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Abstract

Superluminal particles are studied within the framework of the Ex-
tended Relativity theory in Clifford spaces (C-spaces). In the simplest
scenario, it is found that it is the contribution of the Clifford scalar com-
ponent π of the poly-vector-valued momentum which is responsible for
the superluminal behavior in ordinary spacetime due to the fact that the
effective massM =

√
M2 − π2 is imaginary (tachyonic). However, from

the point of view of C-space, there is no superluminal (tachyonic) behavior
because the true physical mass still obeys M2 > 0. Therefore, there are
no violations of the Clifford-extended Lorentz invariance and the extended
Relativity principle in C-spaces. Furthermore, to lowest order, there is no
contribution of terms involving powers of the Planck mass (1/m2

P ) indi-
cating that quantum gravitational effects do not play a role at this order.
A Born’s Reciprocal Relativity theory in Phase Spaces leads to modified
dispersion relations involving both coordinates and momenta, and whose
truncations furnish Lorentz-violating dispersion relations which appear in
Finsler Geometry, rainbow-metrics models and Double (deformed) Special
Relativity. These models also admit superluminal particles. A numeri-
cal analysis based on the recent OPERA experimental findings on alleged
superluminal muon neutrinos is made. For the average muon neutrino
energy of 17 Gev, we find a value for π = 119.7 Mev that, coincidentally,
is close to the mass of the muon mµ = 105.7 Mev.

1 The Extended Relativity in Clifford Spaces

In the past years an Extended Relativity Theory in C-spaces (Clifford spaces)
and Clifford-Phase spaces were developed [1], [2]. The poly-vector valued co-
ordinates xµ, xµ1µ2 , xµ1µ2µ3 , ... are now linked to the basis vectors generators
γµ, bi-vectors generators γµ ∧ γν , tri-vectors generators γµ1 ∧ γµ2 ∧ γµ3 , .... of
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the Clifford algebra, including the Clifford algebra unit element (associated to
a scalar coordinate). These poly-vector valued coordinates can be interpreted
as the quenched-degrees of freedom of an ensemble of p-loops associated with
the dynamics of closed p-branes, for p = 0, 1, 2, ...., D− 1, embedded in a target
D-dimensional spacetime background [3].

The C-space poly-vector-valued momentum is defined as P = dX/dΣ where
X is the Clifford-valued coordinate corresponding to the Cl(1, 3) algebra in
D = 4

X = σ 1 + xµ γµ + xµν γµ∧γν + xµνρ γµ∧γµ∧γρ + xµνρτ γµ∧γµ∧γρ∧γτ (1.1)

σ is the Clifford scalar component of the poly-vector-valued coordinate and
dΣ is the infinitesimal C-space proper ”time” interval which is invariant un-
der Cl(1, 3) transformations which are the Clifford-algebra extensions of the
SO(1, 3) Lorentz transformations [1]. One should emphasize that dΣ, which
is given by the square root of the quadratic interval in C-space, is not equal
to the proper time Lorentz-invariant interval ds in ordinary spacetime (ds)2 =
gµνdxµdxν .

We begin by writing the C-space poly-vector-valued momentum P = dX/dΣ
in the form described in [5]

P = π 1 + pµ γµ + pµν γµ ∧ γν + πµ γ5 γµ + p0123 γ5. (1.2)

where (γ5)2 = −1, {γµ, γ5} = 0. The C-space invariant norm-squared of a
momentum poly-vector is defined by the scalar part of the Clifford geometric
product of < P∼ P > where P∼ is the reversal-conjugate of P obtained by
reversing the order of the gamma factors in the decomposition of the poly-vector
P [6]. The norm-squared is

|| P ||2 = π2 + pµ pµ +
1
2

pµν pµν +
1
3!

pµνρ pµνρ +
1
4!

pµνρτ pµνρτ =

π2 + pµ pµ +
1
2

pµν pµν + πµ πµ + (p0123)(p0123). (1.3)

it is necessary to introduce suitable powers of the Planck mass (that is set to
unity) in order to match the units in the terms of eqs-(1, 2). The spin bi-
vector Sµν can be represented by the momentum bi-vector pµν (up to a power
of m2

Planck = 1) as explained in detail by [4]. A natural coupling of the classical
spin (spin bi-vector Sµν ) to the linear motion of the particle providing a new
derivation of the Papapetrou equations can be found in [4] .

