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Abstract

The quantum phase has profound effects on quantum mechanics but its physical origin is currently
unexplained. This paper derives its general form from two physical axioms: 1) in the limit in which space
goes to zero, spacetime reduces to a constant quantity of areatime, and 2) the proper time dimensions
of areatime and of spacetime are orthogonal but can be compared to each other according to what will
here be called an angular dual bilateral symmetry. The mathematical derivation and the explanation of
the physical origin of the quantum phase from these two axioms is straightforward and implies that the
quantum phase is intimately related to the quantization of spacetime.
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1 Introduction

The quantum phase appears in canonical non-relativistic quantum mechanics as a consequence of being a
solution to Schrödinger’s equation, and in the path integral formulation (in a different mathematical form)
as an axiom. To this author’s knowledge, there exists to date no explanation of its physical origin even
though, albeit imaginary and therefore not directly observable, it has profound effects on the theory and its
predictions. This paper will present a derivation of its relativistic form e±iωτ from two axioms that elucidate
its physical origin. It will be seen that according to this derivation the physical origin of the quantum phase
is intimately related to the quantization of spacetime.

2 Areatime

Consider any geometric object or volume of space and imagine it could be shrunk in size without changing its
shape. One aspect that does change proportionally with size, regardless of inherent composition, is the ratio
of its surface area to volume A/V . This ratio becomes larger as the object becomes smaller, and therefore,
very small objects are extremely flat in comparison to objects in our every day experience. For example,
since for spherical objects the ratio is proportional to the inverse of the radius, a ball of radius 10−11m
(roughly the Bohr radius) has an A/V ratio hundred billion times larger than a ball of radius 1 m. So one
property that all objects of atomic and nuclear proportion have in common is that, compared to objects on
our scale, they are vastly more two-dimensional.
We can now carry this observation to its logical conclusion by asking: Is there a scale at which this ratio
becomes infinite? This is equivalent to asking whether there exists a scale at which volume vanishes but
area does not. Normally, one might assume that once a volume element is shrunk to zero, one is left with
’nothing’. This is indeed what underlies the usual conception of ’point particles’, which are by definition
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zero-dimensional. So, the conventional assumption about such a scale is that it marks the transition from
three spatial dimensions to zero spatial dimensions. But if it is true that that there exists a scale at which
volume no longer exists but area still does, then this scale must actually mark a transition from three spatial
dimensions to two. If such a scale exists, one might at first reasonably assume that objects which at that
scale are necessarily characterized by zero volume and finite area still exist in spacetime. But there are some
great difficulties with this assumption: In order to transition from three to two dimensions, a direction in
space has to vanish. By virtue of this fact, that direction is different from all other directions in space.
This, however, violates our fundamental assumption of space isotropy. One could attempt to save isotropy
by postulating that in principle any direction in space could vanish at that scale, depending on individual
circumstances. But then one needs to introduce additional assumptions to specify how in each individual
circumstance one direction in space is singled out as the one that vanishes at that scale.
There is a way of postulating a scale at which space vanishes while area is preserved which avoids these
difficulties: we assume that at that scale not only space vanishes, but spacetime itself is reduced by one
dimension!
This proposition may seem rather unfamiliar, so it deserves elaboration. This author previously formulated
a principle which can be used to choose from alternative fundamental assumptions, and which is called
the Principle of Least Speciality. It says that of alternative fundamental assumptions of which one must
be chosen to derive an explanation for a physical phenomenon, that one is to be preferred which assigns
to that phenomenon, and closely related aspects of nature, the least special status, unless there exists a
logical reason for preferring a more special assumption. Applying this principle to spacetime itself, we may
ask whether we should assume that spacetime is special in the sense that as a continuum consisting of a
specified combination of length and time dimensions it is unique, or whether we should assume that it is
not. We must choose from one of these two possibilities. Spacetime certainly seems unique to us, but our
perspective is biased, since we are observers who exist in spacetime. Absent any logical reason that explains
why spacetime is special in this way, the principle of Least Speciality tells us that we should prefer the
assumption that spacetime is not special, i.e. it is no more unique than any other continuum consisting of a
different combination of length and time dimensions. So, taking the position that spacetime is not unique,
and presuming the existence of a scale at which space but not area vanishes, one can recognize that what
is left at that scale is a continuum that consists of two dimensions of length and one dimension of time. A
natural name for this continuum is areatime. Mathematically, we will express this assumption as follows:

