analogous to annihilation of two particle so single one and co-
product is analogous to the decay of particle to two. ∆ allows to construct higher generators of the
algebra.

Lie-algebra can mean here ordinary finite-dimensional simple Lie algebra, Kac-Moody algebra or
Virasoro algebra. In the case of SUSY it means conformal algebra of M4- or rather its super coun-
terpart. Witten, Nappi and Dolan have described the notion of Yangian for super-conformal algebra
in very elegant and and concrete manner in the article Yangian Symmetry in D=4 superconformal
Yang-Mills theory [29]. Also Yangians for gauge groups are discussed.

In the general case Yangian resembles Kac-Moody algebra with discrete index n replaced with
a continuous one. Discrete index poses conditions on the Lie group and its representation (adjoint
representation in the case of N = 4 SUSY). One of the conditions conditions is that the tensor product
R⊗R∗ for representations involved contains adjoint representation only once. This condition is non-
trivial. For SU(n) these conditions are satisfied for any representation. In the case of SU(2) the basic
branching rule for the tensor product of representations implies that the condition is satisfied for the
product of any representations.

Yangian algebra with a discrete basis is in many respects analogous to Kac-Moody algebra. Now
however the generators are labelled by non-negative integers labeling the light-like incoming and
outgoing momenta of scattering amplitude whereas in in the case of Kac-Moody algebra also negative
values are allowed. Note that only the generators with non-negative conformal weight appear in the
construction of states of Kac-Moody and Virasoro representations so that the extension to Yangian
makes sense.
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The generating elements are labelled by the generators of ordinary conformal transformations
acting in M4 and their duals acting in momentum space. These two sets of elements can be labelled
by conformal weights n = 0 and n = 1 and and their mutual commutation relations are same as for
Kac-Moody algebra. The commutators of n = 1 generators with themselves are however something
different for a non-vanishing deformation parameter h. Serre’s relations characterize the difference
and involve the deformation parameter h. Under repeated commutations the generating elements
generate infinite-dimensional symmetric algebra, the Yangian. For h = 0 one obtains just one half of
the Virasoro algebra or Kac-Moody algebra. The generators with n > 0 are n + 1-local in the sense
that they involve n+ 1-forms of local generators assignable to the ordered set of incoming particles of
the scattering amplitude. This non-locality generalizes the notion of local symmetry and is claimed
to be powerful enough to fix the scattering amplitudes completely.

2 How to generalize Yangian symmetry in TGD framework?

As far as concrete calculations are considered, I have nothing to say. I am just perplexed. It is however
possible to keep discussion at general level and still say something interesting (as I hope!). The key
question is whether it could be possible to generalize the proposed Yangian symmetry and geometric
picture behind it to TGD framework.

1. The first thing to notice is that the Yangian symmetry of N = 4 SUSY in question is quite
too limited since it allows only single representation of the gauge group and requires massless
particles. One must allow all representations and massive particles so that the representation
of symmetry algebra must involve states with different masses, in principle arbitrary spin and
arbitrary internal quantum numbers. The candidates are obvious: Kac-Moody algebras [21] and
Virasoro algebras[20] and their super counterparts. Yangians indeed exist for arbitrary super
Lie algebras. In TGD framework conformal algebra of Minkowski space reduces to Poincare
algebra and its extension to Kac-Moody allows to have also massive states.

2. The formal generalization looks surprisingly straightforward at the formal level. In zero energy
ontology one replaces point like particles with partonic two-surfaces appearing at the ends of
light-like orbits of wormhole throats located to the future and past light-like boundaries of
causal diamond (CD × CP2 or briefly CD). Here CD is defined as the intersection of future
and past directed light-cones. The polygon with light-like momenta is naturally replaced with
a polygon with more general momenta in zero energy ontology and having partonic surfaces as
its vertices. Non-point-likeness forces to replace the finite-dimensional super Lie-algebra with
infinite-dimensional Kac-Moody algebras and corresponding super-Virasoro algebras assignable
to partonic 2-surfaces.

3. This description replaces disjoint holomorphic surfaces in twistor space with partonic 2-surfaces
at the boundaries of CD×CP2 so that there seems to be a close analogy with Cachazo-Svrcek-
Witten picture. These surfaces are connected by either light-like orbits of partonic 2-surface or
space-like 3-surfaces at the ends of CD so that one indeed obtains the analog of polygon.

What does this then mean concretely (if this word can be used in this kind of context)?

1. At least it means that ordinary Super Kac-Moody and Super Virasoro algebras associated with
isometries of M4×CP2 annihilating the scattering amplitudes must be extended to a co-algebras
with a non-trivial deformation parameter. Kac-Moody group is thus the product of Poincare
and color groups. This algebra acts as deformations of the light-like 3-surfaces representing the
light-like orbits of particles which are extremals of Chern-Simon action with the constraint that
weak form of electric-magnetic duality holds true. I know so little about the mathematical side
that I cannot tell whether the condition that the product of the representations of Super-Kac-
Moody and Super-Virasoro algebras contains adjoint representation only once, holds true in this
case. In any case, it would allow all representations of finite-dimensional Lie group in vertices
whereas N = 4 SUSY would allow only the adjoint.

2. Besides this ordinary kind of Kac-Moody algebra there is the analog of Super-Kac-Moody al-
gebra associated with the light-cone boundary which is metrically 3-dimensional. The finite-
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dimensional Lie group is in this case replaced with infinite-dimensional group of symplectomor-
phisms of δM4

+/− made local with respect to the internal coordinates of the partonic 2-surface.
A coset construction is applied to these two Virasoro algebras so that the differences of the
corresponding Super-Virasoro generators and Kac-Moody generators annihilate physical states.
This implies that the corresponding four-momenta are same: this expresses the equivalence of
gravitational and inertial masses. A generalization of the Equivalence Principle is in question.
This picture also justifies p-adic thermodynamics applied to either symplectic or isometry Super-
Virasoro and giving thermal contribution to the vacuum conformal and thus to mass squared.

3. The construction of TGD leads also to other super-conformal algebras and the natural guess is
that the Yangians of all these algebras annihilate the scattering amplitudes.

4. Obviously, already the starting point symmetries look formidable but they still act on single
partonic surface only. The discrete Yangian associated with this algebra associated with the
closed polygon defined by the incoming momenta and the negatives of the outgoing momenta acts
in multi-local manner on scattering amplitudes. It might make sense to speak about polygons
defined also by other conserved quantum numbers so that one would have generalized light-like
curves in the sense that state are massless in 8-D sense.

2.1 Is there any hope about description in terms of Grassmannians?

At technical level the successes of the twistor approach rely on the observation that the amplitudes
can be expressed in terms of very simple integrals over sub-manifolds of the space consisting of k-
dimensional planes of n-dimensional space defined by delta function appearing in the integrand. These
integrals define super-conformal Yangian invariants appearing in twistorial amplitudes and the belief
is that by a proper choice of the surfaces of the twistor space one can construct all invariants. One can
construct also the counterparts of loop corrections by starting from tree diagrams and annihilating
pair of particles by connecting the lines and quantum entangling the states at the ends in the manner
dictated by the integration over loop momentum. These operations can be defined as operations for
Grassmannian integrals in general changing the values of n and k. This description looks extremely
powerful and elegant and -most importantly- involves only the external momenta.

The obvious question is whether one could use similar invariants in TGD framework to construct
the momentum dependence of amplitudes.

1. The first thing to notice is that the super algebras in question act on infinite-dimensional rep-
resentations and basically in the world of classical worlds assigned to the partonic 2-surfaces
correlated by the fact that they are associated with the same space-time surface. This does not
promise anything very practical. On the other hand, one can hope that everything related to
other than M4 degrees of freedom could be treated like color degrees of freedom in N = 4 SYM
and would boil down to indices labeling the quantum states. The Yangian conditions coming
from isometry quantum numbers, color quantum numbers, and electroweak quantum numbers
are of course expected to be highly non-trivial and could fix the coefficients of various singlets
resulting in the tensor product of incoming and outgoing states.

2. The fact that incoming particles can be also massive seems to exclude the use of the twistor
space. The following observation however raises hopes. The Dirac propagator for wormhole
throat is massless propagator but for what I call pseudo momentum. It is still unclear how this
momentum relates to the actual four-momentum. Could it be actually equal to it? The recent
view about pseudo-momentum does not support this view but it is better to keep mind open.
In any case this finding suggests that twistorial approach could work in in more or less standard
form. What would be needed is a representation for massive incoming particles as bound states
of massless partons. In particular, the massive states of super-conformal representations should
allow this kind of description.

Could zero energy ontology allow to achieve this dream?

1. As far as divergence cancellation is considered, zero energy ontology suggests a totally new
approach producing the basic nice aspects of QFT approach, in particular unitarity and coupling
constant evolution. The big idea related to zero energy ontology is that all virtual particle
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particles correspond to wormhole throats, which are pairs of on mass shell particles. If their
momentum directions are different, one obtains time-like continuum of virtual momenta and if
the signs of energy are opposite one obtains also space-like virtual momenta. The on mass shell
property for virtual partons (massive in general) implies extremely strong constraints on loops
and one expect that only very few loops remain and that they are finite since loop integration
reduces to integration over much lower-dimensional space than in the QFT approach. There are
also excellent hopes about Cutkoski rules.

2. Could zero energy ontology make also possible to construct massive incoming particles from
massless ones? Could one construct the representations of the super conformal algebras using
only massless states so that at the fundamental level incoming particles would be massless and
one could apply twistor formalism and build the momentum dependence of amplitudes using
Grassmannian integrals.

One could indeed construct on mass shell massive states from massless states with momenta
along the same line but with three-momenta at opposite directions. Mass squared is given by
M2 = 4E2 in the coordinate frame, where the momenta are opposite and of same magnitude.
One could also argue that partonic 2-surfaces carrying quantum numbers of fermions and their
superpartners serve as the analogs of point like massless particles and that topologically con-
densed fermions and gauge bosons plus their superpartners correspond to pairs of wormhole
throats. Stringy objects would correspond to pairs of wormhole throats at the same space-time
sheet in accordance with the fact that space-time sheet allows a slicing by string worlds sheets
with ends at different wormhole throats and defining time like braiding.

The weak form of electric magnetic duality indeed supports this picture. To understand how, one
must explain a little bit what the weak form of electric magnetic duality means.

1. Elementary particles correspond to light-like orbits of partonic 2-surfaces identified as 3-D sur-
faces at which the signature of the induced metric of space-time surface changes from Euclidian
to Minkowskian and 4-D metric is therefore degenerate. The analogy with black hole horizon is
obvious but only partial. Weak form of electric-magnetic duality states that the Kähler electric
field at the wormhole throat and also at space-like 3-surfaces defining the ends of the space-time
surface at the upper and lower light-like boundaries of the causal diamond is proportonial to
Kähler magnetic field so that Kähler electric flux is proportional Kähler magnetic flux. This
implies classical quantization of Kähler electric charge and fixes the value of the proportionality
constant.

2. There are also much more profound implications. The vision about TGD as almost topological
QFT suggests that Kähler function defining the Kähler geometry of the ”world of classical
worlds” (WCW) and identified as Kähler action for its preferred extremal reduces to the 3-D
Chern-Simons action evaluted at wormhole throats and possible boundary components. Chern-
Simons action would be subject to constraints. Wormhole throats and space-like 3-surfaces
would represent extremals of Chern-Simons action restricted by the constraint force stating
electric-magnetic duality (and realized in terms of Lagrange multipliers as usual).

If one assumes that Kähler current and other conserved currents are proportional to current
defining Beltrami flow whose flow lines by definition define coordinate curves of a globally defined
coordinate, the Coulombic term of Kähler action vanishes and it reduces to Chern-Simons action
if the weak form of electric-magnetic duality holds true. One obtains almost topological QFT.
The absolutely essential attribute ”almost” comes from the fact that Chern-Simons action is
subject to constraints. As a consequence, one obtains non-vanishing four-momenta and WCW
geometry is non-trivial in M4 degrees of freedom. Otherwise one would have only topological
QFT not terribly interesting physically.

Consider now the question how one could understand stringy objects as bound states of massless
particles.

1. The observed elementary particles are not Kähler monopoles and there much exist a mechanism
neutralizing the monopole charge. The only possibility seems to be that there is opposite
Kähler magnetic charge at second wormhole throat. The assumption is that in the case of color
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neutral particles this throat is at a distance of order intermediate gauge boson Compton length.
This throat would carry weak isospin neutralizing that of the fermion and only electromagnetic
charge would be visible at longer length scales. One could speak of electro-weak confinement.
Also color confinement could be realized in analogous manner by requiring the cancellation of
monopole charge for many-parton states only. What comes out are string like objects defined
by Kähler magnetic fluxes and having magnetic monopoles at ends. Also more general objects
with three strings branching from the vertex appear in the case of baryons. The natural guess
is that the partons at the ends of strings and more general objects are massless for incoming
particles but that the 3-momenta are in opposite directions so that stringy mass spectrum and
representations of relevant super-conformal algebras are obtained. This description brings in
mind the description of hadrons in terms of partons moving in parallel apart from transversal
momentum about which only momentum squared is taken as observable.

2. Quite generally, one expects for the preferred extremals of Kähler action the slicing of space-time
surface with string world sheets with stringy curves connecting wormhole throats. The ends of
the stringy curves can be identified as light-like braid strands. Note that the strings themselves
define a space-like braiding and the two braidings are in some sense dual. This has a con-
crete application in TGD inspired quantum biology, where time-like braiding defines topological
quantum computer programs and the space-like braidings induced by it its storage into memory.
Stringlike objects defining representations of super-conformal algebras must correspond to states
involving at least two wormhole throats. Magnetic flux tubes connecting the ends of magneti-
cally charged throats provide a particular realization of stringy on mass shell states. This would
give rise to massless propagation at the parton level. The stringy quantization condition for
mass squared would read as 4E2 = n in suitable units for the representations of super-conformal
algebra associated with the isometries. For pairs of throats of the same wormhole contact stringy
spectrum does not seem plausible since the wormhole contact is in the direction of CP2. One
can however expect generation of small mass as deviation of vacuum conformal weight from half
integer in the case of gauge bosons.

If this picture is correct, one might be able to determine the momentum dependence of the scat-
tering amplitudes by replacing free fermions with pairs of monopoles at the ends of string and topo-
logically condensed fermions gauge bosons with pairs of this kind of objects with wormhole throat
replaced by a pair of wormhole throats. This would mean suitable number of doublings of the Grass-
mannian integrations with additional constraints on the incoming momenta posed by the mass shell
conditions for massive states.

2.2 Could zero energy ontology make possible full Yangian symmetry?

The partons in the loops are on mass shell particles have a discrete mass spectrum but both signs
of energy are possible for opposite wormhole throats. This implies that in the rules for constructing
loop amplitudes from tree amplitudes, propagator entanglement is restricted to that corresponding
to pairs of partonic on mass shell states with both signs of energy. As emphasized in [36], it is
the Grassmannian integrands and leading order singularities of N = 4 SYM, which possess the full
Yangian symmetry. The full integral over the loop momenta breaks the Yangian symmetry and brings
in IR singularities. Zero energy ontologist finds it natural to ask whether QFT approach shows its
inadequacy both via the UV divergences and via the loss of full Yangian symmetry. The restriction
of virtual partons to discrete mass shells with positive or negative sign of energy imposes extremely
powerful restrictions on loop integrals and resembles the restriction to leading order singularities.
Could this restriction guarantee full Yangian symmetry and remove also IR singularities?

2.3 Could Yangian symmetry provide a new view about conserved quan-
tum numbers?

The Yangian algebra has some properties which suggest a new kind of description for bound states.
The Cartan algebra generators of n = 0 and n = 1 levels of Yangian algebra commute. Since the
co-product ∆ maps n = 0 generators to n = 1 generators and these in turn to generators with high
value of n, it seems that they commute also with n ≥ 1 generators. This applies to four-momentum,
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color isospin and color hyper charge, and also to the Virasoro generator L0 acting on Kac-Moody
algebra of isometries and defining mass squared operator.

Could one identify total four momentum and Cartan algebra quantum numbers as sum of contri-
butions from various levels? If so, the four momentum and mass squared would involve besides the
local term assignable to wormhole throats also n-local contributions. The interpretation in terms of
n-parton bound states would be extremely attractive. n-local contribution would involve interaction
energy. For instance, string like object would correspond to n = 1 level and give n = 2-local contribu-
tion to the momentum. For baryonic valence quarks one would have 3-local contribution corresponding
to n = 2 level. The Yangian view about quantum numbers could give a rigorous formulation for the
idea that massive particles are bound states of massless particles.