To simplify the calculations one may study a poly-particle in D = 2 space-
time dimensions, associated to a linear one-dimensional motion along the x1

axis, so that

|| P ||2 = π2 + pµ pµ +
1

2m2
P

pµν pµν = M2 ⇒
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π2 + (E2 − p2
1) +

1
2m2

P

g00 g11 p01 p01 =

π2 + (E2 − p2
1) − ξ2 (E2 − p2

1)
2 = M2 (1.4)

after one sets on dimensional grounds

1
2m2

P

(p01)2 =
λ2

m2
P

p4 ≡ ξ2 p4 = ξ2 (E2 − p2
1)

2;
λ2

m2
P

= ξ2 (1.5)

The ratio |~p|
E , in natural units of h̄ = c = 1, is a measure of subluminal/superluminal

velocity behavior. In this section we will follow the wave picture of particle prop-
agation and focus on the group velocities, instead. Hence, after setting E = ω
and p1 = k eq-(1.4) becomes

π2 + ω2 − k2 − ξ2(ω4 − 2ω2k2 + k4) = M2 ⇒

ω2 =
1 + 2ξ2k2 ±

√
1− 4ξ2(M2 − π2)

2ξ2
(1.6)

The ambiguity in the ± sign under the square root is resolved by noticing that
by taking the minus sign it yields the ordinary Minkowski space dispersion
relation ω2 − k2 = (M2 − π2) = M2, in the limit ξ → 0; namely this limit is
attained by setting the bivector momentum components of the poly-particle to
zero.

In order to obtain the group velocity dω/dk, instead of taking the square
root of the expression in eq-(1.6), it is more convenient to differentiate eq-(1.4)
directly

π dπ + (ω dω − k dk) [ 1 − 2ξ2 (ω2 − k2) ] = 0 ⇒

ω

k

dω

dk
= 1 − (π/k) (dπ/dk)

1− 2ξ2(ω2 − k2)
(1.7)

After some straightforward algebra one can recast eq-(1.7) in the equivalent
form

ω

k

dω

dk
= 1 +

(M/k) (dM/dk)√
1− 4ξ2M2

; M2 ≡ M2 − π2. (1.8)

As discussed in [1], [5], one can have tachyonic (superluminal) behavior in
ordinary spacetime while having non-tachyonic behavior in C-space. Hence
from the C-space point of view there is no violation of the Clifford-extended
Lorentz symmetry. This can easily be seen by noticing that despite setting the
tachyonic condition ω2 − k2 < 0 in eq-(1.4), one may still maintain M2 > 0
in the right hand side of eq-(1.4) due to the crucial presence of the Clifford
scalar component π2 of the poly-momentum in eq-(1.4). If this is the case, after
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reinserting the proper units, one can write the product of the phase an group
velocities as

ω

k

dω

dk
= c2

(
1 − (π/k) (dπ/dk)

1− 2ξ2(ω2 − k2)

)
= c2

(
1 − (π/k) (dπ/dk)

1 + 2ξ2(k2 − ω2)

)
≡ c2

eff (ω, k)

(1.9)
where the effective speed of light ceff is now energy-momentum dependent
(fact that may be related to the emitted photons in gamma ray bursts). There
are two interesting cases to consider in eq-(1.9)

(i) when (π/k)(dπ/dk) < 0 and k2 −ω2 > 0, one infers that c2
eff (ω, k) > c2.

(ii) when 1 − 2ξ2(ω2 − k2) < 0 and (π/k)(dπ/dk) > 0, one could have also
c2
eff (ω, k) > c2. This second interesting case would require trans-Planckian

masses (ω2 − k2) > m2
P (quantum gravity regime), and/or very high values for

the numerical parameter λ appearing in the definition of ξ2 = λ2/2m2
P .

To derive the expression for the derivative dπ/dk requires a knowledge of the
actual poly-particle dynamics in C-space. We shall focus on two possibilities. In
the first case, to simplify matters, we shall take dπ/dk = (dπ/dΣ)/(dk/dΣ) = 0,
implying that the Clifford scalar component of the poly-momentum π does not
depend on the C-space Σ proper ”time”. In this case one has, as to be expected,
a superluminal group velocity, greater than unity (in c = 1 units) because
k/ω > 1 as a result of the condition k2 − ω2 > 0.