Axiom I : lim
V→0

U4 = |U3max| (1)

Where U4 symbolizes a quantity of spacetime (the subscript denotes the number of constituent dimen-
sions) and |U3max| is defined as the maximum quantity of areatime below which a volume is zero. ’Areatime’
is meant to connote that U3 has the same metric structure as spacetime, but with two instead of three
constituent length dimensions. Note that |U3max| is not an upper limit on areatime, but only a lower limit
on spacetime. In other words, axiom I does not preclude the existence of quantities of areatime greater than
|U3max|, but these do not constitute a limit on spacetime. The absolute value signs on |U3max| are meant to
indicate that Axiom I treats it as a scalar quantity without putting constraints on its shape. Put differently,
it is not assumed that in this limit spacetime reduces to a rigid lattice, as would be the case if a volume
element anywhere in space reduced to a quantity of areatime of the same shape. On the other hand, since (1)
does not refer to any particular volume element, it follows from our fundamental assumption of homogeneity
of space that for every volume element spacetime must have the same quantity of areatime as its limit. That
is, axiom I requires that |U3max| be a constant. To summarize, (1) says that there exists a finite limit in
which space vanishes and in which spacetime reduces to a constant quantity of areatime of variable shape.
This axiom sets |U3max| as the limit in which spacetime becomes discontinuous, or quantized. To see this,
recall that a function f(x) is continuous at a iff lim

x→a
f(x) = f(a). Letting x = V , a = 0 and f(x) = U4(V )

we see from (1) that |U3max| �= U4(0) because the number of constituent dimensions do not match. This
contrasts with the assumption that spacetime is continuous, which can be expressed as lim

V→0
U4 = 0, reflect-

ing a zero amount of a four-dimensional quantity.
Given Axiom I, how might objects which exist in this limit manifest themselves to us? A partial answer to
this question will be provided by the axiom presented in the next section.
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3 Angular Dual Bilateral Symmetry

Before presenting an axiom that partially answers the question of how phenomena associated with entities
in areatime should manifest themselves to us, we need to define a symmetry that arises when certain kinds
of translation pairs are superposed. All translation rates here are assumed to vary sinusoidally.
Figure 1 depicts the superposition of a continous translation of x → 0 and that of 0 → y at sinusoidally
changing rates which are phase shifted by π/2 e.g. at (xmax, 0) the x-velocity is zero while the y-velocity
is at a maximum, whereas at (0, ymax) the x-velocity is maximally negative whereas the y-velocity is zero.
The superposition yields a continuous translation in the counter-clockwise angular direction:

Figure 1: Superposition of one inward and one outward translation with a sinusoidally changing rate

Figure 2 depicts all 8 such possible superpositions of translation pairs along the two axes:

Figure 2: Angular Dual Bilateral Symmetry

Because the resultant pattern is invariant both with respect to a reflection and a rotation of the axes
over an angle π

2 , and because the superposed translation is always in an angular direction, we will call this
an angular dual bilateral symmetry. We are now ready for the second axiom.