2.4 What about the selection of preferred M2 ⊂M4?

The puzzling aspect of the proposed picture is the restriction of the pseudo-momenta to M2 and
quite generally the the selection of preferred plane M2 ⊂ M4. This selection is one the key aspects
of TGD but is not too well understood. Also the closely related physical interpretation of the 2-D
pseudo-momenta in M2 is unclear.

2.4.1 The avatars of M2 ⊂M4 in quantum TGD

The choice of preferred plane M2 ⊂M4 pops u again and again in quantum TGD.

1. There are very strong reasons to believe that the solutions of field equations for the preferred
extremals assign M2 to each point of space-time surface and the interpretation is as the plane
of non-physical polarizations. One can also consider the possibility that M2 depends on the
point of space-time surface but that the different choices integrate to 2-D surface analogous to
string world sheet - very naturally projection of stringy worlds sheets defining the slicing of the
space-time surface.

2. The number theoretic vision- in particular M8−H duality (H = M4×CP2) providing a purely
number theoretic interpretation for the choice H = M4 × CP2 - involves also the selection of
preferred M2. The duality states that the surfaces in H can be regarded equivalently as surfaces
in M8. The induced metric and Kähler form are identical as also the value of Kähler function.
The description of the duality is following.

(a) The points of space-time surface in M8 = M4 ×E4 in M8 are mapped to points of space-
time surface in M4 × CP2. The M4 part of the map is just a projection.

(b) CP2 part of the map is less trivial. The idea is that M8 is identified as a subspace of com-
plexified octonions obtained by adding commutative imaginary unit, I call this sub-space
hyper-octonionic. Suppose that space-time surface is hyper-quaternionic (in appropriate
sense meaning that one can attach to its each point a hyper-quaternionic plane, not neces-
sary tangent plane). Assume that it also contains a preferred hypercomplex plane M2 of
M8 at each point -or more generally a varying plane M2 planes whose distribution however
integrates to form 2-surface analogous to string world sheet. The interpretation is as a
preferred plane of non-physical polarizations so that basic aspect of gauge symmetry would
have a number theoretic interpretation. Note that one would thus have a local hierarchy
of octonionic, quaternionic, and complex planes.

(c) Under these assumptions the tangent plane (if action is just the four-volume or its general-
ization in the case of Kähler action) is characterized by a point of CP2 = SU(3)/U(2) where
SU(3) is automorphism group of octonions respecting preferred plane M2 of polarizations
and U(2) is automorphism group acting in the hyper-quaternionic plane. This point can
be identified as a point of CP2 so that one obtains the duality.

3. Also the definition of CDs and the proposed construction of the hierarchy of Planck constants
involve a choice of preferred M2, which corresponds to the choice of rest frame and quantization
axis of angular momentum physically. Therefore the choice of quantization axis would have
direct correlates both at the level of CDs and space-time surface. The vector between the tips
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of CD indeed defines preferred direction of time and thus rest system. Similar considerations
apply in the case of CP2.

4. Preferred M2 -but now at this time at momentum space level - appears as the plane of pseudo-
momenta associated with the generalized eigen modes of the modified Dirac equation associated
with Chern-Simons action. Internally consistency requires a restriction to this plane. This looks
somewhat mysterious since this would mean that all exchanged virtual momenta would be in
M2 if the choice is same for all lines of the generalized Feynman graph. This would restrict
momentum exchanges in particle reactions to single dimension and does not make sense. One
must however notice that in the description of hadronic reactions in QCD picture one makes a
choice of longitudinal momentum direction and considers only longitudinal momenta. It would
seem that the only possibility is that the planes M2 are independent for independent exchanged
momenta. For instance, in 2 → 2 scattering the exchange would be in plane defined by the
initial and final particles of the vertex. There are also good arguments for a number theoretic
quantization of the momenta in M2.

The natural expectation from M8 − H duality is that the selection of preferred M2 implies a
reduction of symmetries to those of M2 × E6 and M2 × E2 × CP2. Could the equivalence of
M8 and H descriptions force the reduction of M4 momentum to M2 momentum implied also
by the generalized eigen value equation for the modified Dirac operator at wormhole throats?

2.4.2 The moduli space associated with the choice of M2

Lorentz invariance requires that one must have moduli space of CDs with fixed tips defined as
SO(3, 1)/SO(1) × SO(2) characterizing different choices of M2. Maximal Lorentz invariance re-
quires the association of this moduli space to all lines of the generalized Feynman graph. It is easy
to deduce that this space is actually the hyperboloid of 5-D Minkowski space. The moduli space is
4-dimensional and has Euclidian signature of the metric. This follows from the fact that SO(3, 1)
has Euclidian signature as a surface in the four-fold Cartesian power H(1, 3)4 of Lobatchevski space
with points identified as four time-like unit vectors defining rows of the matrix representing Lorentz
transformation. This surface is defined by the 6 orthogonality conditions for the rows of the Lorentz
transformation matrix constraints stating the orthogonality of the 4 unit vectors. The Euclidian sig-
nature fixes the identification of the moduli space as H(1, 5) having Euclidian signature of metric.
The 10-D isometry group SO(1, 5) of the moduli space acts as symmetries of 5-D Minkowski space
(note that the conformal group of M4 is SO(2, 4). The non-compactness of this space does not favor
the idea of wave function in moduli degrees of freedom.

Concerning the interpretation of pseudo-momenta it is best to be cautious and make only questions.
Should one assume that M2 for the exchanged particle is fixed by the initial and final momenta of
the particle emitting it? How to fix in this kind of situation a unique coordinate frame in which the
number theoretic quantization of exchanged momenta takes place? Could it be the rest frame for the
initial state of the emitting particle so that one should allow also boosts of the number theoretically
preferred momenta? Should one only assume the number theoretically preferred mass values for the
exchanged particle but otherwise allow the hyperbolic angle characterizing the energy vary freely?

2.5 Does M8 − H duality generalize the duality between twistor and mo-
mentum twistor descriptions?

M8 − H duality is intuitively analogous to the duality of elementary wave mechanics meaning that
one can use either x-space or momentum space to describe particles. M8 is indeed the tangent space
of H and one could say that M8 −H duality assigns to a 4-surface in H its ”momentum” or tangent
as a 4-surface in M8. The more concrete identification of M8 as cotangent bundle of H so that its
points would correspond to 8-momenta: this very naive picture is of course not correct.

M8 −H duality suggests that the descriptions using isometry groups of M4 ×E4 and M4 × CP2

-or as the special role of M2 suggests - those of M2 × E6 and M2 × E2 × CP2 should be equivalent.
The interpretation in hadron physics context would be that SO(4) is the counterpart of color group
in low energy hadron physics acting on strong isospin degrees of freedom and SU(3) that of QCD
description useful at high energies. SO(4) is indeed used in old fashioned hadron physics when quarks
and gluons had not yet been introduced. Skyrme model is one example.
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The obvious question is whether the duality between descriptions based on twistors and momentum
space twistors generalizes to M8 −H duality. The basic objection is that the charges and their duals
should correspond to the same Lie algebra- or rather Kac-Moody algebra. This is however not the
case. For the massless option one has SO(2) × SU(3) at H-side and SO(2) × SO(4) or SO(6) and
M8 side.This suggests that M8 − H duality is analogous to the duality between descriptions using
twistors and momentum space twistors and transforms the local currents J0 to non-local currents
J1 and vice versa. This duality would be however be more general in the sense that would relate
Yangian symmetries with different Kac-Moody groups transforming locality to non-locality and vice
versa. This interpretation is consistent with the fact that the groups SO(2) × SO(4), SO(6) and
SO(2)× SU(3) have same rank and the standard construction of Kac-Moody generators in terms of
exponentials of the Cartan algebra involves only different weights in the exponentials.

If M8 −H duality has something to do with the duality between descriptions using twistors and
momentum space twistors involved with Yangian symmetry, it should be consistent with the basic
aspects of the latter duality. The following arguments provide support for this.

1. SO(4) should appear as a dynamical symmetry at M4×CP2 side and SU(3) at M8 side (where it
indeed appears as both subgroup of isometries and as tangent space group respecting the choice
of M2. One could consider the breaking of SO(4) to the subgroup corresponding to vectorial
transformations and interpreted in terms of electroweak vectorial SU(2): this would conform
with conserved vector current hypothesis and partially conserved axial current hypothesis. The
U(1) factor assignable to Kähler form is also present and allows Kac-Moody variant and an
extension to Yangian.

2. The heuristics of twistorial approach suggests that the roles of currents J0 and their non-local
duals J1 in Minkowski space are changed in the transition from H description to M8 description
in the sense that the non-local currents J1 inH description become local currents in 8-momentum
space (or 4-momentum +strong isospin) in M8 description and J0 becomes non-local one. In the
case of hadron physics the non-local charges assignable to hadrons as collections of partons would
become local charges meaning that one can assign them to partonic 2-surfaces at boundaries
of CDs assigned to M8: this says that hadrons are the only possible final states of particle
reactions. By the locality it would be impossible decompose momentum and strong isospin to a
collection of momenta and strong isospins assigned to partons.

3. In H description it would be impossible to do decompose quantum numbers to those of quarks
and gluons at separate uncorrelated partonic 2-surfaces representing initial and final states
of particle reaction. A possible interpretation would be in terms of monopole confinement
accompanying electroweak and color confinement: single monopole is not a particle. In M4×E4

monopoles must be also present since induced Kähler forms are identical. The Kähler form
represents magnetic monopole in E4 and breaks its translational symmetry and also selects
unique M4 × E4 decomposition.

4. Since the physics should not depend on its description, color should be confined also now. Indeed,
internal quantum numbers should be assigned in M8 picture to a wave function in M2 × E6

and symmetries would correspond to SO(1, 1)× SO(6) or - if broken- to those of SO(1, 1)×G,
G = SO(2) × SO(4) or G = SO(3) × SO(3). Color would be completely absent in accordance
with the idea that fundamental observable objects are color singlets. Instead of color one would
have SO(4) quantum numbers and SO(4) confinement: note that the rank of this group crucial
for Kac-Moody algebra construction is same as that of SU(3).

It is not clear whether the numbers of particle states should be same for SO(4) and SU(3). If
so, quark triplet should correspond to doublet and singlet for strong vectorial isospin in M8

picture. Gluons would correspond to SU(2)V multiplets contained by color octet and would
therefore contain also other representations than adjoint. This could make sense in composite
particle interpretation.

5. For M2 × E2 longitudinal momentum and helicity would make sense and one could speak of
massless strong isospin at M8 side and massless color at H-side: note that massless color is the
only possibility. For M2 × SO(6) option one would have 15-D adjoint representation of SO(6)
decomposing as 3×3+3×1+1×3 under SO(3)×SO(3). This could be interpreted in terms of
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spin and vectorial isopin for massive particles so that the multiplets would relate to weak gauge
bosons and Higgs boson singlet and triplet plus its pseudoscalar variant. For 4-D representation
of SO(6) one would have 2×2 decomposition having interpretation in terms of spin and vectorial
isospin.

Massive spin would be associated as a local notion with M2 × E3 and would be essentially
5-D concept. At H side massive particle would make sense only as a non-local notion with
four-momentum and mass represented as a non-local operator.

These arguments indeed encourage to think that M8−H duality could be the analog for the duality
between the descriptions in terms of twistors and momentum twistors. In this case the Kac-Moody
algebras are however not identical since the isometry groups are not identical.

3 Some mathematical details about Grasmannian formalism

In the following I try to summarize my amateurish understanding about the mathematical structure
behind the Grassmann integral approach. The representation summarizes what I have gathered from
the articles of Arkani-Hamed and collaborators [35, 36]. These articles are rather sketchy and the
article of Bullimore provides additional details [39] related to soft factors. The article of Mason and
Skinner provides excellent introduction to super-twistors [37] and dual super-conformal invariance. I
apologize for unavoidable errors.

Before continuing a brief summary about the history leading to the articles of Arkani-Hamed and
others is in order. This summary covers only those aspects which I am at least somewhat familiar
with and leaves out many topics about existence which I am only half-conscious.

1. It is convenient to start by summarizing the basic facts about bi-spinors and their conjugates
allowing to express massless momenta as paa

′
= λaλ̃a′ with λ̃ defined as complex conjugate of

λ and having opposite chirality. When λ is scaled by a complex number λ̃ suffers an opposite
scaling. The bi-spinors allow the definition of various inner products

〈λ, µ〉 = εabλ
aµb ,[

λ̃, µ̃
]

= εa′b′λ
a′µb

′
,

p · q = 〈λ, µ〉
[
λ̃, µ̃

]
, (qaa′ = µaµ̃a′) . (3.1)

If the particle has spin one can assign it a positive or negative helicity h = ±1 . Positive helicity
can be represented by introducing artitrary negative (positive) helicity bispinor µa (µa′) not
parallel to λa (µa′) so that one can write for the polarization vector

εaa′ =
µaλ̃a′

〈µ, λ〉
, positive helicity ,

εaa′ =
λaµ̃a′[
µ̃, λ̃

] , negative helicity . (3.2)

In the case of momentum twistors the µ part is determined by different criterion to be discussed
later.

2. Tree amplitudes are considered and it is convenient to drop the group theory factor Tr(T1T2 · · ·Tn).
The starting point is the observation that tree amplitude for which more than n−2 gluons have
the same helicity vanish. MHV amplitudes have exactly n− 2 gluons of same helicity- taken by
a convention to be negative- have extremely simple form in terms of the spinors and reads as

An =
〈λx, λy〉4∏n
i=1〈λi, λi+1〉

(3.3)

When the sign of the helicities is changed 〈..〉 is replaced with [..].
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3. The article of Witten [28] proposed that twistor approach could be formulated as a twistor
string theory with string world sheets ”living” in 6-dimensional CP3 possessing Calabi-Yau
structure and defining twistor space. In this article Witten introduced what is known as half
Fourier transform allowing to transform momentum integrals over light-cone to twistor integrals.
This operation makes sense only in space-time signature (2, 2). Witten also demonstrated that
maximal helicity violating (MHV) twistor amplitudes (two gluons with negative helicity) with
n particles with k+ 2 negative helicities and l loops correspond in this approach to holomorphic
2-surfaces defined by polynomials defined by polynomials of degree D = k − 1 + l, where the
genus of the surface satisfies g ≤ l. AdS/CFT duality provides a second stringy approach to
N = 4 theory allowing to understand the scattering amplitudes in terms of Wilson loops with
light-like edges: about this I have nothing to say. In any case, the generalization of twistor
string theory to TGD context is highly attractive idea and will be considered later.

4. In the article [30] Cachazo, Svrcek, and Witten propose the analog of Feynman diagrammatics
in which MHV amplitudes can be used as analogs of vertices and ordinary 1/P 2 propagator
as propagator to construct tree diagrams with arbitrary number of negative helicity gluons.
This approach is not symmetric with respect to the change of the sign of helicities since the
amplitudes with two positive helicities are constructed as tree diagrams. The construction is
non-trivial because one must analytically continue the on mass shell tree amplitudes to off mass
shell momenta. The problem is how to assign a twistor to these momenta. This is achieved
by introducing an arbitrary twistor ηa

′
and defining λa as λa = paa′η

a′ . This works for both
massless and massive case. It however leads to a loss of the manifest Lorentz invariance. The
paper however argues and the later paper [31] shows rigorously that the loss is only apparent.
In this paper also BCFW recursion formula is introduced allowing to construct tree amplitudes
recursively by starting from vertices with 2 negative helicity gluons. Also the notion which
has become known as BCFW bridge representing the massless exchange in these diagrams is
introduced. The tree amplitudes are not tree amplitudes in gauge theory sense where correspond
to leading singularities for which 4 or more lines of the loop are massless and therefore collinear.
What is important that the very simple MHV amplitudes become the building blocks of more
complex amplitudes.

5. The nex step in the progress was the attempt to understand how the loop corrections could be
taken into account in the construction BCFW formula. The calculation of loop contributions to
the tree amplitudes revealed the existence of dual super-conformal symmetry which was found
to be possessed also by BCFW tree amplitudes besides conformal symmetry. Together these
symmetries generate infinite-dimensional Yangian symmetry [37].

6. The basic vision of Arkani-Hamed and collaborators is that the scattering amplitudes of N = 4
SYM are constructible in terms of leading order singularities of loop diagrams. These singulari-
ties are obtained by putting maximum number of momenta propagating in the lines of the loop
on mass shell. The non-leading singularities would be induced by the leading singularities by
putting smaller number of momenta on mass shell are dictated by these terms. A related idea
serving as a starting point in [35] is that one can define loop integrals as residue integrals in
momentum space. If I have understood correctly, this means that one an imagine the possibility
that the loop integral reduces to a lower dimensional integral for on mass shell particles in the
loops: this would resemble the approach to loop integrals based on unitarity and analyticity.
In twistor approach these momentum integrals defined as residue integrals transform to residue
integrals in twistor space with twistors representing massless particles. The basic discovery is
that one can construct leading order singularities for n particle scattering amplitude with k+ 2
negative helicities as Yangian invariants Yn,k for momentum twistors and invariants constructed
from them by canonical operations changing n and k. The correspondence k = l does not hold
true for the more general amplitudes anymore.