Therefore, when dπ/dk = 0, the expression for the group velocity as a func-
tion of k is given by

dω

dk
=

k

ω
= ξ k

(
1 + 2ξ2k2 ±

√
1− 4ξ2(M2 − π2)
2

)−1/2

(1.10)

In order to write the group velocity as a function of ω (Energy), one may expand
eq-(1.6) to lowest order in ξ in a Taylor series leading to

ω2 = k2 + (M2 − π2) + 8ξ2(M2 − π2)4 + ...... (1.11)

when ω2 − k2 < 0, one learns from eq-(1.4) that M2 − π2 = M2 < 0, so the
effective massM is tachyonic (imaginary), but not M . Inserting the expression
(1.11) into (1.10) yields

vgroup =
k

ω
∼
√

ω2 − M2 − 8ξ2 M4

ω
=

1 − 1
2
M2

ω2
− 4ξ2 M4

ω2
− .......... (1.12)

to sum up, because the effective mass is tachyonic M2 < 0 ⇒ −M2 > 0,
and 4ξ2M4/ω2 is a very small number, the vgroup > 1 ( in c = 1 units) is
superluminal. By equating ω = E in (1.12), in the case that dπ/dk = 0, one
has finally
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vgroup ∼ 1 − 1
2
M2

E2
− 4ξ2 M4

E2
− ............. with M2 < 0 (1.13)

if one neglects the 4ξ2M4/E2 terms in (1.13), one may obtain a numerical value
for the quantity π2 −M2 = −M2 > 0

vgroup − c

c
= − 1

2
M2

E2
=

1
2

π2 −M2

E2
= 2.48× 10−5, when E = 17 Gev

(1.14)
directly from the muon neutrinos OPERA experiment [7] after inserting the
average muon neutrino energy of < E > = 17 GeV into eq-(1.14). One then
arrives at √

π2 −M2 = 0.1197 GeV = 119.7 Mev (1.15)

if M = mνµ is identified with the very small and real-valued muon-neutrino νµ

mass, one has then that the value of the Clifford scalar component π of the
poly-momentum is π ∼ 119.7 MeV. It is an interesting coincidence that this
value for π = 119.7 Mev is close to the mass of the muon mµ = 105.7 Mev.

Since the condition dπ/dk = 0 is too restrictive, in order to attain compatible
results with other MINOS, SN 1987A, Fermilab, T2K, ..... neutrino experiments,
one should have in general that dπ/dk 6= 0 so the group velocity becomes now
a more complicated expression (in c = 1 units) of the form

dω

dk
=
(

1 − (π/k) (dπ/dk)
1 + 2ξ2(k2 − ω2)

)
k

ω
∼ [ 1 − (π/k) (dπ/dk) ] (

k

ω
) (1.16)

where we have neglected the ξ2 terms. If (π/k)(dπ/dk) < 0, the right hand
side of (1.16) is always greater than unity. By recasting (1.16) in terms of the
frequency (energy) one gets to lowest order

dω

dk
∼ 1

1 + (π/ω)(dπ/dω)

√
ω2 −M2

ω
> 1; M2 < 0 (1.17)

due to k/ω ∼ (
√

ω2 −M2/ω) > 1 and (π/ω)(dπ/dω) < 0. If negative values
of (dω/dk) are excluded by assuming the particle moves along the positive x1

direction, one must have that 1 + (π/ω)(dπ/dω) ≥ 0. In the limiting case
(π/ω)(dπ/dω) = −1 ⇒ (dω/dk) = ∞. Infinite superluminal velocity solutions
to the Dirac-Barut-Hestenes fermionic wave equation have been studied by [11].

Concluding, by defining the function

f(ω) ≡ 1
1 + (π/ω)(dπ/dω)

> 1, ω = E (1.18a)

one arrives at the functional form of the group velocity in terms of the fre-
quency ω (Energy) and the Clifford scalar component of the poly-momentum
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π = π(ω) = π(E), given by

vgroup(E) ∼ f(E) ( 1 − 1
2
M2(E)

E2
) > 1; M2(E) = M2 − π2(E) < 0

(1.18b)
Different neutrino experiments correspond to different physical conditions.

For example, neutrinos moving through inter stellar space (SN 1987A) will expe-
rience different dynamics and have a different functional form for π(ω), f(ω),M(ω)
than the neutrinos moving through the earth’s crust (OPERA). Hence one ex-
pects to have different values for their group velocities; i.e different functional
dependence on their frequencies (energies). Because the energies of the differ-
ent neutrino experiments varies considerably, one could adopt a more ambitious
view and explore the possibility in finding a set functions π(ω), f(ω),M(ω) that
fit all of the neutrino experiments irrespective of their physical conditions.