Axiom II: The proper time dimensions of distinct continua are orthogonal but

can be compared by matching the shorter time dimension to consecutive intervals of

equal magnitude of the longer time dimension according to the angular dual bilateral

symmetry

(2)

Axiom II is a concise statement of a process which requires further elaboration, and in which we will symbolize
the proper time of spacetime by τ (as usual), and that of areatime by τA. Proper time, of course, refers to
the square root of the metric interval and divided by c, but we will discuss it here in terms of time measured
in a rest frame. In the follow-up paper to this work, the rest frame in areatime to which τA refers will be
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shown to belong to something that manifests itself to us as what is called an actualizable system in spacetime
[3], but because its discussion is otherwise not relevant in this derivation, we will here simply assume that it
is possible to coherently define such a frame.
This axiom postulates that τA is orthogonal to τ . Thus, we must first clarify how one is to understand
the notion of orthogonal time dimensions. Consider two observers O1 and O2 who each carry a clock. If
over the duration that the clock of O1 measures a time interval t1, the clock of O2 measures a time interval
t2, such that the two quantities can be related to each other by t1 = γt2 , where γ is a real dimensionless
factor with the property 0 < γ|−1| < ∞ we could not legitimately claim that for any value γ|−1| �= 1 the
two observers are subject to distinct time dimensions1. Rather, we would say that they are subject to the
same time dimension and that the difference in the measured time intervals is the result of the clocks being
calibrated differently. We can use the notion of ’aging’ instead of the notion of carrying a clock, as long as
the clock is always stationary with respect to the observer to whom it belongs, but that does not change
anything stated so far. For even if two observers age at different rates such that their rates of aging can
be related to one another by a finite factor not equal to one using properly calibrated clocks, we could still
not claim that they age along distinct time dimensions. According to the special theory of relativity (SR),
observers in spacetime can age at different rates relative to each other (when they are in relative motion)
and in spite of this are still considered to age along the ’same’ time dimension, since we consider there to
exist only one time dimension in spacetime.
The situation is different when γ|−1| = 0 because in that case the rate of aging of the two observers cannot be
related to one another. This means that over the duration that one observer ages, the other does not age at
all. We will take this inexpressibility of one observer’s time interval in terms of the other’s as a plausibility
argument to support the idea that when this is the case for two time dimensions, they are orthogonal2.
Thus, we consider τA to be orthogonal to τ when an entity that ages according to τA does not age relative
to another entity that ages according to τ , and vice versa. Since the two time dimensions are constituents
of two distinct continua, this means that entities which exist in areatime do not age relative to entities in
spacetime, and vice versa.
There is a well-known instance of this in the physical world described by SR and it is instructive to discuss it
now. For photons, τ = 0 which means that no matter how long a time interval we as observers in spacetime
consider, no time is observed (by us) to pass for such entities over that same interval. This gives rise to
an apparent paradox which was pointed out elsewhere and called the photon’s existence paradox : If such
entities do not age, then the instant they come into existence must, to them, be precisely the same instant
they go out of existence. For example, the instant a photon is emitted is, to it, the very same instant it is
absorbed somewhere else. Therefore, it ’observes’ its duration of existence in our spacetime to be precisely
equal to zero. But a duration of existence of precisely zero would be intuitively understood to be equivalent
to non-existence, which contradicts the known observational consequences associated with the existence of
photons. This paradox is resolved by using the Principle of Least Speciality to assume that spacetime is not
a unique continuum, which makes it possible to consider that photons exist outside of our spacetime. If they
exist outside of our spacetime, our account of their ’observation’ of their own existence in our spacetime
must in fact be consistent with a zero duration of existence. Indeed, the invariance of the speed of light has
been derived from this very realization[1]. So SR is quite consistent with the idea that if an entity exists
outside of spacetime, it does not age in spacetime. In fact, we can go even further in connecting SR to
this framework: since, according to SR, the length of entities traveling at c in their direction of motion is
contracted to zero, such entities can at most be characterized by 2 orthogonal length dimensions. Assuming
that photons have transverse extent, photons must be 2-dimensional entities. But 2-dimensional entities are
exactly those which are presumed to exist in areatime! Hence the framework developed so far in conjunction
with SR already makes a definite real-world prediction: Photons exist in areatime.
That photons are intrinsically characterized by one fewer dimension than spacetime observers can also be
deduced by realizing that the photon energy-momentum vector is really a 3-vector masquerading as a 4-