3.1 Yangian algebra and its super counterpart

The article of Witten [29] gives a nice discussion of the Yangian algebra and its super counterpart.
Here only basic formulas can be listed and the formulas relevant to the super-conformal case are given.
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3.1.1 Yangian algebra

Yangian algebra Y (G) is associative Hopf algebra. The elements of Yangian algebra are labelled by
non-negative integers so that there is a close analogy with the algebra spanned by the generators
of Virasoro algebra with non-negative conformal weight. The Yangian symmetry algebra is defined
by the following relations for the generators labeled by integers n = 0 and n = 1. The first half
of these relations discussed in very clear manner in [29] follows uniquely from the fact that adjoint
representation of the Lie algebra is in question

[
JA, JB

]
= fABC JC ,

[
JA, J (1)B

]
= fABC J (1)C . (3.4)

Besides this Serre relations are satisfied. These have more complex and read as

[
J (1)A,

[
J (1)B , JC

]]
+
[
J (1)B ,

[
J (1)C , JA

]]
+
[
J (1)C ,

[
J (1)A, JB

]]
=

1

24
fADKfBELfCFMfKLM{JD, JE , JF } ,[[

J (1)A, J (1)B
]
,
[
JC , J (1)D

]]
+
[[
J (1)C , J (1)D

]
,
[
JA, J (1)B

]]
=

1

24
fAGLfBEMfCDK

+fCGLfDEMfABK )fKFNfLMN{JG, JE , JF } .

(3.5)

The indices of the Lie algebra generators are raised by invariant, non-degenerate metric tensor gAB
or gAB . {A,B,C} denotes the symmetrized product of three generators.

Repeated commutators allow to generate the entire algebra whose elements are labeled by non-
negative integer n. The generators obtain in this manner are n-local operators arising in (n − 1)-
commutator of J (1):s. For SU(2) the Serre relations are trivial. For other cases the first Serre relation
implies the second one so the relations are redundant. Why Witten includes it is for the purposed of
demonstrating the conditions for the existence of Yangians associated with discrete one-dimensional
lattices (Yangians exists also for continuum one-dimensional index).

Discrete one-dimensional lattice provides under certain consistency conditions a representation for
the Yangian algebra. One assumes that each lattice point allows a representation R of JA so that one
has JA =

∑
i J

A
i acting on the infinite tensor power of the representation considered. The expressions

for the generators J1A are given as

J (1)A = fABC
∑
i<j

JBi J
C
j . (3.6)

This formula gives the generators in the case of conformal algebra. This representation exists if the
adjoint representation of G appears only one in the decomposition of R⊗R. This is the case for SU(N)
if R is the fundamental representation or is the representation of by kth rank completely antisymmetric
tensors.

This discussion does not apply as such to N = 4 case the number of lattice points is finite
and corresponds to the number of external particles so that cyclic boundary conditions are needed
guarantee that the number of lattice points reduces effectively to a finite number. Note that the
Yangian in color degrees of freedom does not exist for SU(N) SYM.

As noticed, Yangian algebra is a Hopf algebra and therefore allows co-product. The co-product ∆
is given by

∆(JA) = JA ⊗ 1 + 1⊗ JA ,

∆(J (1)A) = J (1)A ⊗ 1 + 1⊗ J (1)A + fABCJ
B ⊗ JC per,

(3.7)
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∆ allows to imbed Lie algebra to the tensor product in non-trivial manner and the non-triviality
comes from the addition of the dual generator to the trivial co-product. In the case that the single
spin representation of J (1)A is trivial, the co-product gives just the expression of the dual generator
using the ordinary generators as a non-local generator. This is assumed in the recent case and also
for the generators of the conformal Yangian.

3.1.2 Super-Yangian

Also the Yangian extensions of Lie super-algebras make sense. From the point of physics especially
interesting Lie super-algebras are SU(m|m) and U(m|m). The reason is that PSU(2, 2|4) (P refers
to ”projective”) acting as super-conformal symmetries of N = 4 SYM and this super group is a real
form of PSU(4|4). The main point of interest is whether this algebra allows Yangian representation
and Witten demonstrated that this is indeed the case [29].

These algebras are Z2 graded and decompose to bosonic and fermionic parts which in general
correspond to n- and m-dimensional representations of U(n). The representation associated with the
fermionic part dictates the commutation relations between bosonic and fermionic generators. The
anticommutator of fermionic generators can contain besides identity also bosonic generators if the
symmetrized tensor product in question contains adjoint representation. This is the case if fermions
are in the fundamental representation and its conjugate. For SU(3) the symmetrize tensor product
of adjoint representations contains adjoint (the completely symmetric structure constants dabc) and
this might have some relevance for the super SU(3) symmetry.

The elements of these algebras in the matrix representation (no Grassmann parameters involved)
can be written in the form

x =

(
a b
c d

)
.

a and d representing the bosonic part of the algebra are n × n matrices and m ×m matrices corre-
sponding to the dimensions of bosonic and fermionic representations. b and c are fermionic matrices
are n ×m and m × n matrices, whose anticommutator is the direct sum of n × n and n × n matri-
ces. For n = m bosonic generators transform like Lie algebra generators of SU(n) × SU(n) whereas
fermionic generators transform like n ⊗ n ⊕ n ⊗ n under SU(n) × SU(n). Supertrace is defined as
Str(x) = Tr(a)− Tr(b). The vanishing of Str defines SU(n|m). For n 6= m the super trace condition
removes identity matrix and PU(n|m) and SU(n|m) are same. That this does not happen for n = m
is an important delicacy since this case corresponds to N = 4 SYM. If any two matrices differing by
an additive scalar are identified (projective scaling as now physical effect) one obtains PSU(n|n) and
this is what one is interested in.

Witten shows that the condition that adjoint is contained only once in the tensor product R⊗R
holds true for the physically interesting representations of PSU(2, 2|4) so that the generalization of
the bilinear formula can be used to define the generators of J (1)A of super Yangian of PU(2, 2|4). The
defining formula for the generators of the Super Yangian reads as

J
(1)
C = gCC′J (1)C′

= gCC′fC
′

AB

∑
i<j

JAi J
B
j

= gCC′fC
′

ABg
AA′

gBB
′ ∑
i<j

J iA′J
j
B′ .

(3.8)

Here gAB = Str(JAJB) is the metric defined by super trace and distinguishes between PSU(4|4) and
PSU(2, 2|4). In this formula both generators and super generators appear.

3.1.3 Generators of super-conformal Yangian symmetries

The explicit formula for the generators of super-conformal Yangian symmetries in terms of ordinary
twistors is given by
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jAB =

n∑
i=1

ZAi ∂ZB
i
,

j
(1)A
B =

∑
i<j

(−1)C
[
ZAi ∂ZC

j
ZCj ∂ZB

j

]
. (3.9)

This formula follows from completely general formulas for the Yangian algebra discussed above and

allowing to express the dual generators j
(1)
N as quadratic expression of jN involving structures con-

stants. In this rather sketchy formula twistors are ordinary twistors. Note however that in the recent
case the lattice is replaced with its finite cutoff corresponding to the external particles of the scattering
amplitude. This probably corresponds to the assumption that for the representations considered only
finite number of lattice points correspond to non-trivial quantum numbers or to cyclic symmetry of
the representations.

In the expression for the amplitudes the action of transformations is on the delta functions and by
partial integration one finds that a total divergence results. This is easy to see for the linear generators
but not so for the quadratic generators of the dual super-conformal symmetries. A similar formula but

with jAB and j
(1)A
B interchanged applies in the representation of the amplitudes as Grassmann integrals

using ordinary twistors. The verification of the generalization of Serre formula is also straightforward.

3.2 Twistors and momentum twistors and super-symmetrization

In [37] the basics of twistor geometry are summarized. Despite this it is perhaps good to collect the
basic formulas here.

3.2.1 Conformally compactified Minkowski space

Conformally compactified Minkowski space can be described as SO(2, 4) invariant (Klein) quadric

T 2 + V 2 −W 2 −X2 − Y 2 − Z2 = 0 . (3.10)

The coordinates (T, V,W,X, Y, Z) define homogenous coordinates for the real projective space RP 5.
One can introduce the projective coordinates Xαβ = −Xβα through the formulas

X01 = W − V , X02 = Y + iX , X03 = i√
2
T − Z ,

X12 = − i√
2
(T + Z) , X13 = Y − iX , X23 = 1

2 (V +W ) .
(3.11)

The motivation is that the equations for the quadric defining the conformally compactified Minkowski
space can be written in a form which is manifestly conformally invariant:

εαβγδXαβXγδ = 0 . (3.12)

The points of the conformally compactified Minkowski space are null separated if and only if the
condition

εαβγδXαβYγδ = 0 (3.13)

holds true.

3.2.2 Correspondence with twistors and infinity twistor

One ends up with the correspondence with twistors by noticing that the condition is equivalent with
the possibility to expression Xαβ as

Xαβ = A[αBβ] , (3.14)
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where brackets refer to antisymmetrization. The complex vectors A and B define a point in twistor
space and are defined only modulo scaling and therefore define a point of twistor space CP3 defining
a covering of 6-D Minkowski space with metric signature (2, 4). This corresponds to the fact that the
Lie algebras of SO(2, 4) and SU(2, 2) are identical. Therefore the points of conformally compactified
Minkowski space correspond to lines of the twistor space defining spheres CP1 in CP3.

One can introduce a preferred scale for the projective coordinates by introducing what is called
infinity twistor (actually a pair of twistors is in question) defined by

Iαβ =

(
εA

′B′
0

0 0

)
. (3.15)

Infinity twistor represents the projective line for which only the coordinate X01 is non-vanishing and
chosen to have value X01 = 1.

One can define the contravariant form of the infinite twistor as

Iαβ = εαβγδIγδ =

(
0 0
0 εAB

)
. (3.16)

Infinity twistor defines a representative for the conformal equivalence class of metrics at the Klein
quadric and one can express Minkowski distance as

(x− y)2 =
XαβYαβ

IαβXαβIµνY µν
. (3.17)

Note that the metric is necessary only in the denominator. In twistor notation the distance can be
expressed as

(x− y)2 =
ε(A,B,C,D)

〈AB〉〈CD〉
. (3.18)

Infinite twistor Iαβ and its contravariant counterpart project the twistor to its primed and unprimed

parts usually denoted by µA
′

and λA and defined spinors with opposite chiralities.

3.2.3 Relationship between points of M4 and twistors

In the coordinates obtained by putting X01 = 1 the relationship between space-time coordinates xAA
′

and Xαβ is

Xαβ =

(
− 1

2ε
A′B′

x2 −ixA′

B

ix B′

A εA,B

)
, Xαβ =

(
εA′B ′x2 −ix B

A′

ixAB′ − 1
2ε
ABx2

)
, (3.19)

If the point of Minkowski space represents a line defined by twistors (µU , λU ) and (µV , λV ), one
has

xAC
′

= i
(µV λU − µUλV )AC

′

〈UV 〉
(3.20)

The twistor µ for a given point of Minkowski space in turn is obtained from λ by the twistor formula
by

µA
′

= −ixAA
′
λA . (3.21)
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3.2.4 Generalization to the super-symmetric case

This formalism has a straightforward generalization to the super-symmetric case. CP3 is replaced
with CP3|4 so that Grassmann parameters have four components. At the level of coordinates this
means the replacement [WI ] = [Wα, χα]. Twistor formula generalizes to

µA
′

= −ixAA′
λA , χα = θAαλA . (3.22)

The relationship between the coordinates of chiral super-space and super-twistors generalizes to

(x, θ) =

(
i
(µV λU − µUλV )

〈UV 〉
,

(χV λU − χUλV )

〈UV 〉

)
(3.23)

The above summaried formulas can be applied to super-symmetric variants of momentum twistors
to deduce the relationship between region momenta x assigned with edges of polygons and twistors
assigned with the ends of the light-like edges. The explicit formulas are represented in [37]. The
geometric picture is following. The twistors at the ends of the edge define the twistor pair representing
the region momentum as a line in twistor space and the intersection of the twistor lines assigned with
the region momenta define twistor representing the external momenta of the graph in the intersection
of the edges.

3.2.5 Basic kinematics for momentum twistors

The supersymmetrization involves replacement of multiplets with super-multiplets

Φ(λ, λ̃, η) = G+(λ, λ̃) + ηiΓ
aλ, λ̃) + · · ·+ εabcdη

aηbηcηdG−(λ, λ̃) . (3.24)

Momentum twistors are dual to ordinary twistors and were introduced by Hodges. The light-like
momentum of external particle a is expressed in terms of the vertices of the closed polygon defining
the twistor diagram as

pµi = xµi − x
µ
i+1 = λiλ̃i , θi − θi+1 = λiηi . (3.25)

One can say that massless momenta have a conserved super-part given by λiηi. The dual of the
super-conformal group acts on the region momenta exactly as the ordinary conformal group acts on
space-time and one can construct twistor space for dua region momenta.

Super-momentum conservation gives the constraints

∑
pi = 0 ,

∑
λiηi = 0 . (3.26)

The twistor diagrams correspond to polygons with edges with lines carrying region momenta and
external massless momenta emitted at the vertices.

This formula is invariant under overall shift of the region momenta xµa . A natural interpretation
for xµa is as the momentum entering to the the vertex where pa is emitted. Overall shift would have
interpretation as a shift in the loop momentum. xµa in the dual coordinate space is associated with
the line Za−1Za in the momentum twistor space. The lines Za−1Za and ZaZa+1 intersect at Za
representing a light-like momentum vector pµa .

The brackets 〈abcd〉 ≡ εIJKLZIaZJb ZKc ZLd define fundamental bosonic conformal invariants appear-
ing in the tree amplitudes as basic building blocks. Note that Za define points of 4-D complex twistor
space to be distinguished from the projective twistor space CP3. Za define projective coordinates for
CP3 and one of the four complex components of Za is redundant and one can take Z0

a = 1 without a
loss of generality.

3.3 Brief summary of the work of Arkani-Hamed and collaborators

The following comments are an attempt to summarize my far from complete understanding about
what is involved with the representation as contour integrals. After that I shall describe in more
detail my impressions about what has been done.
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3.3.1 Limitations of the approach

Consider first the limitations of the approach.

1. The basis idea is that the representation for tree amplitudes generalizes to loop amplitudes.
On other words, the amplitude defined as a sum of Yangian invariants expressed in terms of
Grassmann integrals represents the sum of loops up to some maximum loop number. The
problem is here that shifts of the loop momenta are essential in the UV regularization procedure.
Fixing the coordinates x1, · · · , xn having interpretation as momenta associated with lines in the
dual coordinate space allows to eliminate the non-uniqueness due to the common shift of these
coordinates.

2. It is not however not possible to identify loop momentum as a loop momentum common to
different loop integrals unless one restricts to planar loops. Non-planar diagrams are obtained
from a planar diagram by permuting the coordinates xi but this means that the unique coordi-
nate assignment is lost. Therefore the representation of loop integrands as Grassmann integrals
makes sense only for planar diagrams. From TGD point of view one could argue that this is one
good reason for restricting the loops so that they are for on mass shell particles with non-parallel
on mass shell four-momenta and possibly different sign of energies for given wormhole contact
representing virtual particle.

3. IR regularization is needed even in N = 4 for SYM given by ”moving out on the Coulomb
branch theory” so that IR singularities remain the problem of the theory.

3.3.2 What has been done?

The article proposes a generalization of the BCFW recursion relation for tree diagrams of N = 4 for
SYM so that it applies to planar diagrams with a summation over an arbitrary number of loops.

1. The basic goal of the article is to generalize the recursion relations of tree amplitudes so that
they would apply to loop amplitudes. The key idea is following. One can formally represent
loop integrand as a contour integral in complex plane whose coordinate parameterizes the de-
formations Zn → Zn + εZn−1 and re-interpret the integral as a contour integral with oppositely
oriented contour surrounding the rest of the complex plane which can be imagined also as being
mapped to Riemann sphere. What happens only the poles which correspond to lower number
of loops contribute this integral. One obtains a recursion relation with respect to loop number.
This recursion seems to be the counterpart for the recursive construction of the loops correc-
tions in terms of absorptive parts of amplitudes with smaller number of loop using unitarity and
analyticity.