For the time being, we have to wait for further neutrino experiments to
make sure that the alleged superluminal behavior of muon neutrinos is not due
to a mundane or unforeseen technical issue, or to other physical reasons that
perhaps were not taken into account by the experimenters like frame-dragging
due to the earth’s rotation, gravitational-redshift, motion of the GPS satellite
and other effects [20]; eccentricity effects due to the elliptical trajectory of the
GPS [22], [23], [24]; time dilation or contraction in the earth’s gravitational field
[16]; quadrupole corrections due to the oblateness of the earth (not a perfect
sphere), speed of light measurements in non-inertial frames and the correct
synchronization of clocks in the two laboratories [21], [24] etc....

To our knowledge, the possibility that neutrinos might be tachyons was first
proposed long ago by [8], and later on by [9], among others. Superluminal
behavior is also a feature of Topological Geometro-Dynamics [10]. The limita-
tions of the special and general relativities and their isotopic generalizations has
been raised by [12]. Background-dependent Lorentz Violations in String Theory
laeding to superluminality can be found in [15], [14] and references therein. For
mass-dependent Lorentz violation and neutrino velocity see [18]; the apparent
Lorentz violation with superluminal Majorana neutrinos due to imaginary mass
terms was advanced by [19]; superluminality due to local effects caused by a
scalar field sourced by the earth can be found [13], and many other plethora of
proposals have been put forward by others.

To conclude this section, it is the contribution of the Clifford scalar com-
ponent π of the poly-momentum which is responsible for the superluminal be-
havior M2 < 0 in ordinary spacetime due to the fact that the effective mass
M is imaginary. From the point of view of C-space, there is no superluminal
(tachyonic) behavior because M2 > 0. Therefore, there is no violation of the
Clifford-extended Lorentz invariance and the Relativity principle in C-space.
Furthermore, to lowest order, there is no contribution of terms involving the
Planck mass (1/m2

P ) indicating that quantum gravitational effects do not play
a role at this order.
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2 Born’s Reciprocal Relativity in Phase Spaces
and Finsler Geometry

Born’s reciprocal (”dual”) relativity [25] was proposed long ago based on the
idea that coordinates and momenta should be unified on the same footing, and
consequently, if there is a limiting speed (temporal derivative of the position
coordinates) in Nature there should be a maximal force as well, since force
is the temporal derivative of the momentum. A curved velocity space case
scenario has been analyzed by Brandt [33] within the context of the Finsler
geometry of the 8D tangent bundle of spacetime where there is a limiting value
to the proper acceleration and such that generalized 8D gravitational equations
reduce to ordinary Einstein-Riemannian gravitational equations in the infinite
acceleration limit. A maximal acceleration principle was also suggested long
ago by [26]. A pedagogical monograph on Finsler geometry can be found in
[31] where, in particular, Clifford/spinor structures were defined with respect
to nonlinear connections associated with certain nonholonomic modifications of
Riemann–Cartan gravity.

Born’s reciprocal ”duality” principle is nothing but a manifestation of the
large/small tension duality principle reminiscent of the T -duality symmetry
in string theory; i.e. namely, a small/large radius duality, a winding modes/
Kaluza-Klein modes duality symmetry in string compactifications and the ultra-
violet/infrared entanglement in noncommutative field theories. The generalized
velocity and acceleration boosts (rotations) transformations of the 8D Phase
space, where Xi, T, E, P i; i = 1, 2, 3 are all boosted (rotated) into each-other,
were given by [27], based on the group U(1, 3) and which is the Born version of
the Lorentz group SO(1, 3). The U(1, 3) = SU(1, 3) ⊗ U(1) group transforma-
tions leave invariant the symplectic 2-form Ω = − dt∧dp0 + δijdxi∧dpj ; i, j =
1, 2, 3 and also the following Born-Green line interval in the 8D phase-space (in
natural units h̄ = c = 1)

(dΥ)2 = (dt)2 − (dx)2 − (dy)2 − (dz)2 +
1
b2

(
(dE)2 − (dpx)2 − (dpy)2 − (dpz)2

)
(2.1)

the rotations, velocity and force (acceleration) boosts leaving invariant the sym-
plectic 2-form and the line interval in the 8D phase-space are rather elaborate,
see [27] for details. These transformations can be simplified drastically when
the velocity and force (acceleration) boosts are both parallel to the x-direction
and leave the transverse directions y, z, py, pz intact. There is now a subgroup
U(1, 1) = SU(1, 1) ⊗ U(1) ⊂ U(1, 3) which leaves invariant the following line
interval

(dχ)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=
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(dτ)2
(

1 +
(dE/dτ)2 − (dP/dτ)2

b2

)
= (dτ)2

(
1 − F 2

F 2
max

)
; Fmax = b

(2.2)
where one has factored out the proper time infinitesimal (dτ)2 = dT 2 − dX2 in
(2.2). The proper force interval (dE/dτ)2− (dP/dτ)2 = −F 2 < 0 is ”spacelike”
when the proper velocity interval (dT/dτ)2 − (dX/dτ)2 > 0 is timelike. The
analog of the Lorentz relativistic factor in eq-(2.2) involves the ratios of two
proper forces.