1this is a generalized version of the time dilaton factor, defined as γ|−1| ≡ γ for 1 < γ|−1| ≤ ∞ and ≡ γ−1 for 0 ≤ γ|−1| < 1
2It is readily admitted that the notion of ’inexpressibility’ is mathematically vague. A mathematically more precise notion

could perhaps be constructed as follows: Consider the square of the proper times multiplied by c2 (i.e. the metrics) as abstract
vectors, and take the direct tensor product. This product lives in a 7-dimensional space, but the position of any object in this
space can, according to our axioms, only be described using components either in one 4-dimensional or another 3-dimensional
subspace. If there is no entity which deviates from this, the two metrics can be considered to be orthogonal. I thank Professor
Jim Liu for this suggestion
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vector because the energy component is completely dependent on the momentum components. This is
exactly analogous to calling the position vector < x, y, z, r > with r ≡

�
x2 + y2 + z2 a ”four-vector” in

4-dimensional Euclidean Space when in fact it exists only in a 3-dimensional subspace. Minkowski spacetime
differs from this only in that an entity which actually exists only in a subspace does not progress along the
proper time of spacetime. Considering that proper time is proportional to the metric, this must be true by
elementary geometric considerations, as the metric of Minkowski spacetime is distinct from the metric of any
of its subspaces. It is in this sense that one can think of photons as actually existing ’outside’ spacetime.
Having established the meaning of orthogonality between distinct time dimensions, we can now discuss how
to compare them to each other, but first let us clarify why this is necessary in the first place. Since we are
considering a situation in which observers in spacetime, who do not age along τA, wish to describe their
observation of effects caused by objects existing in areatime, which do not age along τ , we are faced with the
following dilemma: How can an experiment involving ’observations’ over a finite duration be meaningfully
performed when the observer and the ’observed’ age along orthogonal time dimensions? If we can in fact
attribute observational consequences over a finite time interval to entities that exist in areatime, then there
must be a mechanism by which the passage of time in the system that is being observed (the time evolution

in the language of QM) is compared to the passage of time for the observer, even though they do not age

relative to one another. Axiom II outlines this mechanism.
Taking a global view, we can re-express τA in terms of |U3max| by

τA = (τA)f − (τA)i =
|U3max|

A
(3)

where (τA)f and(τA)i correspond to the initial and final proper temporal boundaries of |U3max| and A is
the area orthogonal to τA. Now, we should expect |U3max| to be ’very small’, otherwise the effects of the
vanishing of spacetime would have been obvious at the scale of our immediate experience. Unless A is also
extremely small, we must then expect that the time interval is short, at least compared to time scales of
our immediate experience. Keeping in mind that the proper times τ and τA are orthogonal, absolute value
signs will be used in comparisons between their magnitudes. So, while we already know from the fact that
U3 is a subspace of U4 that |τA| ≤ |τ |, we can from the above considerations strengthen this condition for
|U3max| to |τA| << |τ |. This comparison is rendered meaningful by defining an interval on τ to have the
same magnitude as τA when any point on that interval can be mapped to τA in manner that is one-to-one
and onto. Combined with our assumption that U3 has the same metric structure as spacetime, this allows
us to assume that the two time dimensions scale the same.
The next part of Axiom II says that τ and τA can be compared against each other by matching τA to
consecutive intervals of equal magnitude of τ . This is only possible if we identify the two opposite temporal
boundaries of τA, which in turn introduces the property of periodicity to τA:

τA ⇒ τA + n
|U3max|

A
n = 0, 1, 2... (4)

The last part of axiom II says we match τA to τ according to the angular dual bilateral symmetry, where
we take as the ’directions’ associated with each time dimension the past and the future and the origin to
correspond to the ’present’ for both time dimensions. For example, 0 → τA symbolizes a time translation
from the present to the future, whereas 0 → −τA symbolizes a time translation from the present to the past.
But both translations refer to the same time interval, so the present in the first translation must correspond
to the past in the second, and the present in the second to the future in the first. With this understanding,
the continuous angular translations can be expressed in terms of the superposition of eight pairs of sinusoidal
translations in time along orthogonal directions:

0 → τA & τ → 0 (5)

0 → τA & − τ → 0

0 → −τA & τ → 0

0 → −τA & − τ → 0

τA → 0 & 0 → τ

τA → 0 & 0 → − τ
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−τA → 0 & 0 → τ

−τA → 0 & 0 → − τ

Notice how each time translation pair can be thought of as a transformation of a progression along τA to
a progression along τ . By itself it is not allowed because then it would consitute a net transformation, and
this in turn would imply that it is possible to express τA in terms of τ , in which case we could no longer
consider the time dimensions to be orthogonal and therefore distinct. For the entire angular dual bilateral
symmetry the net transformation between the two time dimensions, and therefore their expressibility in
terms of each other, is precisely zero because each transformation is canceled by one that is its negative but
equal in magnitude, thus satisfying the orthogonality condition.
Since each of the individual superpositions of translation pairs given in (5) amounts to a rotation over an
angle ϕ = π/2, the entire symmetry can be thought of as the sum of eight such rotations, with a net angular
displacement equal to zero. Equivalently, it can be thought of as two rotations over an angle ϕ = 2π in
opposite directions: one clockwise rotation, and one counterclockwise rotation. Fig. 3 shows how this can
be visualized:

Figure 3: Decomposition of Angular Dual Bilateral Symmetry into 2 opposite rotations

We note that, in group theoretical language, the angular dual bilateral symmetry can be decomposed into
two representations of of the U(1) symmetry group which are inverses of one another. These representations
are closely related, but not identical, to the known unitary group representations associated with quantum
mechanics, as the derivation in section 4 will show. Let us continue, however, with our physical point of
view. The duration over which each rotation completes a cycle is proportional to τA, so

τA ∝ T

2π
(6)

Where the period T parameterizes the periodicity of τA over the angular distance 2π. Because we defined
the relation between the magnitudes of τA and τ such that they scale the same, the magnitude (actually the
modulus, as we will see momentarily) of the proportionality constant must be equal to one. This means that
we must think of the rotations in opposite directions as occurring simultaneously, rather than consecutively,
because otherwise for two consecutive full rotations (one clockwise, one counterclockwise) per period, the
periodicity would extend over an angular distance of 4π, thereby introducing a scale factor of 2. Since the
simultaneous rotations in opposite directions can be thought of as ’time reversed’ versions of each other,
each value of τA maps to two values of T : One corresponding to the clockwise rotation and the other to the
counterclockwise rotation. These can be distinguished by including a ±sign on the right side of (6), where
each sign corresponds to one of the rotations:

τA ∝ ± T

2π
(7)

Note that this symmetry really holds only over the duration of a single period of simultaneous rotations
over 2π because in subsequent periods, τA is matched up against subsequent intervals of τ . This has an
important implication: If we think of τA as the range of ϕ , and of τ as its domain, then |τA| << |τ | means

6



that a rotation in both directions over the angle ϕ = 2π does not return one to the starting point. In fact,
if we take |τ | to be so much larger than |τA| that by comparison |τ | ≈ ∞ (since an observer in spacetime
could, in principle, carry on an experiment ’forever’), we can consider the domain of ϕ to be infinite. This

mathematically defines an imaginary angle! In other words, the angle that is defined by the relation between
τA and τ is actually iϕ where i ≡

√
−1. This is the proportionality constant:

τA = ± T

i2π
= ∓i

T

2π
(8)

consistent with the fact that the range of an imaginary angle is itself imaginary. Imaginary numbers were
discovered several hundred years ago, and their appearance in equations that model the real world (to
wit: Schrödinger’s equation) has been one of the main mysteries associated with quantum theory. The
framework here suggests a clear mathematical reason for their necessity, but one can also attach to it a
physical interpretation distinct from the mathematical reason given above: τA does not exist as such in
spacetime; if it did, then entities existing in spacetime would age along τA, but they actually age along τ ,
which is real. Thus, τA must be modeled as an imaginary quantity of time in spacetime.