2. The basic challenge is to deduce the Grassmann integrands as Yangian invariants. From these
one can deduce loop integrals by integration over the four momenta associated with the lines of
the polygonal graph identifiable as the dual coordinate variables xa. The integration over loop
momenta can induce infrared divergences breaking Yangian symmetry. The big idea here is that
the operations described above allow to construct loop amplitudes from the Yangian invariants
defining tree amplitudes for a larger number of particles by removing external particles by fusing
them to form propagator lines and by using the BCFW bridge to fuse lower-dimensional invari-
ants. Hence the usual iterative procedure (bottom-up) used to construct scattering amplitudes
is replaced with a recursive procedure (top-down). Of course, once lower amplitudes has been
constructed they can be used to construct amplitudes with higher particle number.

3. The first guess is that the recursion formula involves the same lower order contributions as in
the case of tree amplitudes. These contributions have interpretation as factorization of channels
involving single particle intermediate states. This would however allow to reduce loop amplitudes
to 3-particle loop amplitudes which vanish in N = 4 SYM by the vanishing of coupling constant
renormalization. The additional contribution is necessary and corresponds to a source term
identifiable as a ”forward limit” of lower loop integrand. These terms are obtained by taking
an amplitude with two additional particles with opposite four-momenta and forming a state in
which these particles are entangled with respect to momentum and other quantum numbers.



3.4 The general form of Grassmannian integrals 20

Entanglement means integral over the massless momenta on one hand. The insertion brings in
two momenta xa and xb and one can imagine that the loop is represented by a branching of
propagator line. The line representing the entanglement of the massless states with massless
momentum define the second branch of the loop. One can of course ask whether only massless
momentum in the second branch. A possible interpretation is that this state is expressible by
unitarity in terms of the integral over light-like momentum.

4. The recursion formula for the loop amplitude Mn,k,l involves two terms when one neglects the
possibility that particles can also suffer trivial scattering (cluster decomposition). This term
basically corresponds to the Yangian invariance of n arguments identified as Yangian invariant
of n− 1 arguments with the same value of k.

(a) The first term corresponds to single particle exchange between particle groups obtained by
splitting the polygon at two vertices and corresponds to the so called BCFW bridge for
tree diagrams. There is a summation over different splittings as well as a sum over loop
numbers and dimensions k for the Grassmann planes. The helicities in the two groups are
opposite.

(b) Second term is obtained from an amplitude obtained by adding of two massless particles
with opposite momenta and corresponds to n + 2, k + 1, l − 1. The integration over the
light-like momentum together with other operations implies the reduction n+ 2→ n. Note
that the recursion indeed converges. Certainly the allowance of added zero energy states
with a finite number of particles is necessary for the convergence of the procedure.

3.4 The general form of Grassmannian integrals

If the recursion formula proposed in [36] is correct, the calculations reduce to the construction of
NkMHV (super) amplitudes. MHV refers to maximal helicity violating amplitudes with 2 negative
helicity gluons. For NkMHV amplitude the number of negative helicities is by definition k + 2[35].
Note that the total right handed R-charge assignable to 4 super-coordinates ηi of negative helicity
gluons can be identified as R = 4k. BCFW recursion formula [31] allows to construct from MHV
amplitudes with arbitrary number of negative helicities.

The basic object of study are the leading singularities of color-stripped n-particle NkMHV
amplitudes. The discovery is that these singularities are expressible in terms Yangian invariants
Yn,k(Z1, · · · , Zn), where Zi are momentum super-twistors. These invariants are defined by residue
integrals over the compact nk − 1-dimensional complex space G(n, k) = U(n)/U(k) × U(n − k) of
k-planes of complex n-dimensional space. n is the number of external massless particles, k is the
number negative helicity gluons in the case of NkMHV amplitudes, and Za, i = 1, · · · , n denotes the
projective 4-coordinate of the super-variant CP 3|4 of the momentum twistor space CP3 assigned to the
massless external particles is following. Gl(n) acts as linear transformations in the n-fold Cartesian
power of twistor space. Yangian invariant Yn,k is a function of twistor variables Za having values in
super-variant CP3|3 of momentum twistor space CP3 assigned to the massless external particles being
simple algebraic functions of the external momenta.

It is also possible to defineNkMHV amplitudes in terms of Yangian invariants Ln,k+2(W1, · · · ,Wn)
by using ordinary twistors Wa and identical defining formula. The two invariants are related by the
formula Ln,k+2(W1, · · · ,Wn) = M tree

MHV × Yn,k(Z1, · · · , Zn). Here M tree
MHV is the tree contribution to

the maximally helicity violating amplitude for the scattering of n particles: recall that these ampli-
tudes contain two negative helicity gluons whereas the amplitudes containing a smaller number of
them vanish [30]. One can speak of a factorization to a product of n-particle amplitudes with k − 2
and 2 negative helicities as the origin of the duality. The equivalence between the descriptions based
on ordinary and momentum twistors states the dual conformal invariance of the amplitudes imply-
ing Yangian symmetry. It has been conjectured that Grassmannian integrals generate all Yangian
invariants.

The formulas for the Grassmann integrals for twistors and momentum twistors appearing in the
expressions of NkMHV amplitudes are given by following expressions.

1. The integrals Ln,k(W1, · · · ,Wn) associated with Nk−2MHV amplitudes in the description based
on ordinary twistors correspond to k negative helicities and are given by
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Ln,k(W1, · · · ,Wn) =
1

V ol(GL(2))

∫
dk×nCαa

(1 · · · k)(2 · · · k + 1) · · · (n1 · · · k − 1)
×

×
k∏

α=1

d4|4Yα

n∏
i=1

δ4|4(Wi − CαiYα) .

(3.27)

Here Cαa denote the n× k coordinates used to parametrize the points of Gk,n.

2. The integrals Yn,k(W1, · · · ,Wn) associated with NkMHV amplitudes in the description based
on momentum twistors are defined as

Yn,k(Z1, · · · , Zn) =
1

V ol(GL(k))
×
∫

dk×nCαa
(1 · · · k)(2 · · · k + 1) · · · (n1 · · · k − 1)

×
k∏

α=1

δ4|4(CαaZa) .

(3.28)

The possibility to select Z0
a = 1 implies

∑
k Cαk = 0 allowing to eliminate Cαn so that the actual

number of coordinates Grassman coordinates is nk−1. As already noticed, Ln,k+2(W1, · · · ,Wn) =
M tree
MHV × Yn,k(Z1, · · · , Zn). Momentum twistors are obviously calculationally easier since the

value of k is smaller by two units.

The 4k delta functions reduce the number of integration variables of contour integrals from nk to
(n− 4)k in the bosonic sector (the definition of delta functions involves some delicacies not discussed
here). The n quantities (m, · · ·m + k) are k × k-determinants defined by subsequent columns from
m to m+ k − 1 of the k × n matrix defined by the coordinates Cαa and correspond geometrically to
the k-volumes of the k-dimensional parallel-pipeds defined by these column vectors. The fact that the
scalings of twistor space coordinates Za can be compensated by scalings of Cαa deforming integration
contour but leaving the residue integral invariant so that the integral depends on projective twistor
coordinates only.

Since the integrand is a rational function, a multi-dimensional residue calculus allows to deduce the
values of these integrals as residues associated with the poles of the integrand in a recursive manner.
The poles correspond to the zeros of the k×k determinants appearing in the integrand or equivalently
to singular lower-dimensional parallel-pipeds. It can be shown that local residues are determined by
(k− 2)(n− k− 2) conditions on the determinants in both cases. The value of the integral depends on
the explicit choice of the integration contour for each variable Cαa left when delta functions are taken
into account. The condition that a correct form of tree amplitudes is obtained fixes the choice of the
integration contours.

For the ordinary twistors W the residues correspond to projective configurations in CPk−1, or more
precisely in the space CPnk−1/Gl(k), which is (k− 1)n−k2-dimensional space defining the support for
the residues integral. Gl(k) relates to each other different complex coordinate frames for k-plane and
since the choice of frame does not affect the plane itself, one has Gl(k) gauge symmetry as well as the
dual Gl(n− k) gauge symmetry.

CPk−1 comes from the fact that Cαk
are projective coordinates: the amplitudes are indeed invariant

under the scalings Wi → tiWi, Cαi → tCαi. The coset space structure comes from the fact that Gl(k)
is a symmetry of the integrand acting as Cαi → Λ β

α Cβi . This analog of gauge symmetry allows to fix
k arbitarily chosen frame vectors Cαi to orthogonal unit vectors. For instance, one can have Cαi = δαi

for α = i ∈ 1, · · · , k. This choice is discussed in detail in [35]. The reduction to CPk−1 implies the
reduction of the support of the integral to line in the case of MHV amplitudes and to plane in the case
of NMHV as one sees from the expression dµ =

∏
α d

4|4Yα
∏n
i=1 δ

4|4(Wi−CαiYα). For (i1, · · · , ik) = 0
the vectors i1, ..ik belong to k − 2-dimensional plane of CPk−1. In the case of NMHV (N2MHV )
amplitudes this translates at the level of twistors to the condition that the corresponding twistors
{i1, i2, i3} ({i1, i2, i3, i4}) are collinear (in the same plane) in twistor space. This can be understood
from the fact that the delta functions in dµ allow to express Wi in terms of k − 1 Yα:s in this case.
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The action of conformal transformations in twistor space reduces to the linear action of SU(2, 2)
leaving invariant Hermitian sesquilinear form of signature (2, 2). Therefore the conformal invariance of
the Grassmannian integral and its dual variant follows from the possibility to perform a compensating
coordinate change for Cαa and from the fact that residue integral is invariant under small deformations
of the integration contour. The above described relationship between representations based on twistors
and momentum twistors implies the full Yangian invariance.

3.5 Canonical operations for Yangian invariants

General l-loop amplitudes can be constructed from the basic Yangian invariants defined by NkMHV
amplitudes by various operations respecting Yangian invariance apart from possible IR anomalies.
There are several operations that one can perform for Yangian invariants Yn,k and all these operations
appear in the recursion formula for planar all loop amplitudes. These operations are described in [36]
much better than I could do it so that I will not go to any details. It is possible to add and remove
particles, to fuse two Yangian invariants, to merge particles, and to construct from two Yangian
invariants a higher invariant containing so called BCFW bridge representing single particle exchange
using only twistorial methods.

3.5.1 Inverse soft factors

Inverse soft factors add to the diagram a massless collinear particles between particles a and b and by
definition one has

On+1(a, c, b, · · · ) =
〈ab〉
〈ac〉〈cb〉

On(a′b′) . (3.29)

At the limit when the momentum of the added particle vanishes both sides approach the original
amplitude. The right-handed spinors and Grassmann parameters are shifted

λ̃′a = λ̃a + 〈cb〉
〈ab〉 λ̃c , λ̃′b = λ̃b + 〈ca〉

〈ba〉 λ̃c ,

η′a = ηa + 〈cb〉
〈ab〉ηc , η′b = ηb + 〈ca〉

〈ba〉ηc .
(3.30)

There are two kinds of inverse soft factors.

1. The addition of particle leaving the value k of negative helicity gluons unchanged means just
the re-interpretation

Y ′n,k(Z1, · · · , Zn−1, Zn) = Yn−1,k(Z1, · · · , Zn−1) (3.31)

without actual dependence on Zn. There is however a dependence on the momentum of the
added particle since the relationship between momenta and momentum twistors is modified by
the addition obtained by applying the basic rules relating region super momenta and momentum
twistors (light-like momentum determines λi and twistor equations for xi and λi, ηi determine
(µi, χi)) is expressible assigned to the external particles [39]. Modifications are needed only for
the new vertex and its neighbors.

2. The addition of a particle increasing k with single unit is a more complex operation which can
be understood in terms of a residue of Yn,k proportional to Yn−1,k−1 and Yangian invariant
[z1 · · · z5] with five arguments constructed from basic Yangian invariants with four arguments.
The relationship between the amplitudes is now

Y ′n,k(.., Zn−1Zn, Z1 · · · ) = [n− 2 n− 1 n 1 2]× Yn−1,k−1(· · · Ẑn−1, Ẑ1, · · · ) . (3.32)

Here
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[abcde] =
δ0|4(ηa〈bcde〉+ cyclic)

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (3.33)

denoted also by R(a, b, c, d, e) is the fundamental R-invariant appearing in one loop corrections
of MHV amplitudes and will appears also in the recursion formulas. 〈abcd〉 is the fundamental
super-conformal invariant associated with four super twistors defined in terms of the permutation
symbol.

Ẑn−1, Ẑ1 are deformed momentum twistor variables. The deformation is determined from the
relationship between external momenta, region momenta and momentum twistor variables. Ẑ1

is the intersection Ẑ1 = (n− 2 n− 1 2)∩ (12) of the the line (12) with the plane (n− 2 n− 1 2)
and Ẑn−1 the intersection Ẑ1 = (12n) ∩ (n − 2 n − 1) of the the line (n − 2 n − 1) with the
plane (12n). The interpretation for the intersections at the level of ordinary Feynman diagrams
is in terms of the collinearity of the four-momenta involved with the underlying box diagram
with parallel on mass shell particles. These result from unitarity conditions obtained by putting
maximal number of loop momenta on mass shell to give the leading singularities.

The explicit expressions for the momenta are

Ẑ1 ≡ (n− 2 n− 1 2) ∩ (12)Z1 = 〈2 n− 2 n− 1 n〉+ Z2〈n− 2 n− 1 n 1〉 ,
Ẑn−1 ≡ (12n) ∩ (n− 2 n− 1) = Zn−2〈n− 2 n− 1 n 2〉+ Zn−1〈n 1 2 n− 2〉 .

(3.34)

These intersections also appear in the expressions defining the recursion formula.

3.5.2 Removal of particles and merge operation

Particles can be also removed. The first manner to remove particle is by integrating over the twistor
variable characterizing the particle. This reduces k by one unit. Merge operation preserves the number
of loops but removes a particle particle by identifying the twistor variables of neighboring particles.
This operation corresponds to an integral over on mass shell loop momentum at the level of tree
diagrams and by Witten’s half Fourier transform can be transformed to twistor integral.

The product

Y ′(Z1, · · ·Zn) = Y1(Z1, · · ·Zm)× Y2(Zm+1, · · ·Zn) (3.35)

of two Yangian invariants is again a Yangian invariant. This is not quite trivial since the dependence
of region momenta and momentum twistors on the momenta of external particles makes the operation
non-trivial.

Merge operation allows to construct more interesting invariants from the products of Yangian
invariants. One begins from a product of Yangian invariants (Yangian invariant trivially) represented
cyclically as points of circle and identifies the last twistor argument of given invariant with the first
twistor argument of the next invariant and performs integrals over the momentum twistor variables
appearing twice. The soft k-increasing and preserving operations can be described also in terms of
this operation for Yangian invariants such that the second invariant corresponds to 3-vertex. The
cyclic merge operation applied to four MHV amplitudes gives NMHV amplitudes associated with on
mass shell momenta in box diagrams. By applying similar operation to NMHV amplitudes and MHV
amplitudes one obtains 2-loop amplitudes. In [36] examples about these operations are described.

3.5.3 BCFW bridge

BCFW bridge allows to build general tree diagrams from MHV tree diagrams [31] and recursion
formula of [36] generalizes this to arbitrary diagrams. At the level of Feynman diagrams it corresponds
to a box diagram containing general diagrams labeled by L and R and MHV and MHV 3-vertices
(MHV 3-vertex allows expression in terms of MHV diagrams) with the lines of the box on mass shell
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so that the three momenta emanating from the vertices are parallel and give rise to a one-loop leading
singularity.

At the level of Feynman diagrams BCFW bridge corresponds to so called ”two-mass hard” leading
singularities associated with box diagrams with light-like momenta at the four lines of the diagram
[35]. The motivation for the study of these diagrams comes from the hypothesis the leading order
singularities obtained by putting as many particles as possible on mass shell contain the data needed
to construct scattering amplitudes of N = 4 SYM completely. This representation of the leading
singularities generalizes to arbitrary loops. The recent article is a continuation of this program to
planar amplitudes.

Also BCFW bridge allows an interpretation as a particular kind fusion for Yang invariants and
involves all the basic operations. One starts from the amplitudes Y LnL,kL

and Y RnR,kR
and constructs

an amplitude Y ′nL+nR,kL+kR+1 representing the amplitude which would correspond to a generalization
of the MHV diagrams with the two tree diagrams connected by the MHV propagator (BFCW bridge)
replaced with arbitrary loop diagrams. Particle ”1” resp. ”j+1” is added by the soft k-increasing
factor to YnL+1,kL+1 resp. YnR+1,kR+1 giving amplitude with n+ 2 particles and with k-charge equal
to kL + kR + 2. The subsequent operations must reduce k-charge by one unit. First repeated ”1” and
”j+1” are identified with their copies by k conserving merge operation, and after that one performs an
integral over the twistor variable ZI associated with the internal line obtained and reducing k by one
unit. The soft k-increasing factors bring in the invariants [n− 1 n 1 I j + 2] associated with YL and
[1 I j + 1 j j − 1] associated with YR. The integration contour is chosen so that it selects the pole
defined by ∠n−1 n 1 I〉 in the denominator of [n− 1 n 1 I j + 2] and the pole defined by 〈1 I j+1 j〉
in the denominator of [1 I j + 1 j j − 1].