If (in natural units h̄ = c = 1) one sets the maximal proper-force to be given
by b ≡ mP Amax, where mP = (1/LP ) is the Planck mass and Amax = (1/Lp),
then b = (1/LP )2 may also be interpreted as the maximal string tension. The
units of b would be of (mP )2. In the most general case there are four scales
of time, energy, momentum and length that can be constructed from the three
constants b, c, h̄ as follows [29]

λt =

√
h̄

bc
; λl =

√
h̄ c

b
; λp =

√
h̄ b

c
; λe =

√
h̄ b c (2.3)

The gravitational constant can be written as G = αG c4/b where αG is a di-
mensionless parameter to be determined experimentally. If αG = 1, then the
four scales (2.3) coincide with the Planck time, length, momentum and energy,
respectively. An interesting numerical relation involving the Planck scale and
Hubble radius is Fmax = mP

c2

LP
∼ MUniverse

c2

RH
, hence in [2], we suggested

that a certain large (Hubble) /small (Planck) scale duality was operating in this
Born’s reciprocal relativity theory reminiscent of the T -duality in string theory
compactifications.

We provided in [28] six specific results resulting from Born’s reciprocal Rel-
ativity and which are not present in Special Relativity. These are : momentum-
dependent time delay in the emission and detection of photons; energy-dependent
notion of locality; superluminal behavior; relative rotation of photon trajecto-
ries due to the aberration of light; invariance of areas-cells in phase-space and
modified dispersion relations. In particular, given the null condition in a flat
phase-space

(dχ)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
= 0 (2.4)

dividing by (dT )2, yields

1 − (
dX

dT
)2 + (

1
b
)2 (

dE

dT
)2 − (

1
b
)2 (

dP

dT
)2 = 0 ⇒

1− (v)2 + (
1
b
)2 (fo)2 − (

1
b
)2 (f1)2 = 0 ⇒ v = ±

√
1 + (

1
b
)2 (f0)2 − (

1
b
)2 (f1)2

(2.5)
where v = dX

dT is the coordinate velocity; the analog of power and force are
respectively fo = dE

dT 6=
dE
dτ = F0; f1 = dP

dT 6=
dP
dτ = F1. Reinserting the speed of
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light c (that was set to unity ) one arrives at

v = ± c

√
1 + (

1
bc

)2 (f0)2 − (
1
b
)2 (f1)2 = ± c

√
1 + (

c

b
)2 (

dM
dT

)2

(2.6)
where the infinitesimal mass-displacement is defined as

c2 (dM)2 = (
1
c2

) (dE)2 − (dP )2 (2.7)

Taking the positive sign under the square root, when ( c
b )

2 (dM
dT )2 < 0, one

arrives at the interesting conclusion that at the null hypersurface in a flat
phase− space one can have points such that v < c. However, if ( c

b )2 (dM
dT )2 > 0

one can have superluminal v > c behavior in this case, despite having a null
hypersurface in a flat phase-space. When ( c

b )2 (dM
dT )2 = 0, one recovers v = c

as it occurs in Special Relativity.
Estimates of (dM/dT ) = (dM/dE)/(dT/dE) = F (E) can be found in the

superluminal muon neutrino case by equating

v − c

c
=

√
1 + (

c

b
)2 (

dM
dT

)2 − 1 =√
1 + (

c

b
)2 [ F (E = 17Gev) ]2 − 1 ∼ 2.48× 10−5 (2.8)

to the OPERA experiment finding. In h̄ = c = 1 units , a Taylor expansion of
eq-(2.8) yields

1
2

[
1
b

F (E = 17Gev) ]2 ∼ 2.48× 10−5 ⇒ F (E = 17Gev) ∼ 7.04× 10−3 m2
P

(2.9)
when the maximal proper force b is given by m2

Planck. The value in eq-(2.9) for
F (E = 17Gev) is relatively high in this case. Because the gravitational constant
was written as G = αG c4/b, where αG is a dimensionless parameter to be
determined experimentally, lower values for F (E = 17Gev) can be obtained by
lowering the value of the maximal proper force b < m2

Planck, meaning then that
αG 6= 1, and such that now the four scales in eq-(2.3) do not longer necessarily
coincide with the Planck time, length, momentum and energy, respectively.
This could be a plausible scenario.