4 The Derivation

Having introduced and explicated the principle of dual bilateral symmetry, it is straightforward to translate
it into a mathematical form that is readily recognizable as the quantum phase. To begin, we identify each
group of 4 translation pairs which sum to a rotation over 2π with a phase. The two phases are then complex
conjugates of each other and, as mentioned, must be considered to be simultaneous instead of consecutive,
otherwise they introduce a scale factor of 2 between the proper times. Considering for the moment only one
of the two phases, for any interval 2πn ≤ ϕ ≤ 2π(n+ 1), n = 0, 1, 2..., the real angle ϕ is given by

ϕ = tan−1

�
τA

i

1

τ

�
(9)

Where τA is divided by i to make it real. The phase amplitude τr is given by

τr =

�
τ2 +

�
τA

i

�2
(10)

To transform this phase into the quantum phase we must normalize the amplitude and render it dimensionless.
This can be accomplished by defining a new angle θ such that

θ ≡ cotϕ = cot

�
tan−1

�
τA

i

1

τ

��
= i

τ

τA
(11)

Then we can define a new Argand plane consisting of the orthogonal axes x and iy such that over a single
period the real angle θ is given by

θ = tan−1
�
y

x

�
= i

τ

τA
(12)

From which it follows that
y

x
= tan

�
i
τ

τA

�
=

sin (iτ/τA)

cos (iτ/τA)
(13)

The new amplitude r is then given by

r =
�
y2 + x2 =

�

sin2
�
iτ

τA

�
+ cos2

�
iτ

τA

�
= 1 (14)

which is normalized and dimensionless, as required. Since τA is periodic, we can identify it with the inverse
of an imaginary angular frequency

τA = ∓i
T

2π
= ∓ i

ω
(15)
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Where the ∓sign indicates that we are now again considering both phases. Then the imaginary angle iθ,
which is now a parameterization of iϕ, is given by

∓iθ = i

�
i
τ

τA

�
= ∓iωτ (16)

Using (16) we can describe the phases mathematically as

e

�
− τ

τA

�
= e

∓iωτ (17)

This is the relativistic form of the quantum phase. We can make the connection to quantum theory more
explicit by letting ω ≡ mc2

h̄ and τ =
�
dτ , for then we get

e
∓imc2

h̄

�
dτ = e

∓imc
h̄

�
ds = e

±iS
h̄ (18)

Where S = −mc
�
ds is the classical relativistic action of a free particle and the last term in (18) appears

in its non-relativistic approximation as an axiom in the path integral formulation of quantum mechanics.
Note that both signs of that phase are required in quantum theory because in the final step of calculating
probabilities the complex phase must be multiplied by its complex conjugate. From the perspective of this
derivation this requirement is due to the fact that only the product of the two conjugate phases leads to the
full angular dual bilateral symmetry. This, in turn, ensures that the net phase change is zero, which reflects
a net zero transformation of progression along τA to progression along τ .
The partial answer to the question posed at the end of section 2 is that any time-dependent description of
our observation of phenomena associated with entities that exist in areatime must include phases of the form
given in (17) or their mathematical equivalents (including non-relativistic approximations). Connecting this
with our knowledge of quantum theory allows us to turn this answer around and generalize our claim about
photons: Any object which must be described by a phase of the form given in (17) (i.e. any quantum object)

is our description of the manifestation in spacetime of an entity that actually exists in areatime.

5 Conclusion

This paper presented a derivation of the quantum phase from two fundamental axioms, one involving a
quantization of spacetime in which spacetime in the limit of zero space reduces to areatime and the other
involving a conceptualization of the phase in terms of an angular dual bilateral symmetry between the proper
time dimension of spacetime and the proper time dimension of areatime. The derivation implies that quan-
tum objects actually exist in areatime.
A less technical, more philosophically oriented overview of how these ideas can fit with standard quantum
mechanics is given in [2], whereas the follow-up paper to this one attempts to provide a more detailed deriva-
tion of the remaining principles of quantum mechanics from these and a few additional physical assumptions
[3].
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