The explicit expression for the BCFW bridge is very simple:

(YL ⊗BFCW YR)(1, · · · , n) = [n− 1 n 1 j j + 1]× YR(1, · · · , j, I)YL(I, j + 1, · · · , n− 1, n̂) ,

n̂ = (n− 1 n) ∩ (j j + 1 1) , I = (j j + 1) ∩ (n− 1 n 1) . (3.36)

3.5.4 Single cuts and forward limit

Forward limit operation is used to increase the number of loops by one unit. The physical picture
is that one starts from say 1-loop amplitude and cuts one line by assigning to the pieces of the line
opposite light-like momenta having interpretation as incoming and outgoing particles. The resulting
amplitude is called forward limit. The only reasonable interpretation seems to be that the loop
integration is expressed by unitarity as forward limit meaning cutting of the line carrying the loop
momentum. This operation can be expressed in a manifestly Yangian invariant way as entangled
removal of two particles with the merge operation meaning the replacement Zn → Zn−1. Particle
n + 1 is added adjacent to A,B as a k-increasing inverse soft factor and then A and B are removed
by entangled integration, and after this merge operation identifies n+ 1 and 1.

Forward limit is crucial for the existence of loops and for Yangian invariants it corresponds to
the poles arising from 〈(AB)qZn(z)Z1)〉 the integration contour Zn + zZn−1 around Zb in the basic
formula M =

∮
(dz/z)Mn leading to the recursion formula. A and B denote the momentum twistors

associated with opposite light-like momenta. In the generalized unitarity conditions the singularity
corresponds to the cutting of line between particles n and 1 with momenta q and −q, summing over
the multiplet of stats running around the loop. Between particles n2 and 1 one has particles n− 1, n
with momenta q,−q. q = x1−xn = −xn +xn−1 giving x1 = xn−1. Light-likeness of q means that the
lines (71) = (76) and (15) intersect. At the forward limit giving rise to the pole Z6 and Z7 approach
to the intersection point (76)∩ (15) . In a generic gauge theories the forward limits are ill-defined but
in super-symmetric gauge theories situation changes.

The corresponding Yangian operation removes two external particles with opposite four-momenta
and involves integration over two twistor variables Za and Zb and gives rise to the following expression

∫
GL(2)

Y (· · · , Zn, ZA, ZB , Z1, · · · ) . (3.37)

The integration over GL(2) corresponds to integration over twistor variables associated ZA and ZB .
This operation allows addition of a loop to a given amplitude. The line ZaZb represents loop momen-
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tum on one hand and the dual x-coordinate identified as momentum propagating along the line on
the other hand.

The integration over these variables is equivalent to an integration over loop momentum as the
explicit calculation of [36] (see pages 12-13) demonstrates. If the integration contours are products
in the product of twistor spaces associated with a and b the and gives lower order Yangian invariant
as answer. It is however also possible to choose the integration contour to be entangled in the sense
that it cannot be reduced to a product of integration contours in the Cartesian product of twistor
spaces. In this case the integration gives a loop integral. In the removal operation Yangian invariance
can be broken by IR singularities associated with the integration contour and the procedure does not
produce genuine Yangian invariant always.

What is highly interesting from TGD point of view is that this integral can be expressed as
a contour integral over CP1 × CP1 combined with integral over loop momentum. If TGD vision
about generalized Feynman graps in zero energy ontology is correct, the loop momentum integral
is discretized to an an integral over discrete mass shells and perhaps also to a sum over discretized
momenta and one can therefore avoid IR singularities.

3.6 Explicit formula for the recursion relation

Recall that the recursion formula is obtained by considering super-symmetric momentum-twistor
deformation Zn → Zn + zZn−1 and by integrating over z to get the identity

Mn,k,l =

∮
dz

z
M̂n,k,l(z) . (3.38)

This integral equals to integral with reversed integration contour enclosing the exterior of the contour.
The challenge is to deduce the residues contributing to the residue integral and the claim of [36] is
that these residues reduce to simple basic types.

1. The first residue corresponds to a pole at infinity and reduces the particle number by one giving
a contribution Mn−1,k,l(1, · · · , n− 1) to Mn,k,l(1, · · · , n− 1, n). This is not totally trivial since
the twistor variables are related to momenta in different manner for the two amplitudes. This
gives the first contribution to the right hand side of the formula below.

2. Second pole corresponds to the vanishing of 〈Zn(z)Z1ZjZj+1〉 and corresponds to the factor-
ization of channels. This gives the second BCFW contribution to the right hand side of the
formula below. These terms are however not enough since the recursion formula would imply
the reduction to expressions involving only loop corrections to 3-loop vertex which vanish in
N = 4 SYM.

3. The third kind of pole results when 〈(AB)qZn(z)Z1〉 vanishes in momentum twistor space.
(AB)q denotes the line in momentum twistor space associated with q:th loop variable.

The explicit formula for the recursion relation yielding planar all loop amplitudes is obtained by
putting all these pieces together and reads as

Mn,k,l(1, · · · , n) = Mn−1,k,l(1, · · · , n− 1)

+
∑

nL,kL,lL;j

[j j + 1 n− 1 n 1]MR
nR,kR,lR(1, · · · , j, Ij)×ML

nL,kL,lL(Ij , j + 1, · · · , n̂j)

+

∫
GL(2)

[AB n− 1 n 1]Mn+2,k+1,n,k−1(1, · · · , n̂AB , Â, B) ,

nL + nR = n+ 2 , kL + kR = k − 1 , lR + lL = l .

(3.39)

The momentum super-twistors are given by

n̂j = (n− 1 n) ∩ (j j + 1 1) , Ij = (j j + 1 1) ∩ (n− 1 n 1) ,

n̂AB = (n− 1 n) ∩ (AB 1) , Â = (AB) ∩ (n− 1 n 1) .
(3.40)
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The index l labels loops in n + 2-particle amplitude and the expression is fully symmetrized with
equal weight for all loop integration variables (AB)l. A and B are removed by entangled integration
meaning that GL(2) contour is chosen to encircle points where both points A,B on the line (AB) are
located at the intersection of the line (AB) with the plane (n − 1 n 1). GL(2) integral can be done
purely algebraically in terms of residues.

In [36] and [39] explicit calculations for NkMHV amplitudes are carried out to make the formulas
more concrete. For N1MHV amplitudes second line of the formula vanishes and the integrals are
rather simple since the determinants are 1× 1 determinants.

4 Could the Grassmannian program be realized in TGD frame-
work?

In the following the TGD based modification of the approach based on zero energy ontology is discussed
in some detail. It is found that pseudo-momenta are very much analogous to region momenta and
the approach leading to discretization of pseudo-mass squared for virtual particles - and even the
discretization of pseudo-momenta - is consistent with the Grassmannian approach in the simple case
considered and allow to get rid of IR divergences. Also the possibility that the number of generalized
Feynman diagrams contributing to a given scattering amplitude is finite so that the recursion formula
for the scattering amplitudes would involve only a finite number of steps (maximum number of loops) is
considered. One especially promising feature of the residue integral approach with discretized pseudo-
momenta is that it makes sense also in the p-adic context in the simple special case discussed since
residue integral reduces to momentum integral (summation) and lower-dimensional residue integral.

4.1 What Yangian symmetry could mean in TGD framework?

The loss of the Yangian symmetry in the integrations over the region momenta xa (pa = xa+1 − xa)
assigned to virtual momenta seems to be responsible for many ugly features. It is basically the source
of IR divergences regulated by ”moving out on the Coulomb branch theory” so that IR singularities
remain the problem of the theory. This raises the question whether the loss of Yangian symmetry is the
signature for the failure of QFT approach and whether the restriction of loop momentum integrations
to avoid both kind of divergences might be a royal road beyond QFT. In TGD framework zero energy
ontology indeed leads to to a concrete proposal based on the vision that virtual particles are something
genuinely real.

The detailed picture is of course far from clear but to get an idea about what is involved one can
look what kind of assumptions are needed if one wants to realize the dream that only a finite number
of generalized Feynman diagrams contribute to a scattering amplitude which is Yangian invariant
allowing a description using a generalization of the Grassmannian integrals.

1. Assume the bosonic emergence and its super-symmetric generalization holds true. This means
that incoming and outgoing states are bound states of massless fermions assignable to wormhole
throats but the fermions can opposite directions of three-momenta making them massive. In-
coming and outgoing particles would consist of fermions associated with wormhole throats and
would be characterized by a pair of twistors in the general situation and in general massive. This
allows also string like mass squared spectrum for bound states having fermion and antifermion
at the ends of the string as well as more general n-particle bound states. Hence one can speak
also about the emergence of string like objects. For virtual particles the fermions would be mas-
sive and have discrete mass spectrum. Also super partners containing several collinear fermions
and antifermions at a given throat are possible. Collinearity is required by the generalization of
SUSY. The construction of these states bring strongly in mind the merge procedure involving
the replacement Zn+1 → Zn.

2. The basic question is how the momentum twistor diagrams and the ordinary Feynman diagrams
behind them are related to the generalized Feynman diagrams.

(a) It is good to start from a common problem. In momentum twistor approach the relationship
of region momenta to physical momenta remains somewhat mysterious. In TGD framework
in turn the relationship of pseudo-momenta identified as generalized eigenvalues of the
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Chern-Simons Dirac operator at the lines of Feynman diagram (light-like wormhole throats)
to the physical momenta has remained unclear. The identification of the pseudo-momentum
as the TGD counterpart of the region momentum x looks therefore like a natural first guess.

(b) The identification xa+1 − xa = pa with pa representing light-like physical four-momentum
generalizes in obvious manner. Also the identification of the light-like momentum of the
external parton as pseudo-momentum looks natural. What is important is that this does
not require the identification of the pseudo-momenta propagating along internal lines of
generalized Feynman diagram as actual physical momenta since pseudo-momentum just
like x is fixed only apart from an overall shift. The identification allows the physical four-
momenta associated with the wormhole throats to be always on mass shell and massless:
if the sign of the physical energy can be also negative space-like momentum exchanges
become possible.

(c) The pseudo-momenta and light-like physical massless momenta at the lines of generalized
Feynman diagrams on one hand, and region momenta and the light-like momenta associ-
ated with the collinear singularities on the other hand would be in very similar mutual
relationship. Partonic 2-surfaces can carry large number of collinear light-like fermions
and bosons since super-symmetry is extended. Generalized Feynman diagrams would be
analogous to momentum twistor diagrams if this picture is correct and one could hope that
the recursion relations of the momentum twistor approach generalize.

3. The discrete mass spectrum for pseudo-momentum would in the momentum twistor approach
mean the restriction of x to discrete mass shells, and the obvious reason for worry is that this
might spoil the Grassmannian approach relying heavily on residue integrals and making sense
also p-adically. It seems however that there is no need to worry. In [36] the M6,4,l=0(1234AB)
the integration over twistor variables zA and zB using ”entangled” integration contour leads to
1-loop MHV amplitude NpMHV , p = 1. The parametrization of the integration contour is zA =
(λA, xλA), zB = (λB , xλB), where x is the M4 coordinate representing the loop momentum.
This boils down to an integral over CP1 ×CP1 ×M4 [36]. The integrals over spheres CP1s are
contour integrals so that only an ordinary integral over M4 remains. The reduction to this kind
of sums occurs completely generally thanks to the recursion formula.

4. The obvious implication of the restriction of the pseudo-momenta x on massive mass shells is
the absence of IR divergences and one might hope that under suitable assumptions one achieves
Yangian invariance. The first question is of course whether the required restriction of x to mass
shells in zA and zB or possibly even algebraic discretization of momenta is consistent with the
Yangian invariance. This seems to be the case: the integration contour reduces to entangled
integration contour in CP1 × CP1 not affected by the discretization and the resulting loop
integral differs from the standard one by the discretization of masses and possibly also momenta
with massless states excluded. Whether Yangian invariance poses also conditions on mass and
momentum spectrum is an interesting question.

5. One can consider also the possibility that the incoming and outgoing particles - in general
massive and to be distinguished from massless fermions appearing as their building blocks- have
actually small masses presumably related to the IR cutoff defined by the size scale of the largest
causal diamond involved. p-Adic thermodynamics could be responsible for this mass. Also
the binding of the wormhole throats can give rise to a small contribution to vacuum conformal
weight possibly responsible for gauge boson masses. This would imply that a given n-particle
state can decay to N-particle states for which N is below some limit. The fermions inside loops
would be also massive. This allows to circumvent the IR singularities due to integration over
the phase space of the final states (say in Coulomb scattering).

6. The representation of the off mass shell particles as pairs of wormhole throats with non-parallel
four-momenta (in the simplest case only the three-momenta need be in opposite directions) makes
sense and that the particles in question are on mass shell with mass squared being proportional
to inverse of a prime number as the number theoretic vision applied to the modified Dirac
equation suggests. On mass shell property poses extremely powerful constraints on loops and
when the number of the incoming momenta in the loop increases, the number of constraints
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becomes larger than the number of components of loop momentum for the generic values of the
external momenta. Therefore there are excellent hopes of getting rid of UV divergences.

A stronger assumption encouraged by the classical space-time picture about virtual particles is
that the 3-momenta associated with throats of the same wormhole contact are always in same
or opposite directions. Even this allows to have virtual momentum spectrum and non-trivial
mass spectrum for them assuming that the three momenta are opposite.

7. The best that one can hope is that only a finite number of generalized Feynman diagrams con-
tributes to a given reaction. This would guarantee that amplitudes belong to a finite-dimensional
algebraic extension of rational functions with rational coefficients since finite sums do not lead
out from a finite algebraic extension of rationals. The first problem are self energy corrections.
The assumption tht the mass non-renormalization theorems of SUSYs generalize to TGD frame-
work would guarantee that the loops contributing to fermionic propagators (and their super-
counterparts) do not affect them. Also the iteration of more complex amplitudes as analogs of
ladder diagrams representing sequences of reactions M →M1 →M2 · · · .→ N such that at each
Mn in the sequence can appear as on mass shell state could give a non-vanishing contribution
to the scattering amplitude and would mean infinite number of Feynman diagrams unless these
amplitudes vanish. If N appears as a virtual state the fermions must be however massive on
mass shell fermions by the assumption about on-mass shell states and one can indeed imagine
a situation in which the decay M → N is possible when N consists of states made of massless
fermions is possible but not when the fermions have non-vanishing masses. This situation seems
to be consistent with unitarity. The implication would be that the recursion formula for the all
loop amplitudes for a given reaction would give vanishing result for some critical value of loops.

Already these assumptions give good hopes about a generalization of the momentum Grassmann
approach to TGD framework. Twistors are doubled as are also the Grassmann variables and there are
wave functions correlating the momenta of the the fermions associated with the opposite wormhole
throats of the virtual particles as well as incoming gauge bosons which have suffered massivation. Also
wave functions correlating the massless momenta at the ends of string like objects and more general
many parton states are involved but do not affect the basic twistor formalism. The basic question is
whether the hypothesis of unbroken Yangian symmetry could in fact imply something resembling this
picture. The possibility to discretize integration contours without losing the representation as residue
integral quite generally is basic prerequisite for this and should be shown to be true.

4.2 How to achieve Yangian invariance without trivial scattering ampli-
tudes?

In N = 4 SYM the Yangian invariance implies that the MHV amplitudes are constant as demonstrated
in [36]. This would mean that the loop contributions to the scattering amplitudes are trivial. Therefore
the breaking of the dual super-conformal invariance by IR singularities of the integrand is absolutely
essential for the non-triviality of the theory. Could the situation be different in TGD framework?
Could it be possible to have non-trivial scattering amplitudes which are Yangian invariants. Maybe!
The following heuristic argument is formulated in the language of super-twistors.

1. The dual conformal super generators of the super-Lie algebra U(2, 2) acting as super vector fields
reducing effectively to the general form J = ηKa ∂/∂Z

J
a and the condition that they annihilate

scattering amplitudes implies that they are constant as functions of twistor variables. When
particles are replaced with pairs of wormhole throats the super generators are replaced by sums
J1 +J2 of these generators for the two wormhole throats and it might be possible to achieve the
condition

(J1 + J2)M = 0 (4.1)

with a non-trivial dependence on the momenta if the super-components of the twistors associated
with the wormhole throats are in a linear relationship. This should be the case for bound states.
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2. This kind of condition indeed exists. The condition that the sum of the super-momenta expressed
in terms of super-spinors λ reduces to the sum of real momenta alone is not usually posed but
in the recent case it makes sense as an additional condition to the super-components of the
the spinors λ associated with the bound state. This quadratic condition is exactly of the same
general form as the one following from the requirement that the sum of all external momenta
vanishes for scattering amplitude and reads as

X = λ1η1 + λ2η2 = 0 . (4.2)

The action of the generators η1∂λ1
+η2∂λ2

forming basic building blocks of the super generators
on p1 + p2 = λ1λ̃1 + λ2λ̃2 appearing as argument in the scattering amplitude in the case of
bound states gives just the quantity X, which vanishes so that one has super-symmetry. The
generalization of this condition to n-parton bound state is obvious.