A particular modified dispersion relation can be obtained from a truncation
of a more general U(1, 3)-invariant dispersion relation in the 8D phase space
[27], [28] involving both coordinates and momenta. The truncation given by

gµν(E, pi) pµ pν = ( ηµν + hµν(E, pi) ) pµ pν = E2 −pip
i + hµν(E, pi) pµ pν = M2

(2.10)
breaks the U(1, 3) symmetry. If the perturbation of the flat phase space metric
hµν(E, pi) happens to depend on the energy and on the magnitude-squared of
the momentum variables, it admits a Taylor series expansion of the form
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hµν(E, pip
i) =

∑
n

h(n)
µν (E)

(pjp
j)n

m2n
P

(2.11)

and it furnishes the following modified dispersion relations, after setting |~p|2 =
pip

i,

E2 − |~p|2 +

( ∑
n

h(n)
µν (E)

|~p|2n

m2n
P

pµ pν

)
= M2 (2.12)

In the special case that the only nonzero components h
(n)
µν (E) are given by

h(n)(E) = h
(n)
00 (E) = − h

(n)
11 (E) = − h

(n)
22 (E) = − h

(n)
33 (E) (2.13)

one gets

( E2 − |~p|2 )

(
1 +

∑
n

h(n)(E)
|~p|2n

m2n
P

)
= M2 (2.14)

In the other very special case that the only nonzero components are given by

h
(n)
00 (E) = 0, h

(n)
11 (E) = h

(n)
22 (E) = h

(n)
33 (E) = − f (n)(E) (2.15)

one arrives at the modified dispersion relations

E2 − |~p|2 −

( ∑
n

f (n)(E)
|~p|2n+2

m2n
P

)
= M2 (2.16)

like those appearing in Finsler Geometry [17], [30], rainbow metrics [34] and
Double (deformed) Special Relativity [35], [36].

The leading order behavior in eq-(2.16) is

E2 − |~p|2 − f (0)(E) |~p|2 = E2 − |~p|2( 1 + f (0)(E) ) ∼ M2 (2.17)

which is similar to the results in [17] when f (0)(E) < 0. The ratio

v =
|~p|
E

∼
√

E2 −M2

E2

1√
1 + f (0)(E)

(2.18)

is a measure of subluminal/superluminal behavior. To attain superluminality

(in c = 1 units) one must have that f (0)(E) < 0 and such that
√

E2−M2

E2 >√
1− |f (0)(E)| yielding, after expanding the square roots in a Taylor series,

v(E) ∼ 1 − 1
2

M2

E2
+

1
2
|f (0)(E)| − 1

4
M2

E2
|f (0)(E)| (2.19)
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assuming the last term in the right hand side is negligible compared to the first
three terms one has for the OPERA experiment, at an average energy of 17
Gev,

v − 1 ∼ 1
2

( |f (0)(17Gev)| − M2

(17Gev)2
) ∼ 2.48× 10−5 (2.20)

giving an estimate of the very small value of |f (0)(17Gev)| of the order of
4.96 × 10−5 obtained by neglecting the mass term in (2.20). If we had used
a different dispersion relation (2.14) we would have obtained different results
for the value of h(0)(E = 17 Gev). In the general case one must solve the
generalized gravitational equations in the 8-dim phase space (cotangent bundle
of spacetime) using the techniques of Lagrange-Finsler and Hamilton-Cartan
spaces [32], [31]. This is a very difficult task. The solutions will determine
the phase space metric gAB(xµ, pµ), A,B = 1, 2, 3....., 8 whose momentum com-
ponents are the ones which appear in the truncation leading to the modified
dispersion relations (2.10), and which in turn, furnish the functional behavior
of the velocities in terms of the energies.

The advantage of using a non-truncated expression for the phase-space in-
terval and which determines the functional form of the superluminal velocity in
eq-(2.6), is that it is uniquely defined for a flat phase-space metric. For this
reason we could focus on eq-(2.6) and the numerical analysis which follows in
eqs-(2.8, 2.9) to try to fit the experimental data on all neutrino experiments.
The Clifford-space approach leading to eqs-(1.18a, 1.18b) is also equally valid
to fit the superluminal neutrino data.
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