The Bohr Model with Electron Spin

Ron Bourgoin
Edgecombe Community College
Rocky Mount, North Carolina

Abstract
If we imbue Bohr’s electron in the hydrogen atom with spin,
the total energy number n consists of the electron’s spin energy
and the electron’s orbital energy. If we define the spin energy
number to be $\frac{1}{2}$, then the orbital energy number is $(n-\frac{1}{2})$.

The principal quantum number n is a total energy number. Since we now know that the
electron in the hydrogen atom has spin, we can define a spin energy number. We will define that
spin energy number to be $\frac{1}{2}$.

Assigning a spin energy number to the Bohr electron in the hydrogen atom necessitates that
we designate an orbital energy number. We assign the orbital energy number to be $(n-\frac{1}{2})$. In the
Bohr atom, the orbital energy number is always half-integer. We list a few of its values in the
following table:

Table 1

<table>
<thead>
<tr>
<th>When n equals</th>
<th>Orbital energy number is</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>2</td>
<td>3/2</td>
</tr>
<tr>
<td>3</td>
<td>5/2</td>
</tr>
<tr>
<td>4</td>
<td>7/2</td>
</tr>
</tbody>
</table>
We observe from Table 1 that there is only one value for the orbital energy number for each \(n \). When \(n=1 \), for instance, we note that half the electron’s energy is due to spin, and half is due to the electron’s revolution in the orbit.

If we contrast Bohr hydrogen with the Schrödinger model of the hydrogen atom, we find that the Bohr model has circular orbits and therefore a least value of \(\frac{1}{2} \frac{h}{2\pi} \) for orbital angular momentum. The Schrödinger model, on the other hand, allows a zero value for the least orbital angular momentum. We emphasize that the Bohr model does not allow a zero value for orbital angular momentum. There is no such thing as zero orbital angular momentum in the Bohr atom.

Bibliography