3. The argument does not apply to free fermions which have not suffered topological condensation
and are therefore represented by CP2 type vacuum extremal with single wormhole throat. If one
accepts the weak form of electric-magnetic duality, one can circumvent this difficulty. The free
fermions carry Kähler magnetic charge whereas physical fermions are accompanied by a bosonic
wormhole throat carrying opposite Kähler magnetic charge and opposite electroweak isospin so
that a ground state of string like object with size of order electroweak length scale is in question.
In the case of quarks the Kähler magnetic charges need not be opposite since color confinement
could involve Kähler magnetic confinement: electro-weak confinement holds however true also
now. The above argument generalizes as such to the pairs formed by wormhole throats at the
ends of string like object. One can of course imagine also more complex hybrids of these basic
options but the general idea remains the same.

Note that the argument involves in an essential manner non-locality , which is indeed the defining
property of the Yangian algebra and also the fact that physical particles are bound states. The
massivation of the physical particles brings in the IR cutoff.

4.3 Number theoretical constraints on the pseudo-momenta

One can consider also further assumptions motivated by the recent view about the generalized eigen-
values of Chern-Simons Dirac operator having interpretation as pseudo-momentum. The details of
this view need not of course be final.

1. Assume that the pseudo-momentum assigned to fermion lines by the modified Dirac equation
[16] is the counterpart of region momentum as already explained and therefore does not directly
correspond to the actual light-like four-momentum associated with partonic line of the general-
ized Feynman diagram. This assumption conforms with the assumption that incoming particles
are built out of massless partonic fermions. It also implies that the propagators are mass-
less propagators as required by twistorialization and Yangian generalization of super-conformal
invariance.

2. Since (pseudo)-mass squared is number theoretically quantized as the length of a hyper-complex
prime in preferred plane M2 of pseudo-momentum space fermionic propagators are massless
propagators with pseudo-masses restricted on discrete mass shells. Lorentz invariance suggests
that M2 cannot be common to all particles but corresponds to preferred reference frame for the
virtual particle having interpretation as plane spanned by the quantization axes of energy and
spin.

3. Hyper-complex primeness means also the quantization of pseudo-momentum components so that
one has hyper-complex primes of form ±((p + 1)/2,±(p − 1)/1) corresponding to pseudo-mass
squared M2 = p and hypercomplex primes ±(p, 0) with pseudo-mass squared M2 = p2. Space-
like fermionic momenta are not needed since for opposite signs of energy wormhole throats can
have space-like net momenta. If space-like pseudo-momenta are allowed/needed for some reason,
they could correspond to space-like hyper-complex primes ±((p−1)/2,±(p+1)/1) and ±(0, p) so
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that one would obtain also discretization of space-like mass shells also. The number theoretical
mass squared is proportional to p, whereas p-adic mass squared is proportional to 1/p. For
p-adic mass calculations canonical identification

∑
xnp

n maps p-adic mass squared to its real
counterpart. The simplest mapping consistent with this would be (p0, p1) → (p0, p1)/p. This
could be assumed from the beginning in real context and would mean that the mass squared
scale is proportional to 1/p.

4. Lorentz invariance requires that the preferred coordinate system in which this holds must be
analogous to the rest system of the virtual fermion and thus depends on the virtual particle.
In accordance with the general vision discussed in [16] Lorentz invariance could correspond to
a discrete algebraic subgroup of Lorentz group spanned by transformation matrices expressible
in terms of roots of unity. This would give a discrete version of mass shell and the preferred
coordinate system would have a precise meaning also in the real context. Unless one allows
algebraic extension of p-adic numbers p-adic mass shell reduces to the set of above number-
theoretic momenta. For algebraic extensions of p-adic numbers the same algebraic mass shell
is obtained as in real correspondence and is essential for the number theoretic universality.
The interpretation for the algebraic discretization would be in terms of a finite measurement
resolution. In real context this would mean discretization inducing a decomposition of the
mass shell to cells. In the p-adic context each discrete point would be replaced with a p-adic
continuum. As far as loop integrals are considered, this vision means that they make sense
in both real and p-adic context and reduce to summations in p-adic context. This picture is
discussed in detail in [16].

5. Concerning p-adicization the beautiful aspect of residue integral is that it makes sense also in
p-adic context provided one can circumvent the problems related to the identification of p-adic
counterpart of π requiring infinite-dimensional transcendental extension coming in powers of
π. Together with the discretization of both real and virtual four-momenta this would allow to
define also p-adic variants of the scattering amplitudes.

4.4 Could recursion formula allow interpretation in terms of zero energy
ontology?

The identification of pseudo-momentum as a counterpart of region momentum suggests that general-
ized Feynman diagrams could be seen as a generalization of momentum twistor diagrams. Of course,
the generalization from N = 4 SYM to TGD is an enormous step in complexity and one must take all
proposals in the following with a big grain of salt. For instance, the replacement of point-like particles
with wormhole throats and the decomposition of gauge bosons to pairs of wormhole throats means
that naive generalizations are dangerous.

With this in firmly in mind one can ask whether the recursion formula could allow interpretation
in terms of zero energy states assigned to causal diamonds (CDs) containing CDs containing · · · . In
this framework loops could be assigned with sub-CDs.

The interpretation of the leading order singularities forming the basic building blocks of the twistor
approach in zero ontology is the basic source of questions. Before posing these questions recall the
basic proposal that partonic fermions are massless but opposite signs of energy are posssible for the
opposite throats of wormhole contacts. Partons would be on mass shell but besides physical states
identified as bound states formed from partons also more general intermediate states would be possible
but restricted by momentum conservation and mass shell conditions for partons at vertices. Consider
now the questions.

1. Suppose that the massivation of virtual fermions and their super partners allows only ladder
diagrams in which the intermediate states contain on mass shell massless states. Should one
allow this kind of ladder diagrams? Can one identify them in terms of leading order singu-
larities? Could one construct the generalized Feynman diagrams from Yangian invariant tree
diagrams associated with the hierarchy of sub-CDs and using BCFW bridges and entangled
pairs of massless states having interpretation as box diagrams with on mass shell momenta at
microscopic level? Could it make sense to say that scattering amplitudes are represented by tree
diagrams inside CDs in various scales and that the fermionic momenta associated with throats
and emerging from sub-CDs are always massless?
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2. Could BCFW bridge generalizes as such and could the interpretation of BCFW bridge be in
terms of a scattering in which the four on mass shell massless partonic states (partonic throats
have arbitrary fermion number) are exchanged between four sub-CDs. This admittedly looks
somewhat artificial.

3. Could the addition of 2-particle zero energy state responsible for addition of loop in the recursion
relations and having interpretation in terms of the cutting of line carrying loop momentum
correspond to an addition of sub-CD such that the 2-particle zero energy state has its positive
and negative energy part on its past and future boundaries? Could this mean that one cuts a
propagator line by adding CD and leaves only the portion of the line within CD. Could the
reverse operation mean to the addition of zero energy ”thermally entangled” states in shorter
time and length scales and assignable as a zero energy state to a sub-CD. Could one interpret
the Cutkosky rule for propagator line in terms of this cutting or its reversal. Why only pairs
would be needed in the recursion formula? Why not more general states? Does the recursion
formula imply that they are included? Does this relate to the fact that these zero energy states
have interpretation as single particle states in the positive energy ontology and that the basic
building block of Feynman diagrams is single particle state? Could one regard the unitarity as
an identity which states that the discontinuity of T-matrix characterizing zero energy state over
cut is expressible in terms of TT † and T matrix is the relevant quantity?

Maybe it is again dangerous to try to draw too detailed correspondences: after all, point like
particles are replaced by partonic two-surfaces in TGD framework.

4. If I have understood correctly the genuine l-loop term results from l − 1-loop term by the
addition of the zero energy pair and integration over GL(2) as a representative of loop integral
reducing n + 2 to n and calculating the added loop at the same time [36]. The integrations
over the two momentum twistor variables associated with a line in twistor space defining off
mass shell four-momentum and integration over the lines represent the integration over loop
momentum. The reduction to GL(2) integration should result from the delta functions relating
the additional momenta to GL(2) variables (note that GL(2) performs linear transformations in
the space spanned by the twistors ZA and ZB and means integral over the positions of ZA an
ZB). The resulting object is formally Yangian invariant but IR divergences along some contours
of integration breaks Yangian symmetry.

The question is what happens in TGD framework. The previous arguments suggests that the
reduction of the the loop momentum integral to integrals over discrete mass shells and possibly
to a sum over their discrete subsets does not spoil the reduction to contour integrals for loop
integrals in the example considered in [36]. Furthermore, the replacement of mass continuum
with a discrete set of mass shells should eliminate IR divergences and might allow to preserve
Yangian symmetry. One can however wonder whether the loop corrections with on mass shell
massless fermions are needed. If so, one would have at most finite number of loop diagrams with
on mass shell fermionic momenta and one of the TGD inspired dreams already forgotten would
be realized.

4.5 What about unitarity?

The approach of Arkani-Hamed and collaborators means that loop integral over four-momenta are
replaced with residue integrals around a small sphere p2 = ε. This is very much reminiscent of my
own proposal for a few years ago based on the idea that the condition of twistorialization forces to
accept only massless virtual states [18, 17]. I of course soon gave up this proposal as too childish.

This idea seems to however make a comeback in a modified form. At this time one would have
only massive and quantized pseudo-momenta located at discrete mass shells. Can this picture be
consistent with unitarity?

Before trying to answer this question one must make clear what one could assume in TGD frame-
work.

1. Physical particles are in the general case massive and consist of collinear fermions at wormhole
throats. External partons at wormhole throats must be massless to allow twistorial interpreta-
tion. Therefore massive states emerge. This applies also to stringy states.
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2. The simplest assumption generalizing the childish idea is that on mass shell massless states for
partons appear as both virtual particles and external particles. Space-like virtual momentum
exchanges are possible if the virtual particles can consist of pairs of positive and negative energy
fermions at opposite wormhole throats. Hence also partons at internal lines should be massless
and this raises the question about the identification of propagators.

3. Generalized eigenvalue equation for Chern-Simons Dirac operator implies that virtual elementary
fermions have massive and quantized pseudo-momenta whereas external elementary fermions are
massless. The massive pseudo-momentum assigned with the Dirac propagator of a parton line
cannot be identified with the massless real momentum assigned with the fermionic propagator
line. The region momenta introduced in Grassmannian approach are something analogous.

As already explained, this brings in mind is the identification of this pseudo momentum as
the counterpart of the region momentum of momentum twistor diagrams so that the external
massless fermionic momenta would be differences of the pseudo-momenta. Indeed, since region
momenta are determined apart from a common shift, they need not correspond to real mo-
menta. Same applies to pseudo-momenta and one could assume that both internal and external
fermion lines carry light-like pseudo-momenta and that external pseudo-momenta are equal to
real momenta.

4. This picture has natural correspondence with twistor diagrams. For instance, the region momen-
tum appearing in BCFW bridge defining effective propagator is in general massive although the
underlying Feynman diagram would contain online massless momenta. In TGD framework mass-
less lines of Feynman graphs associated with singularities would correspond to real momenta of
massless fermions at wormhole throats. Also other canonical operations for Yangian invariants
involve light-like momenta at the level of Feynman diagrams and would in TGD framework have
a natural identification in terms of partonic momenta. Hence partonic picture would provide a
microscopic description for the lines of twistor diagrams.

Let us assume being virtual particle means only that the discretized pseudo-momentum is on shell
but massive whereas all real momenta of partons are light-like, and that negative partonic energies are
possible. Can one formulate Cutkosky rules for unitarity in this framework? What could the unitarity
condition

iDisc(T − T †) = −TT †

mean now? In particular, are the cuts associated with mass shells of physical particles or with mass
shells of pseudo-momenta? Could these two assignments be equivalent?

1. The restriction of the partons to be massless but having both signs of energy means that the
spectrum of intermediate states contains more states than the external states identified as bound
states of partons with the same sign of energy. Therefore the summation over intermediate states
does not reduce to a mere summation over physical states but involves a summation over states
formed from massless partons with both signs of energy so that also space-like momentum
exchanges become possible.

2. The understanding of the unitarity conditions in terms of Cutkosky rules would require that
the cuts of the loop integrands correspond to mass shells for the virtual states which are also
physical states. Therefore real momenta have a definite sign and should be massless. Besides
this bound state conditions guaranteeing that the mass spectrum for physical states is discrete
must be assumed. With these assumptions the unitary cuts would not be assigned with the
partonic light-cones but with the mass shells associated of physical particles.

3. There is however a problem. The pseudo-momenta of partons associated with the external
partons are assumed to be light-like and equal to the physical momenta.

(a) If this holds true also for the intermediate physical states appearing in the unitarity con-
ditions, the pseudo-momenta at the cuts are light-like and cuts must be assigned with
pseudo-momentum light-cones. This could bring in IR singularities and spoil Yangian
symmetry. The formation of bound states could eliminate them and the size scale of the
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largest CD involved would bring in a natural IR cutoff as the mass scale of the lightest
particle. This assumption would however force to give up the assumption that only massive
pseudo-momenta appear at the lines of the generalized Feynman diagrams.

(b) On the other hand, if pseudo-momenta are not regarded as a property of physical state and
are thus allowed to be massive for the real intermediate states in Cutkosky rules, the cuts
at parton level correspond to on mass shell hyperboloids and IR divergences are absent.

5 Could TGD alllow formulation in terms of twistors

There are many questions to be asked. There would be in-numerable questions upwelling from my
very incomplete understanding of the technical issues. In the following I restrict only to the questions
which relate to the relationship of TGD approach to Witten’s twistor string approach [28] and M-
theory like frameworks. The arguments lead to an explicit proposal how the preferred extremals of
Kähler action could correspond to holomorphic 4-surfaces in CP3×CP3. The basic motivation for this
proposal comes from the observation that Kähler action is Maxwell action for the induced Kähler form
and metric. Hence Penrose’s original twistorial representation for the solutions of linear Maxwell’s
equations could have a generalization to TGD framework.

5.1 M4 × CP2 from twistor approach

The first question which comes to mind relates to the origin of the Grassmannians. Do they have
some deeper interpretation in TGD context. In twistor string theory Grassmannians relate to the
moduli spaces of holomorphic surfaces defined by string world sheets in twistor space. Could partonic
2-surfaces have analogous interpretation and could one assign Grassmannians to their moduli spaces?
If so, one could have rather direct connection with topological QFT defining twistor strings [28] and
the almost topological QFT defining TGD. There are some hints to this direction which could be of
course seen as figments of a too wild imagination.

1. The geometry of CD brings strongly in mind Penrose diagram for the conformally compactified
Minkowski space [26], which indeed becomes CD when its points are replaced with spheres. This
would suggest the information theoretic idea about interaction between observer and externals
as a map in which M4 is mapped to its conformal compactification represented by CD. Com-
pactification means that the light-like points at the light-like boundaries of CD are identified
and the physical counterpart for this in TGD framework is conformal invariance along light-rays
along the boundaries of CD. The world of conscious observer for which CD is identified as a
geometric correlate would be conformally compactified M4 (plus CP2 or course).

2. Since the points of the conformally compactified M4 correspond to twistor pairs [32], which
are unique only apart from opposite complex scalings, it would be natural to assign twistor
space to CD and represent its points as pairs of twistors. This suggest an interpretation for
the basic formulas of Grassmannian approach involving integration over twistors. The incoming
and outgoing massless particles could be assigned at point-like limit light-like points at the
lower and upper boundaries of CD and the lifting of the points of the light-cone boundary at
partonic surfaces would give rise to the description in terms of ordinary twistors. The assumption
that massless collinear fermions at partonic 2-surfaces are the basic building blocks of physical
particles at partonic 2-surfaces defined as many particles states involving several partonic 2-
surfaces would lead naturally to momentum twistor description in which massless momenta and
described by twistors and virtual momenta in terms of twistor pairs. It is important to notice
that in TGD framework string like objects would emerge from these massless fermions.

3. Partonic 2-surfaces are located at the upper and lower light-like boundaries of the causal diamond
(CD) and carry energies of opposite sign in zero energy ontology. Quite generally, one can assign
to the point of the conformally compactified Minkowski space a twistor pair using the standard
description. The pair of twistors is determined apart from Gl(2) rotation. At the light-cone
boundary M4 points are are light-like so that the two spinors of the two twistors differ from
each other only by a complex scaling and single twistor is enough to characterize the space-time
point this degenerate situation. The components of the twistor are related by the well known
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twistor equation µa
′

= −ixaa′λa. One can therefore lift each point of the partonic 2-surface
to single twistor determined apart from opposite complex scalings of µ and λ so that the lift
of the point would be 2-sphere. In the general case one must lift the point of CD to a twistor
pair. The degeneracy of the points is given by Gl(2) and each point corresponds to a 2-sphere
in projective twistor space.

4. The new observation is that one can understand also CP2 factor in twistor framework. The
basic observation about which I learned in [32] (giving also a nice description of basics of twistor
geometry) is that a pair (X,Y ) of twistors defines a point of CD on one hand and complex
2-planes of the dual twistor space -which is nothing but CP2- by the equations

XαW
α = 0 , YαW

α = 0 .

The intersection of these planes is the complex line CP1 = S2. The action of G(2) on the
twistor pair affects the pair of surfaces CP2 determined by these equations since it transforms
the equations to their linear combination but not the the point of conformal CD resulting as
projection of the sphere. Therefore twistor pair defines both a point of M4 and assigns with it
pair of CP2:s represented as holomorphic surfaces of the projective dual twistor space. Hence
the union over twistor pairs defines M4×CP2 via this assignment if it is possible to choose ”the
other” CP2 in a unique manner for all points of M4. The situation is similar to the assignment
of a twistor to a point in the Grassmannian diagrams forming closed polygons with light-like
edges. In this case one assigns to the the ”region momenta” associated with the edge the twistor
at the either end of the edge. One possible interpretation is that the two CP2:s correspond to
the opposite ends of the CD. My humble hunch is that this observation might be something
very deep.

Recall that the assignment of CP2 to M4 point works also in another direction. M8−H duality
associates with so called hyper-quaternionic 4-surface of M8 allowing preferred hyper-complex
plane at each point 4-surfaces of M4 × CP2. The basic observation behind this duality is that
the hyper-quaternionic planes (copies of M4) with preferred choices of hyper-complex plane M2

are parameterized by points of CP2. One can therefore assign to a point of CP2 a copy of M4.
Maybe these both assignments indeed belong to the core of quantum TGD. There is also an
interesting analogy with Uncertainty Principle: complete localization in M4 implies maximal
uncertainty of the point in CP2 and vice versa.

5.2 Does twistor string theory generalize to TGD?

With this background the key speculative questions seem to be the following ones.

1. Could one relate twistor string theory to TGD framework? Partonic 2-surfaces at the boundaries
of CD are lifted to 4-D sphere bundles in twistor space. Could they serve as a 4-D counterpart
for Witten’s holomorphic twistor strings assigned to point like particles? Could these surfaces be
actually lifts of the holomorphic curves of twistor space replaced with the product CP3×CP2 to
4-D sphere bundles? If I have understood correctly, the Grassmannians G(n, k) can be assigned
to the moduli spaces of these holomorphic curves characterized by the degree of the polynomial
expressible in terms of genus, number of negative helicity gluons, and the number of loops for
twistor diagram.

Could one interpret G(n, k) as a moduli space for the δCD projections of n partonic 2-surfaces
to which k negative helicity gluons and n− k positive helicity gluons are assigned (or something
more complex when one considers more general particle states)? Could quantum numbers be
mapped to integer valued algebraic invariants? IF so, there would be a correlation between the
geometry of the partonic 2-surface and quantum numbers in accordance with quantum classical
correspondence.

2. Could one understand light-like orbits of partonic 2-surfaces and space-time surfaces in terms
of twistors? To each point of the 2-surface one can assign a 2-sphere in twistor space CP3 and
CP2 in its dual. These CP2s can be identified. One should be able to assign to each sphere S2

at least one point of corresponding CP2s associated with its points in the dual twistor space and
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identified as single CP2 union of CP2:s in the dual twistor space a point of CP2 or even several
of them. One should be also able to continue this correspondence so that it applies to the light-
like orbit of the partonic 2-surface and to the space-time surface defining a preferred extremal
of Kähler action. For space-time sheets representable as graph of a map M4 → CP2 locally
one should select from a CP2 assigned with a particular point of the space-time sheet a unique
point of corresponding CP2 in a manner consistent with field equations. For surfaces with lower
dimensional M4 projection one must assign a continuum of points of CP2 to a given point of M4.
What kind equations-could allow to realize this assignment? Holomorphy is strongly favored also
by the number theoretic considerations since in this case one has hopes of performing integrals
using residue calculus.

(a) Could two holomorphic equations in CP3 × CP2 defining 6-D surfaces as sphere bundles
over M4 × CP2 characterize the preferred extremals of Kähler action? Could partonic 2-
surfaces be obtained by posing an additional holomorphic equation reducing twistors to null
twistors and thus projecting to the boundaries of CD? A philosophical justification for this
conjecture comes from effective 2-dimensionality stating that partonic 2-surfaces plus their
4-D tangent space data code for physics. That the dynamics would reduce to holomorphy
would be an extremely beautiful result. Of course this is only an additional item in the list
of general conjectures about the classical dynamics for the preferred extremals of Kähler
action.

(b) One could also work in CP3 × CP3. The first CP3 would represent twistors endowed with
a metric conformally equivalent to that of M2,4 and having the covering of SU(2, 2) of
SO(2, 4) as isometries. The second CP3 defining its dual would have a metric consistent
with the Calabi-Yau structure (having holonomy group SU(3)). Also the induced metric
for canonically imbedded CP2s should be the standard metric of CP2 having SU(3) as its
isometries. In this situation the linear equations assigning to M4 points twistor pairs and
CP2 ⊂ CP3 as a complex plane would hold always true. Besides this two holomorphic
equations coding for the dynamics would be needed.

(c) The issues related to the induced metric are important. The conformal equivalence class
of M4 metric emerges from the 5-D light-cone of M2,4 under projective identification. The
choice of a proper projective gauge would select M4 metric locally. Twistors inherit the
conformal metric with signature (2, 4) form the metric of 4+4 component spinors with
metric having (4, 4) signature. One should be able to assign a conformal equivalence class
of Minkowski metric with the orbits of pairs of twistors modulo GL(2). The metric of
conformally compactified M4 would be obtained from this metric by dropping from the
line element the contribution to the S2 fiber associated with M4 point.

(d) Witten related [28] the degree d of the algebraic curve describing twistor string, its genus
g, the number k of negative helicity gluons, and the number l of loops by the following
formula

d = k − 1 + l , g ≤ l . (5.1)

One should generalize the definition of the genus so that it applies to 6-D surfaces. For
projective complex varieties of complex dimension n this definition indeed makes sense.
Algebraic genus [22] is expressible in terms of the dimensions of the spaces of closed holo-
morphic forms known as Hodge numbers hp,q as

g =
∑

(−1)n−khk,0 . (5.2)

The first guess is that the formula of Witten generalizes by replacing genus with its algebraic
counterpart . This requires that the allowed holomorphic surfaces are projective curves of
twistori space, that is described in terms of homogenous polynomials of the 4+4 projective
coordinates of CP3 × CP3.
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5.3 What is the relationship of TGD to M-theory and F-theory?

There are also questions relating to the possible relationship to M-theory and F-theory.

1. Calabi-Yau-manifolds [23, 24] are central for the compactification in super string theory and
emerge from the condition that the super-symmetry breaks down to N = 1 SUSY. The dual
twistor space CP3 with Euclidian signature of metric is a Calabi-Yau manifold [28]. Could one
have in some sense two Calabi-Yaus! Twistorial CP3 can be interpreted as a four-fold covering
and conformal compactification of M2,4. I do not know whether Calabi-Yau property has a
generalization to the situation when Euclidian metric is replaced with a conformal equivalence
class of flat metrics with Minkowskian signature and thus having a vanishing Ricci tensor. As
far as differential forms (no dependence on metric) are considered there should be no problems.
Whether the replacement of the maximal holonomy group SU(3) with its non-compact version
SU(1, 2) makes sense is not clear to me.

2. The lift of the CD to projective twistor space would replace CD × CP2 with 10-dimensional
space which inspires the familiar questions about connection between TGD and M-theory. If
Calabi-Yau with a Minkowskian signature of metric makes sense then the Calabi-Yau of the
standard M-theory would be replaced with its Minkowskian counterpart! Could it really be
that M-theory like theory based on CP3 × CP2 reduces to TGD in CD × CP2 if an additional
symmetry mapping 2-spheres of CP3 to points of CD is assumed? Could the formulation based
on 12-D CP3×CP3 correspond to F-theory which also has two time-like dimensions. Of course,
the additional conditions defined by the maps to M4 and CP2 would remove the second time-like
dimension which is very difficult to justify on purely physical grounds.

3. One can actually challenge the assumption that the first CP3 should have a conformal metric
with signature (2, 4). Metric appears nowhere in the definition holomorphic functions and once
the projections to M4 and CP2 are known, the metric of the space-time surface is obtained
from the metric of M4 × CP2. The previous argument for the necessity of the presence of the
information about metric in the second order differential equation however suggests that the
metric is needed.

4. The beginner might ask whether the 6-D 2-sphere bundles representing space-time sheets could
have interpretation as Calabi-Yau manifolds. In fact, the Calabi-Yau manifolds defined as com-
plete intersections in CP3 × CP3 discovered by Tian and Yau are defined by three polynomials
[24]. Two of them have degree 3 and depend on the coordinates of single CP3 only whereas the
third is bilinear in the coordinates of the CP3:s. Obviously the number of these manifolds is quite
too small (taking into account scaling the space defined by the coefficients is 6-dimensional). All
these manifolds are deformation equivalent. These manifolds have Euler characteristic χ = ±18
and a non-trivial fundamental group. By dividing this manifold by Z3 one obtains χ = ±6,
which guarantees that the number of fermion generations is three in heterotic string theory.
This manifold was the first one proposed to give rise to three generations and N = 1 SUSY.

5.4 What could the field equations be in twistorial formulation?

The fascinating question is whether one can identify the equations determining the 3-D complex
surfaces of CP3 × CP3 in turn determining the space-time surfaces.

The first thing is to clarify in detail how space-time M4×CP2 results from CP3×CP3. Each point
CP3×CP3 define a line in third CP3 having interpretation as a point of conformally compactified M4

obtained by sphere bundle projection. Each point of either CP3 in turn defines CP2 in in fourth CP3

as a 2-plane. Therefore one has (CP3 × CP3) × (CP3 × CP3) but one can reduce the consideration
to CP3 ×CP3 fixing M4 ×CP2. In the generic situation 6-D surface in 12-D CP3 ×CP3 defines 4-D
surface in the dual CP3 × CP3 and its sphere bundle projection defines a 4-D surface in M4 × CP2.

1. The vanishing of three holomorphic functions f i would characterize 3-D holomorphic surfaces of
6-D CP3 × CP3. These are determined by three real functions of three real arguments just like
a holomorphic function of single variable is dictated by its values on a one-dimensional curve
of complex plane. This conforms with the idea that initial data are given at 3-D surface. Note
that either the first or second CP3 can determine the CP2 image of the holomorphic 3-surface
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unless one assumes that the holomorphic functions are symmetric under the exchange of the
coordinates of the two CP3s. If symmetry is not assumed one has some kind of duality.

2. Effective 2-dimensionality means that 2-D partonic surfaces plus 4-D tangent space data are
enough. This suggests that the 2 holomorphic functions determining the dynamics satisfy some
second order differential equation with respect to their three complex arguments: the value of the
function and its derivative would correspond to the initial values of the imbedding space coor-
dinates and their normal derivatives at partonic 2-surface. Since the effective 2-dimensionality
brings in dependence on the induced metric of the space-time surface, this equation should
contain information about the induced metric.

3. The no-where vanishing holomorphic 3-form Ω, which can be regarded as a ”complex square root”
of volume form characterizes 6-D Calabi-Yau manifold [23, 24], indeed contains this information
albeit in a rather implicit manner but in spirit with TGD as almost topological QFT philosophy.
Both CP3:s are characterized by this kind of 3-form if Calabi-Yau with (2, 4) signature makes
sense.

4. The simplest second order- and one might hope holomorphic- differential equation that one can
imagine with these ingredients is of the form

Ωi1j1k11 Ωi2j2k22 ∂i1i2f
1∂j1j2f

2∂k1k2f
3 = 0 , ∂ij ≡ ∂i∂j . (5.3)

Since Ωi is by its antisymmetry equal to Ω123
i εijk, one can divide Ω123:s away from the equation

so that one indeed obtains holomorphic solutions. Note also that one can replace ordinary
derivatives in the equation with covariant derivatives without any effect so that the equations
are general coordinate invariant.

One can consider more complex equations obtained by taking instead of (f1, f2, f3) arbitrary
combinations (f i, f j , fk) which results uniquely if one assumes anti-symmetrization in the labels
(1, 2, 3). In the sequel only this equation is considered.

5. The metric disappears completely from the equations and skeptic could argue that this is incon-
sistent with the fact that it appears in the equations defining the weak form of electric-magnetic
duality as a Lagrange multiplier term in Chern-Simons action. Optimist would respond that
the representation of the 6-surfaces as intersections of three hyper-surfaces is different from the
representation as imbedding maps X4 → H used in the usual formulation so that the argument
does not bite, and continue by saying that the metric emerges in any case when one endows
space-time with the induced metric given by projection to M4.

6. These equations allow infinite families of obvious solutions. For instance, when some f i depends
on the coordinates of either CP3 only, the equations are identically satisfied. As a special case
one obtains solutions for which f1 = Z ·W and (f2, f3) = (f2(Z), f3(W )) This family contains
also the Calabi-Yau manifold found by Yau and Tian, whose factor space was proposed as the
first candidate for a compactification consistent with three fermion families.

7. One might hope that an infinite non-obvious solution family could be obtained from the ansatz
expressible as products of exponential functions of Z and W . Exponentials are not consistent
with the assumption that the functions fi are homogenous polynomials of finite degree in pro-
jective coordinates so that the following argument is only for the purpose for learning something
about the basic character of the equations.

f1 = Ea1,a2,a3(Z)Eâ1,â2,â3(W ) , f2 = Eb1,b2,b3(Z)Eb̂1,b̂2,b̂3(W ) ,

f3 = Ec1,c2,c3(Z)Eĉ1,ĉ2,ĉ3(W ) ,

Ea,b,c(Z) = exp(az1)exp(bz2)exp(cz3) .

(5.4)
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The parameters a, b, c, and â, b̂, ĉ can be arbitrary real numbers in real context. By the basic
properties of exponential functions the field equations are algebraic. The conditions reduce to
the vanishing of the products of determinants det(a, b, c) and det(â, b̂, ĉ) so that the vanishing of
either determinant is enough. Therefore the dependence can be arbitrary either in Z coordinates
or in W coordinates. Linear superposition holds for the modes for which determinant vanishes
which means that the vectors (a, b, c) or (â, b̂, ĉ) are in the same plane.

Unfortunately, the vanishing conditions reduce to the conditions f i(W ) = 0 for case a) and to
f i(Z) = 0 for case b) so that the conditions are equivalent with those obtained by putting the
”wave vector” to zero and the solutions reduce to obvious ones. The lesson is that the equations
do not commute with the multiplication of the functions f i with nowhere vanishing functions
of W and Z. The equation selects a particular representation of the surfaces and one might
argue that this should not be the case unless the hyper-surfaces defined by f i contain some
physically relevant information. One could consider the possibility that the vanishing conditions
are replaced with conditions f i = ci with f i(0) = 0 in which case the information would be
coded by a family of space-time surfaces obtained by varying ci.

One might criticize the above equations since they are formulated directly in the product CP3×CP3

of projective twistor by choosing a specific projective gauge by puttingz4 = 1, w4 = 1. The manifestly
projectively invariant formulation for the equations is in full twistor space so that 12-D space would
be replaced with 16-D space. In this case one would have 4-D complex permutation symbol giving for
these spaces Calabi-Yau structure with flat metric. The product of functions f = z4 = constant and
g = w4 = constant would define the fourth function f4 = fg fixing the projective gauge

εi1j1k1l1εi2j2k2l2∂i1i2f
1∂j1j2f

2∂k1k2f
3∂l1l2f

4 = 0 , ∂ij ≡ ∂i∂j . (5.5)

The functions f i are homogenous polynomials of their twistor arguments to guarantee projective
invariance. These equations are projectively invariant and reduce to the above form which means also
loss of homogenous polynomial property. The undesirable feature is the loss of manifest projective
invariance by the fixing of the projective gauge.

A more attractive ansatz is based on the idea that one must have one equation for each f i to
minimize the non-determinism of the equations obvious from the fact that there is single equation
in 3-D lattice for three dynamical variables. The quartets (f1, f2, f3, f i), i = 1, 2, 3 would define a
possible minimally non-linear generalization of the equation

εi1j1k1l1εi2j2k2l2∂i1i2f
1∂j1j2f

2∂k1k2f
m∂l1l2f

4 = 0 , ∂ij ≡ ∂i∂j , m = 1, 2, 3 . (5.6)

Note that the functions are homogenous polynomials of their arguments and analogous to spherical
harmonics suggesting that they can allow a nice interpretation in terms of quantum classical corre-
spondence.

The minimal non-linearity of the equations also conforms with the non-linearity of the field equa-
tions associated with Kähler action. Note that also in this case one can solve the equations by
diagonalizing the dynamical coefficient matrix associated with the quadratic term and by identifying
the eigen-vectors of zero eigen values. One could consider also more complicated strongly non-linear
ansätze such as (f i, f i, f i, f i), i = 1, 2, 3, but these do not seem plausible.

5.4.1 The explicit form of the equations using Taylor series expansion for multi-linear
case

In this section the equations associated with (f1, f2, f3) ansatz are discussed in order to obtain a
perspective about the general structure of the equations. This experience can be applied directly to
the (f1, f2, f3, f i) ansatz.

The explicit form of the equations is obtained as infinite number of conditions relating the co-
efficients of the Taylor series of f1 and f2. The treatment of the two variants for the equations
is essentially identical and in the following only the manifestly projectively invariant form will be
considered.
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1. One can express the Taylor series as

f1(Z,W ) =
∑
m,n

Cm,nMm(Z)Mn(W ) ,

f2(Z,W ) =
∑
m,n

Dm,nMm(Z)Mn(W ) ,

f3(Z,W ) =
∑
m,n

Em,nMm(Z)Mn(W ) ,

Mm≡(m1,m2,m3)(Z) = zm1
1 zm2

2 zm3
3 . (5.7)

2. The application of derivatives to the functions reduces to a simple algebraic operation

∂ij(Mm(Z)Mn(W )) = minjMm1−ei(Z)Mn−ej (W ) . (5.8)

Here ei denotes i:th unit vector.

3. Using the product rule MmMn = Mm+n one obtains

∂ij(Mm(Z)Mn(W ))∂rs(Mk(Z)Ml(W ))

= minjkrls ×Mm−ei(Z)Mn−ej (W )×Mk−er (Z)Mk−es(W )

= minjkrls ×Mm+k−ei−er (Z)×Mn+l−ej−el(W ) . (5.9)

4. The equations reduce to the trilinear form

∑
m,n,k,l,r,s

Cm,nDk,lEr,s(m, k, r)(n, l, s)Mm+k+r−E(Z)Mn+l+s−E(W ) = 0 ,

E = e1 + e2 + e3 , (a, b, c) = εijkaibjcc . (5.10)

Here (a, b, c) denotes the determinant defined by the three index vectors involved. By introducing
the summation indices

(M = m+ k + r − E, k, r) , (N = n+ l + s− E, l, s)

one obtains an infinite number of conditions, one for each pair (M,N). The condition for a
given pair (M,N) reads as

∑
k,l,r,s

CM−k−r+E,N−l−s+EDk,lEr,s × (M − k − r + E, k, r)(N − l − s+ E, l, s) = 0 .

(5.11)

These equations can be regarded as linear equations by regarding any matrix selected from
{C,D,E} as a vector of linear space. The existence solutions requires that the determinant
associated with the tensor product of other two matrices vanishes. This matrix is dynamical.
Same applies to the tensor product of any of the matrices.

5. Hyper-determinant [25] is the generalization of the notion of determinant whose vanishing tells
that multilinear equations have solutions. Now the vanishing of the hyper-determinant defined
for the tensor product of the three-fold tensor power of the vector space defined by the coefficients
of the Taylor expansion should provide the appropriate manner to characterize the conditions
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for the existence of the solutions. As already seen, solutions indeed exist so that the hyper-
determinant must vanish. The elements of the hyper matrix are now products of determinants
for the exponents of the monomials involved. The non-locality of the Kähler function as a
functional of the partonic surface leads to the argument that the field equations of TGD for
vanishing n:th variations of Kähler action are multilinear and that a vanishing of a generalized
hyper-determinant characterizes this [16].

6. Since the differential operators are homogenous polynomials of partial derivatives, the total
degrees of Mm(Z) and Mm(W ) defined as a sum D =

∑
mi is reduced by one unit by the action

of both operators ∂ij . For given value of M and N only the products

Mm(Z)Mn(W )Mk(Z)Mr(W )Ms(Z)Ml(W )

for which the vector valued degrees D1 = m + k + r and D2 = n + l + s have the same value
are coupled. Since the degree is reduced by the operators appearing in the equation, polynomial
solutions for which f i contain monomials labelled by vectors mi, ni, ri for which the components
vary in a finite range (0, nmax) look like a natural solution ansatz. All the degrees Di ≤ Di,max

appear in the solution ansatz so that quite a large number of conditions is obtained.

What is nice is that the equation can be interpreted as a difference equation in 3-D lattice with
”time direction” defined by the direction of the diagonal.

1. The counterparts of time=constant slices are the planes n1 +n2 +n3 = n defining outer surfaces
of simplices having E as a normal vector. The difference equation does not seem to say nothing
about the behavior in the transversal directions. M and N vary in the simplex planes satisfying∑
Mi = T1,

∑
Ni = T2. It seems natural to choose T1 = T2 = T so that Z and W dynamics

corresponds to the same ”time”. The number of points in the T = constant simplex plane
increases with T which is analogous to cosmic expansion.

2. The ”time evolution” with respect to T can be solved iteratively by increasing the value of∑
Mi = Ni = T by one unit at each step. Suppose that the values of coefficients are known

and satisfy the conditions for (m, k, r) and (n, l, s) up to the maximum value T for the sum of
the components of each of these six vectors. The region of known coefficients -”past”- obviously
corresponds to the interior of the simplex bounded by the plane

∑
Mi =

∑
Ni = T having E as

a normal. Let (mmin, nmin), (kmin, lmin) and (rmin, smin) correspond to the smallest values of
3-indices for which the coefficients are non-vanishing- this could be called the moment of ”Big
Bang”. The simplest but not necessary assumption is that these indices correspond zero vectors
(0, 0, 0) analogous to the tip of light-cone.

3. For given values of M and N corresponding to same value of ”cosmic time” T one can sep-
arate from the formula the terms which correspond to the un-known coefficients as the sum
CM+E,N+ED0,0E0,0 +DM+E,N+ED0,0C0,0 +EM+E,N+EC0,0D0,0. The remaining terms are by
assumption already known. One can fix the normalization by choosing C0,0 = D0,0 = E0,0 = 1.
With these assumptions the equation reduces at each point of the outer boundary of the simplex
to the form

CM+E,N+E +DM+E,N+E + EM+E,N+E = X

where X is something already known and contain only data about points in the plane m+k+r =
M and n+ r+ s = N . Note that these planes have one ”time like direction” unlike the simplex
plane so that one could speak about a discrete analog of string world sheet in 3+3+3-D lattice
space defined by a 2-plane with one time-like direction.

4. For each point of the simplex plane one has equation of the above form. The equation is non-
deterministic since only constrain only the sum CM+E,N+E +DM+E,N+E +EM+E,N+E at each
point of the simplex plane to a plane in the complex 3-D space defined by them. Hence the
number of solutions is very large. The condition that the solutions reduce to polynomials poses
conditions on the coefficients since the quantities X associated with the plane T = Tmax must
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vanish for each point of the simplex plane in this case. In fact, projective invariance means that
the functions involved are homogenous functions in projective coordinates and thus polynomials
and therefore reduce to polynomials of finite degree in 3-D treatment. This obviously gives
additional condition to the equations.

5.4.2 The minimally non-linear option

The simple equation just discussed should be taken with a caution since the non-determinism seems
to be too large if one takes seriously the analogy with classical dynamics. By the vacuum degeneracy
also the time evolution associated with Kähler action breaks determinism in the standard sense of the
word. The non-determinism is however not so strong and removed completely in local sense for non-
vacuum extremals. One could also try to see the non-determinism as the analog for non-deterministic
time evolution by quantum jumps.

One can however consider the already mentioned possibility of increasing the number of equations
so that one would have three equations corresponding to the three unknown functions f i so that the
determinism associated with each step would be reduced. The equations in question would be of the
same general form but with (f1, f2, f3) replaced with some some other combination.

1. In the genuinely projective situation where one can consider the (f1, f2, f3, f i), i = 1, 2, 3 as a
unique generalization of the equation. This would make the equations quadratic in fi and re-
duce the non-determinism at given step of the time evolution. The new element is that now only
monomials Mm(z) associated with the f i with same degree of homegenity defined by d =

∑
mi

are consistent with projective invariance. Therefore the solutions are characterized by six in-
tegers (di,1, di,2) having interpretation as analogs of conformal weights since they correspond
to eigenvalues of scaling operators. That homogenous polynomials are in question gives hopes
that a generalization of Witten’s approach might make sense. The indices m vary at the outer
surfaces of the six 3-simplices defined by (di,1, di,2) and looking like tedrahedrons in 3-D space.
The functions f i are highly analogous to the homogenous functions appearing in group repre-
sentations and quantum classical correspondence could be realized through the representation
of the space-time surfaces in this manner.

2. The 3-determinants (a, b, c) appearing in the equations would be replaced by 4-determinants and
the equations would have the same general form. One has

∑
k,l,r,s,t,u

CM−k−r−t+E,N−l−s−u+EDk,lEr,sCt,u ×

×(M − k − r − t+ E, k, r, t)(N − l − s− u+ E, l, s, u) = 0 ,

E = e1 + e2 + e3 + e4 , (a, b, c, d) = εijklaibjckdl . (5.12)

and its variants in which D and E appear quadratically. The values of M and N are restricted
to the tedrahedrons

∑
Mi =

∑
dk,1 + d1,i and

∑
Ni =

∑
di,2 + di,2, i = 1, 2, 3. Therefore

the dynamics in the index space is 3-dimensional. Since the index space is in a well-defined
sense dual to CP3 as is also the CP3 in which the solutions are represented as counterparts of
3-surfaces, one could say that the 3-dimensionality of the dynamics corresponds to the dynamics
of Chern-Simons action at space-like at the ends of CD and at light-like 3-surfaces.

3. The view based on 4-D time evolution is not useful since the solutions are restricted to time=constant
plane in 4-D sense. The elimination of one of the projective coordinates would lead however to
the analog of the above describe time evolution. In four-D context a more appropriate form of
the equations is

∑
m,n,k,l,r,s

Cm,nDk,lEr,sCt,u(m, k, r, t)(n, l, s, u)Mm+k+r−E(Z)Mn+l+s−E(W ) = 0

(5.13)
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with similar equations for f2 and f3. If one assumes that the CP2 image of the holomorphic
3-surface is unique (it can correspond to either CP3) the homogenous polynomials f i must be
symmetric under the exchange of Z and W so that the matrices C,D, and E are symmetric.
This is equivalent to a replacement of the product of determinants with a sum of 16 products of
determinants obtained by permuting the indices of each index pair (m,n), (k, l),(r, s) and (t, u).

4. The number Ncond of conditions is given by the product Ncond = N(dM )N(dN ) of numbers of
points in the two tedrahedrons defined by the total conformal weights

∑
Mr = dM =

∑
k dk,1 + di,1 and

∑
Nr = dN =

∑
k dk,2 + di,2 , i = 1, 2, 3.

The number Ncoeff of coefficients is

Ncoeff =
∑
k

n(dk,1) +
∑
k

n(dk,2) ,

where n(dk,i) is the number points associated with the tedrahedron with conformal weight dk,i.

Since one has n(d) ∝ d3, Ncond scales as

Ncond ∝ d3Md3N = (
∑
k

dk,1 + d1,i)
3 × (

∑
k

dk,2 + di,2)3

whereas the number Ncoeff of coefficients scales as

Ncoeff ∝
∑
k

(d3k,1 + d3k,2) .

Ncond is clearly much larger than Ncoeff so the solutions are analogous to partial waves and that
the reduction of the rank for the matrices involved is an essential aspect of being a solution. The
reduction of the rank for the coefficient matrices should reduce the effective number of coefficients
so that solutions can be found. An interesting question is whether the coefficients are rationals
with a suitable normalization allowed by independent conformal scalings. An analogy for the
dynamics is quantum entanglement for 3+3 systems respecting the conservation of conformal
weights and quantum classical correspondence taken to extreme suggests something like this.

5. One can interpret these equations as linear equations for the coefficients of the either linear term
or as quadratic equations for the non-linear term. Also in the case of quadratic term one can
apply general linear methods to identify the vanishing eigen values of the matrix of the quadratic
form involved and to find the zero modes as solutions. The rank of the dynamically determined
multiplier matrix must be non-maximal for the solutions to exist. One can imagine that the
rank changes at critical surfaces in the space of Taylor coefficients meaning a multi-furcation in
the space determined by the coefficients of the polynomials. Also the degree of the polynomial
can change at the critical point.

Solutions for which either determinant vanishes for all terms present in the solution exist. This
is is achieved if either the index vectors (m, l, r, t) or (n, l, s, u) in their respective parallel 3-
planes are also in a 3-plane going through the origin. These solutions might seen as the analogs
of vacuum extremals of Chern-Simons action for which the CP2 projection is at most 2-D
Lagrangian manifold.

Quantum classical correspondence requires that the space-time surface carries also information
about the momenta of partons. This information is quasi-continuous. Also information about
zero modes should have representation in terms of the coefficients of the polynomials. Is this
really possible if only products of polynomials of fixed conformal weights with strong restrictions
on coefficients can be used? The counterpart for the vacuum degeneracy of Kähler action might
resolve the problem. The analog for the construction of space-time surfaces as deformations of
vacuum extremals would be starting from a trivial solution and adding to the building blocks of
f i some terms of same degree for which the wave vectors are not in the intersection of a 3-plane
and simplex planes. The still existing ”vacuum part” of the solution could carry the needed
information.
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6. One can take ”obvious solutions” characterized by different common 3-planes for the ”wave
vectors” characterizing the 8 monomials Ma(Z) and Mb(W ), a ∈ {m, k, r, t} and b ∈ {n, l, s, u}.
The coefficient matrices C,D,E, F are completely free. For the sum of these solutions the
equations contain interaction terms for which at least two ”wave vectors” belong to different
3-planes so that the corresponding 4-determinants are non-vanishing. The coefficients are not
anymore free. Could the ”obvious solutions” have interpretation in terms of different space-
time sheets interacting via wormhole contacts? Or can one equate ”obvious” with ”vacuum”
so that interaction between different vacuum space-time sheets via wormhole contact with 3-D
CP2 projection would deform vacuum extremals to non-vacuum extremals? Quantum classical
correspondence inspires the question whether the products for functions fi associated with an
obvious solution associated with a particular plane correspond to a tensor products for quantum
states associated with a particular partonic 2-surface or space-time sheet.

7. Effective 2-dimensionality realized in terms of the extremals of Chern-Simons actions with La-
grange multiplier term coming from the weak form of electric magnetic duality should also have
a concrete counterpart if one takes the analogy with the extremals of Kähler action seriously.
The equations can be transformed to 3-D ones by the elimination of the fourth coordinate but
the interpretation in terms of discrete time evolution seems to be impossible since all points are
coupled. The total conformal weights of the monomials vary in the range [0, d1,i] and [0, d2,i] so
that the non-vanishing coefficients are in the interior of 3-simplex. The information about the
fourth coordinate is preserved being visible via the four-determinants.

8. It should be possible to relate the hierarchy with respect to conformal weights would to the
geometrization of loop integrals if a generalization of twistor strings is in question. One could
hope that there exists a hierarchy of solutions with levels characterized by the rank of the
matrices appearing in the linear representation. There is a temptation to associate this hierarchy
with the hierarchy of deformations of vacuum extremals of Kähler action forming also a hierarchy.
If this is the case the obvious solutions would correspond to vacuum exremals. At each step when
the rank of the matrices involved decreases the solution becomes nearer to vacuum extremal and
there should exist vanishing second variation of Kähler action. This structural similarity gives
hopes that the proposed ansatz might work. Also the fact that a generalization of the Penrose’s
twistorial description for the solutions of Maxwell’s equations to the situation when Maxwell
field is induced from the Kähler form of CP2 raises hopes. One must however remember that
the consistency with other proposed solution ansätze and with what is believed to be known
about the preferred extremals is an enormously powerful constraint and a mathematical miracle
would be required.
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